
Visualizing Results of Live Model Queries

Zoltán Ujhelyi
ujhelyiz@mit.bme.hu

Tamás Szabó
szabta89@gmail.com

István Ráth
rath@mit.bme.hu

Dániel Varró
varro@mit.bme.hu
Budapest University of

Technology and Economics
Department of Measurement

and Information Systems
H-1117 Magyar tudósok krt.

2., Budapest, Hungary

ABSTRACT
Several important tasks performed by model driven devel-
opment tools — such as well-formedness constraint valida-
tion or model transformations — rely on evaluating model
queries. If the model changes rapidly or frequently, it is ben-
eficial to provide live queries that automatically propagate
these model changes into the query results. To ease the de-
velopment and debugging of live queries, the development
environment should provide a way to evaluate the query re-
sults continuously, helping to understand how the created
query works.

This paper presents a generic live model query visualizer
that displays and updates the query results depending on
their source models. It has been implemented for the EMF-
IncQuery framework and presented here for validating BPMN
models.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.2 [Software
Engineering]: Computer-aided software engineering (CASE)

Keywords
Live model queries, graphical user interface, integrated de-
velopment environment

1. INTRODUCTION
Model queries play a central role in many scenarios in model
driven engineering ranging from well-formedness constraint
evaluation to model synchronization and calculating depen-
dencies or metrics between system components. By defini-
tion, a model query retrieves those elements from a model

that satisfy a query condition, which can be a complex com-
position of subconditions.

During the evaluation of these model queries, one can dis-
tinguish between on-demand and live evaluation strategies.
In case of an on-demand strategy, query re-evaluation is ini-
tiated explicitly by the user or a transformation program,
and the result set is typically calculated from scratch. In
case of live model queries, the query results are updated
automatically when the underlying model changes (without
explicit user request). This is a useful feature for validation
in model editors [3] as well as for live model transformations
in model synchronization scenarios [12].

The main motivation of our current work is to provide an in-
tegrated development environment (IDE) for designing and
debugging live model queries. On the one hand, such an
IDE should include a powerful query editor (built upon a
domain-specific language framework such as Xtext or GMF)
to support the specification of queries. On the other hand, a
query IDE should also support the evaluation and debugging
of queries, which is the main focus of the current paper.

This paper presents an Eclipse IDE for visualizing the results
of live model queries. Our solution is (i) generic in the sense
that it accepts models developed by arbitrary model editors.
Thanks to the incremental evaluation strategy of the under-
lying EMF-IncQuery framework, (ii) it provides live view
of the query results (for all queries over all model instances).
Furthermore, to improve usability by avoiding information
overload, it also provides various filtering strategies to con-
trol the information presented to the query developers. Our
approach is exemplified by visualizing live queries in the in-
dustry standard EMF models, but its underlying architec-
ture allows easy adaptation for other modeling frameworks.

In the rest of the paper, Section 2 discusses the challenges
of providing a powerful IDE for query development using
BPMN models as a motivating example. Then, our proposal
is outlined in Section 3 including its requirements, architec-
ture, and user interface issues. Related work on debugging
queries and transformations is provided in Section 4, while
Section 5 concludes our paper.



Figure 1: A simple BPMN workflow with sink activities

2. DEVELOPING LIVE MODEL QUERIES
2.1 Case Study: Validation of BPMN Models
Our approach will be exemplified using simple model queries
for the Business Process Model and Notation (BPMN [11])
modeling language. BPMN is a widely used standard for
specifying business processes featuring a flowchart-like no-
tation.

BPMN models both control and data flow explicitly; for con-
trol flow, activities, events and gateways (e.g. conditional
decisions) are available, while data flow may be specified be-
tween activities and artifacts. The elements of the process
are organized into pools and swimlanes to represent e.g. the
organizational structure.

When managing BPMN models, additional structural well-
formedness constraints should be validated, for example sink
activities – activities with no outgoing control or data flow
edge – should only be used as final activities of a workflow.

Example 1. To illustrate BPMN models, Figure 1 de-
picts a simple BPMN workflow with two pools and six activ-
ities (one start, one end and four regular activities). Addi-
tionally, the sink activities are framed.

