
Towards Tracking “Guilty” Transformation Rules

A Requirements Perspective

Loli Burgueño
Universidad de Málaga

Spain
loli@lcc.uma.es

Manuel Wimmer
Universidad de Málaga

Spain
mw@lcc.uma.es

Antonio Vallecillo
Universidad de Málaga

Spain
av@lcc.uma.es

ABSTRACT
Several approaches for specifying the requirements for model
transformations have been proposed. Most of them define
constraints on source and target models as well as on the
relationships between them. A major advantage of these ap-
proaches is their independence from transformation imple-
mentation languages and transformation implementations.
However, when these constraints are used for testing, iden-
tifying the model transformation rules that violate the con-
straints is not possible. In this paper we present an approach
for automatically aligning specifications of model transfor-
mations and their implementations. Matching functions es-
tablish these alignments based on the used metamodel el-
ements in the constraints and rules. We present our first
results and outline further use cases where an alignment be-
tween constraints and rules is beneficial.

1. INTRODUCTION
Model transformations are critical points in the Model-driven
Engineering (MDE) development process. The quality of
the resulting system is highly influenced by the quality of
the employed model transformations to produce the sys-
tems. However, users of transformations have to deal with
the problem that transformations are difficult to debug and
test for correctness. Such tests require a specification which
expresses what is correct and what is not, something that is
currently not supported by most transformation languages.

A possible solution is to define with specification languages
the requirements that a transformation has to fulfil. There
are several approaches available for defining constraints on
the input and output models as well as on the relationships
between them (for an overview see [12]). These constraints
are used as a blueprint for developing the model transfor-
mations employing implementation languages such as ATL,
QVT, or graph transformations. Thus, the specification and
the implementations are normally not coupled at all, which
has several advantages but may also lead to disadvantages.
In particular, when it comes to tracking errors, the miss-

ing traceability between specifications and implementations
hampers the debugging process. Often the specifications are
employed as oracles to check the transformation result. In
case constraints are not fulfilled, the elements involved in
the constraint evaluation may give a valuable information
for the transformation engineer, but the link to the trans-
formation rules is not available.

To tackle this limitation, we present in this paper a first
solution for measuring the alignment between a constraint
and a model transformation rule by applying an automated
matching function. In particular, three different measures
are introduced which provide different viewpoints on the
alignment problem. We employ the approach for a case
study and finally discuss how this general approach may
be applied for specific use cases in model transformation en-
gineering.

2. BACKGROUND
In this section, we shortly introduce the formalisms used
in this paper for specifying and implementing model trans-
formations. As we shall see, these formalisms are not in-
tegrated, and thus, the developed artifacts are completely
independent of each other.

2.1 Specifying Transformations with Tracts
Tracts were introduced in [3] as a specification and black-
box testing mechanism for model transformations. They
provide modular pieces of specification, each one focusing
on a particular transformation scenario. Thus every model
transformation can be specified by means of a set of tracts,
each one covering a particular use case—which is defined in
terms of particular input and output models and how they
should be related by the transformation. In this way, tracts
allow partitioning the full input space of the transformation
into smaller, more focused behavioural units, and to define
specific tests for them. Basically, what we do with the tracts
is to identify the scenarios of interest to the user of the trans-
formation (each one defined by a tract) and check whether
the transformation behaves as expected in these scenarios.
Another characteristic of Tracts is that we do not require
complete proofs, just to check that the transformation works
for the tract test suites, hence providing a light-weight form
of verification.

In a nutshell, a tract defines a set of constraints on the source
and target metamodels, a set of source-target constraints,
and a tract test suite, i.e., a collection of source models

Figure 1: Building Blocks of a Tract.

Figure 2: The Family and Person metamodels.

satisfying the source constraints. The constraints serve as
“contracts” (in the sense of contract-based design [7]) for
the transformation in some particular scenarios, and are ex-
pressed by means of OCL invariants. They provide the spec-
ification of the transformation. Figure 1 gives an overview
on the used concepts and their connection.

For demonstrating how to use Tracts, we introduce the sim-
ple transformation example Families2Persons1. The source
and target metamodels of this transformation are shown in
Figure 2. For this example, a set of tracts is developed to
consider only those families which count exactly four mem-
bers (mother, father, daughter, son):

-- C1: SRC_oneDaughterOneSon
Family.allInstances ->forAll(f|f.daughters ->size=1 and

f.sons ->size =1)

-- C2: SRC_TRG_Mother2Female
Family.allInstances ->forAll(fam|Female.allInstances ->

exists(f|fam.mother.firstName.concat(’ ’).concat(
fam.lastName)=f.fullName))

-- C3: SRC_TRG_Daughter2Female
Family.allInstances ->forAll(fam|Female.allInstances ->

exists(f|fam.daughters ->exists(d|d.firstName.
concat(’ ’).concat(fam.lastName)=f.fullName)))

-- C4: SRC_TRG_FatherSon2Male
Family.allInstances ->forAll(fam|Male.allInstances ->

exists(m| fam.father.firstName.concat(’ ’).concat
(fam.lastName)=m.fullName xor fam.sons ->exists(s|
m.firstName.concat(’ ’).concat(fam.lastName)=s.
fullName))

-- C5: SRC_TRG_Female2MotherDaughter
Female.allInstances ->forAll(f|Family.allInstances ->

exists(fam|fam.mother.firstName.concat(’ ’).
concat(fam.lastName)=f.fullName xor fam.daughters
->exists(d|d.firstName.concat(’ ’).concat(fam.
lastName)=f.fullName)))

-- C6: SRC_TRG_Male2FatherSon

1The complete example is available at our project website
http://atenea.lcc.uma.es/index.php/Main_Page/Resources
/Tracts-ATL

Male.allInstances ->forAll(m|Family.allInstances ->
exists(fam|fam.father.firstName.concat(’ ’).
concat(fam.lastName)=m.fullName xor fam.sons ->
exists(s|s.firstName.concat(’ ’).concat(fam.
lastName)=m.fullName)))

-- C7: SRC_TRG_MemberSize_EQ_PersonSize
Member.allInstances ->size=Person.allInstances ->size

-- C8: TRG_PersonHasName
Person.allInstances ->forAll(p|p.fullName <> ’’ and

not p.fullName.oclIsUndefined ())

2.2 Implementing Transformations with ATL
Given this specification, a model transformation language
may be selected to implement the transformation. The AT-
LAS Transformation Language (ATL) [6] is