2.2 Incremental Model Queries Using EMF-
IncQuery

The EMF-IncQuery framework [3] provides a development
environment for incremental model queries based on the for-
malism of graph patterns [4]. Graph patterns represent con-
ditions or constraints that are to be fulfilled by a part of
an instance model. These conditions are either structural
constraints prescribing the existence of nodes and edges of
a given type or expressions to define attribute constraints.
Additionally, graph patterns can refer to other patterns us-
ing the find construct and negative application conditions
define cases where the original pattern is not valid even if
all other constraints are met.

The EMF-IncQuery framework features a query engine
based on the Rete rule evaluation network [6], an incremen-
tal pattern matching technique [12], that (1) performs well
even in the range of millions of elements and (2) provides
notifications for query result changes as well.

Query&engine&

Rete&network&

Input&
nodes&

Intermediate&
nodes&

Output&
nodes&

Delta&
monitor&

EMF&instance&
model&

Pa=ern&matcher&
components&&

Input&=&Model&contents&
+&EMF&noAficaAons&

Output&=&Query&results&+&Query&result&deltas&

Figure 2: The EMF-IncQuery Architecture

Figure 2 gives an overview of the architecture of EMF-
IncQuery. The query engine uses EMF instance models
as input, and initializes a Rete network based on the model
contents. Additionally, the engine registers itself to receive
notifications for model changes to update the Rete network
accordingly. The pattern matcher components package the
results stored in the network as query results, and makes
result deltas available using attached delta monitors.

During query evaluation query parameters might be left un-
bound, returning all possible matches. However, binding
some parameters to a concrete value (most commonly model
elements) effectively filters the match results by removing
matches without the selected elements.

Example 2. Figure 3 specifies how to identify sink activ-
ities using graph patterns as defined in the query language
of EMF-IncQuery.

The pattern sinkActivityNames consists of three constraints:
(1) there is an Activity marked A (2) with a defined name
Name, that (3) has no outgoing edges – this constraint is de-
fined with a negative pattern call.

The pattern hasOutEdge is used to represent the activities
that have either an outgoing sequence flow edge or an outgo-
ing message flow edge. Both of these edges are captured as a
corresponding pattern that represents the connection between
the selected activity and another, non-specified one.

The pattern sequenceFlowEdge (and the omitted, but very
similar messageFlowEdge pattern) describes an edge whose
source and target activities are set according to the parame-
ters.

2.3 Debugging Incremental Model Queries



/* Calculates the Name of a sync activity */
pattern sinkActivityNames(Name) {
Activity(A);
Activity.name(A, Name);
neg find hasOutEdge(A);

}

pattern hasOutEdge(A: Activity) {
find sequenceFlowEdge(_From , A, _Other );

} or {
find messageFlowEdge(_From , A, _Other );

}

pattern sequenceFlowEdge(
Flow:SequenceEdge ,
Src:Activity , Dst:Activity) {

SequenceEdge.source(Flow , Src);
SequenceEdge.target(Flow , Dst);

}

Figure 3: Example Graph Patterns

The high-level, declarative nature of query definitions in
EMF-IncQuery can make it hard to understand all corner
cases of complex patterns without evaluating them (possi-
bly using multiple models). Additionally, creating compos-
ite patterns can be even more error-prone, as the corner
cases are often distributed in different pattern definitions.
In our experience this means some manual experimentation
and debugging is needed to identify inconsistencies in query
definitions. In this section, we exemplify the main challenges
based on the evaluation of the Sink Activities query.

To evaluate the newly written queries, it is important to
create experimental BPMN models – for this reason, the
existing BPMN editors should be reused, in our case, the
one included in the Eclipse SOA Tools Platform suite [16].

The BPMN editor may also be used to display the query re-
sults on top of the original model (for example, by coloring
the result set). However, in case of large result sets it be-
comes hard to differentiate between different matches, and
there is no generic, editor-independent way to implement
this functionality.

The evaluation of live queries is impractical using interactive
consoles, such as the Interactive OCL Console of Eclipse [1],
because in case of model changes it is required to manually
re-execute the query to obtain and compare the modified
results.

For these reasons, we propose to use a Query result viewer
that displays the results of a set of queries, and automati-
cally updates them when either the instance models or the
query definitions are changed. To achieve this, the viewer
listens to query result deltas coming from the Query engine.

As the viewer is a separate user interface component, for
traceability it needs also allow navigating to the referenced
model elements directly in the already opened editor.

Additionally, filtering the visible set of queries is highly ben-
eficial. E.g., when evaluating the sinkActivityNames pat-

tern from Figure 3, only the hasOutEdge, sequenceFlowEdge
and messageFlowEdge patterns are interesting, all the others
are to be hidden.

Finally, during the evaluation of the sinkActivityNames

pattern we are often interested in whether a selected Ac-
tivity is included in the results or not. For this reason, the
viewer needs to support filtering the results by binding input
parameters for queries.

3. A DEVELOPMENT ENVIRONMENT FOR
LIVE MODEL QUERIES

In this section, we propose a live model query visualizer
extension to integrated domain-specific modeling environ-
ments. We assume the environment already has some editors
for the selected instance models and the query definitions,
and design the visualizer to extend their functionality with
live model query visualization.

3.1 Requirements
Based on our experience with developing incremental model
queries we defined the following list of requirements:

R1. Genericity: The created visualizer should be able to
load the input models from the selected model edi-
tor (regardless of its type), and also from any specific
model viewer based on the current selection.

This way, it is not required for the query developer to
provide the test instance models using an editor known
in advance, while providing an additional viewer for
the query results.

R2. Incrementality: The visualizer should react auto-
matically to changes both in the query (the developer
edits an already loaded query) and the model (execut-
ing a model manipulation step), while keeping the dis-
play of query results consistent with the actual model.

This requirement relates to the live nature of the model
queries by providing an always up-to-date display of
the query results.

R3. Traceability: The visualizer needs to maintain its
model and query sources, and it should allow the user
to navigate back to the selected model element in the
input model and the query definitions.

This requirement helps establish a connection between
the displayed query results and the corresponding model
elements, thus assisting the developer to put the results
in context.

R4. Presentation: The visualizer should provide a fo-
cused user interface using filtering and grouping mech-
anisms. Additionally, the default filtering must be de-
fined to match common uses cases to reduce the need
for manual filtering.

Requirements R1 and R2 provide the base live model query
viewer functionality. On the other hand, requirements R3
and R4 are needed to present the features to the query de-
veloper in an understandable and easy-to-use way.



3.2 Architecture
To fulfill the requirements, we propose the architecture de-
picted in Figure 4. The user interface collects its data from
two components: the Query Repository and the Result Viewer .

The Query Repository component collects and manages all
available queries. The Query Repository also allows the def-
inition of query groups – a set of queries that can be managed
together. These groups can be created automatically based
on the storage (for example the file or project that defines
the query). Furthermore, it is possible to define custom
groups - either manually, or by analyzing the dependencies
or similarities between various queries.

The Result Viewer component reads a set of queries and
query groups from the Query Repository – either relying
on the default filtering rules, or allowing manual filtering.
Then the Result Viewer applies the filters to a set of available
models, most commonly an already existing model editor . It
is possible to use different sources, like the current selection
of the IDE, or a custom developed data source – such as the
models of a currently executed model transformation.

As these model sources (even existing editor technologies)
provide different ways of reading their model (and possi-
bly setting up traceability on the user interface for Require-
ment R3), we define a Model source connector interface that
handles all sources in a generic way. A model source connec-
tor has two responsibilities: (1) it has to know how to attach
itself into the model source, and return the defined model as
requested, and (2) provide notifications of model changes,
including the inavailability of the model source (e.g. after
the closing of a model editor).

When the models and the queries are both available, the Re-
sult Viewer initializes query evaluators for each query and
model – including a single traversal of the input model and
the setup phase for change notification handling. Addition-
ally, if result filtering is initialized in the user interface, the
query parameters are bound to the selected model element.

3.3 Incremental User Interface Updates
An engine for Live Model Queries, such as EMF-IncQuery,
already reacts on instance model changes and updates the
modified query results incrementally. By subscribing to re-
sult change notifications, the user interface is capable of
reflecting the changes in the instance model in a perfor-
mant way. Additionally, if the connected model source be-
comes unavailable (such as when closing the model editor)
a cleanup phase is invoked inside the query engine to ensure
consistency.

However, in case of pattern definition changes, more com-
plex model-view reconciliation steps are to be taken, since
the query engine maintains a query-specific view of the in-
put model that is typically invalidated when the definition of
the query is changed. Instead of a complete re-initialization,
our system uses a more efficient strategy whereby additional
model traversals are avoided. The key idea is to use generic
model indexers (provided by a low-level incremental query
library called EMF-IncQuery Base1) that allow the pat-

1http://viatra.inf.mit.bme.hu/incquery/base

Query&
Engine&

Query&
Repository&

Other&Model&
Sources&

Edited&
Query&
Edited&
Query&
Model&
Editors&

Filtered&group&
of&queries&

Query&Result&Viewer&

Query&
Defini>on&

Query&
Results&

Connectors&

Query&
Result&
Deltas&

Model&and&
No>fica>ons&

Figure 4: The Proposed Architecture

tern matcher to track elementary changes for all model el-
ements (regardless of the query definition). This way, at
the cost of a slight runtime memory usage increase, the sys-
tem is capable of incrementally updating query results when
query definitions change, without having to perform model
traversals.

While this mode of operation (called wildcard mode in EMF-
IncQuery) is on by default, the system also allows the user
to turn it off (in which case model retraversals will be per-
formed as a fallback option) to allow the user to reduce the
memory overhead to a minimum, when working with large
instance models.

3.4 Selecting Visible Queries
As the number of queries (especially if counting the sub-
queries) increases, the amount of information presented by
the visualizer may exceed the comfortable usability limit.
To overcome this issue, we propose to use a query filtering
mechanism.

By our approach, queries can be annotated with visibility in-
formation by the developer: by marking a pattern invisible
it is possible to avoid displaying some internal patterns. If
this annotation is not set, the filter defines different rules for
workspace and packaged queries. As the latter ones repre-
sent already tested queries, they are filtered out by default.
On the other hand, as queries in the workspace are under
development, they are displayed unless the developer states
otherwise.

An additional way to filter displayed queries is to filter by
corresponding metamodels: if a model read from the model
source is not based on the same metamodel the query refers
to, the result will be always empty, making the query safe
to filter out. However, this filter necessitates the gathering
of the referenced metamodels both from the query definition
and the underlying model that is hard to implement in some
corner cases using EMF technologies.

http://viatra.inf.mit.bme.hu/incquery/base


Similarly, the environment can rely on hints from the query
developer to restrict what kind of model sources the selected
query is compatible with. For example, the developer can
select an editor type or file extension for the query to activate
on.

3.5 Implementation and Evaluation
The proposed live query visualizer has been implemented for
EMF-IncQuery, extending its Eclipse-based user interface
(as depicted in Fig. 5).

The visualizer features a three-pane design: (1) the queries
stored in the Query Repository are displayed in a collapsi-
ble pane on the left, (2) the Result Viewer is displayed as
a tree hierarchy that presents the loaded models and the
corresponding queries in the middle, and (3) a Detail pane
is used to display the values of the single result parameters,
and optionally a place to set up result filtering.

For loading queries and instance models from currently open
editors, a single toolbar button is used that automatically
selects the best applicable Model source connector . Addi-
tional load options (such as loading only a subset of the
input model) are available from a dropdown menu (Require-
ment R1).

Instance models (and the corresponding queries) are un-
loaded automatically if the model becomes unavailable (for
example while closing the editor). It is also possible to man-
ually unload a selected model by using the pop-up menu in
the tree hierarchy.

The displayed query results are updated during model changes,
and in case of query modifications the modified queries are
reloaded as discussed in subsection 3.3 (Requirement R2).

By double clicking on a query in the Result Viewer the defin-
ing query is opened in its corresponding editor Similarly, by
double clicking on a model element in the Detail Pane, the
corresponding model element is revealed and selected in its
editor (Requirement R3).

Finally, we carefully selected the default filtering rules to
provide a useful default query selection for most uses, while
remaining versatile enough to evaluate queries efficiently in
more complex cases (Requirement R4).

Example 3. The visualizer is illustrated in Figure 5a while
displaying the previously defined query sinkActivityName

and its used helper queries. The Query Repository is closed,
while the detail pane shows a selected result.

After editing the input model by entering an additional se-
quence edge, one activity (Lonely) is no longer a sink activ-
ity, and the result set is updated automatically as shown in
Figure 5b.

This visualizer is already used by the developers of EMF-
IncQuery, and we are planning to run a more detailed eval-
uation based on the feedback of the users of the framework.
For now, we argue that this implementation fulfills all our re-

quirements and is useful during the evaluation of developed
queries.

4. RELATED WORK

Debugging of model transformations. Certain debugging
support is provided in many model transformation tools
including ATL, GReAT, VIATRA, FUJABA, Tefkat, and
many more. The authors of [5] propose a dynamic tainting
technique for debugging failures of model transformations,
and propose automated techniques to repair input model
faults [10]. Colored Petri nets are used for underlying for-
mal support for debugging transformations in [13] extended
in the subsequent PhD thesis [14]. The debugging of triple
graph grammar transformations is discussed in [15].

A forensic debugging approach of model transformations was
introduced in [8] by using the trace information of model
transformation executions in order to determine the inter-
connections of source and target elements with transforma-
tion logic. Dynamic backward slicing of model transforma-
tions was proposed recently in [17] for debugging purposes.

Visualizing query results. Several Eclipse-based model query
tools (such as [1, 2]) allow to compute the result set of a
query, but they do not follow a live update approach, thus
re-computation is initiated only upon user’s demand.

In the database community, the results of multiple queries
were visualized simultaneously in [7]. The structure of queries
can also be visualized as proposed in [9] However, none
of these results are directly adaptable in querying domain-
specific models captured in EMF.

5. CONCLUSIONS AND FUTURE WORK
In the paper, we presented an Eclipse-based environment for
visualizing results of live model queries. Query results are
updated immediately and automatically after the underly-
ing model or query changes. Query results can be simulta-
neously observed for multiple queries and multiple models.
Our approach allows direct traceability from query results
to arbitrary model editors over EMF models. Finally, to im-
prove usability, we developed several strategies for filtering
the result set.

In the future, we plan to improve our approach by dynamic
grouping of graph patterns based on dependencies and sim-
ilarities between them. This helps query developers to ob-
serve the differences between the result sets of similar pat-
terns more easily.

6. ACKNOWLEDGMENTS
This work was partially supported by the CERTIMOT project
(ERC HU-09-1-2010-0003), by the grant TÁMOP - 4.2.2.B-
10/1–2010-0009 and János Bolyai Scholarship.

7. REFERENCES
[1] Eclipse MDT OCL project. http:

//www.eclipse.org/modeling/mdt/?project=ocl.

http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/modeling/mdt/?project=ocl


(a) Displaying Query Results (b) Live Result Update

Figure 5: The Implemented Query Result Browser

[2] MOMENT OCL project. http://moment.dsic.upv.
es/infocenter/index.jsp?topic=/es.upv.dsic.

issi.moment.ocl.help/html/intro/intro.htmll.

[3] G. Bergmann, A. Hegedüs, A. Horváth, I. Ráth,
Z. Ujhelyi, and D. Varró. Integrating efficient model
queries in state-of-the-art EMF tools. In C. Furia and
S. Nanz, editors, Objects, Models, Components,
Patterns, volume 7304 of Lecture Notes in Computer
Science, pages 1–8. Springer Berlin / Heidelberg, 2012.
10.1007/978-3-642-30561-0 1.

[4] G. Bergmann, Z. Ujhelyi, I. Ráth, and D. Varró. A
graph query language for EMF models. In J. Cabot
and E. Visser, editors, Theory and Practice of Model
Transformations, volume 6707 of Lecture Notes in
Computer Science, pages 167–182. Springer Berlin /
Heidelberg, 2011. 10.1007/978-3-642-21732-6 12.

[5] P. Dhoolia, S. Mani, V. S. Sinha, and S. Sinha.
Debugging model-transformation failures using
dynamic tainting. In 24th European conference on
Object-oriented programming, pages 26–51. Springer,
2010.

[6] C. L. Forgy. Rete: A fast algorithm for the many
pattern/many object pattern match problem.
Artificial Intelligence, 19(1):17–37, Sept. 1982.

[7] S. Havre, E. Hetzler, K. Perrine, E. Jurrus, and
N. Miller. Interactive visualization of multiple query
results. In Proceedings of the IEEE Symposium on
Information Visualization 2001 (INFOVIS’01),
INFOVIS ’01, pages 105–, Washington, DC, USA,
2001. IEEE Computer Society.

[8] M. Hibberd, M. Lawley, and K. Raymond. Forensic
debugging of model transformations. In Model Driven
Engineering Languages and Systems, 10th Int. Conf.,
volume 4735 of LNCS, pages 589–604. Springer, 2007.

[9] L. Hu, K. A. Ross, Y.-C. Chang, C. A. Lang, and
D. Zhang. Queryscope: visualizing queries for
repeatable database tuning. Proc. VLDB Endow.,
1(2):1488–1491, Aug. 2008.

[10] S. Mani, V. S. Sinha, P. Dhoolia, and S. Sinha.
Automated support for repairing input-model faults.

In 25th IEEE/ACM Int. Conf. on Automated Software
Engineering. ACM, 2010.

[11] Object Management Group. Business Process Model
and Notation (BPMN) Version 1.2.
http://www.omg.org/spec/BPMN/1.2/.

[12] I. Ráth, G. Bergmann, A. Ökrös, and D. Varró. Live
model transformations driven by incremental pattern
matching. In Theory and Practice of Model
Transformations, volume 5063/2008 of Lecture Notes
in Computer Science, pages 107–121. Springer, 2008.

[13] J. Schoenboeck, G. Kappel, A. Kusel,
W. Retschitzegger, W. Schwinger, and M. Wimmer.
Catch me if you can - debugging support for model
transformations. In Model Driven Engineering
Languages and Systems, 13th Int. Conf. Springer,
2010. LNCS 6002.

[14] J. Schönböck. Testing and Debugging of Model
Transformations. PhD thesis, 2012.

[15] M. Seifert and S. Katscher. Debugging triple graph
grammar-based model transformations. In Fujaba
Days, pages 19–25, 2008.

[16] SOA Tools Platform. Eclipse BPMN Modeler.
http://www.eclipse.org/bpmn/.

[17] Z. Ujhelyi, Á. Horváth, and D. Varró. Dynamic
backward slicing of model transformations. In
International Conference on Software Testing and
Validation (ICST 2012). IEEE, 04/2012 2012.

http://moment.dsic.upv.es/infocenter/index.jsp?topic=/es.upv.dsic.issi.moment.ocl.help/html/intro/intro.htmll
http://moment.dsic.upv.es/infocenter/index.jsp?topic=/es.upv.dsic.issi.moment.ocl.help/html/intro/intro.htmll
http://moment.dsic.upv.es/infocenter/index.jsp?topic=/es.upv.dsic.issi.moment.ocl.help/html/intro/intro.htmll
http://www.omg.org/spec/BPMN/1.2/
http://www.eclipse.org/bpmn/

	Introduction
	Developing Live Model Queries
	Case Study: Validation of BPMN Models
	Incremental Model Queries Using EMF-IncQuery
	Debugging Incremental Model Queries

	A Development Environment for Live Model Queries
	Requirements
	Architecture
	Incremental User Interface Updates
	Selecting Visible Queries
	Implementation and Evaluation

	Related work
	Conclusions and Future Work
	Acknowledgments
	References

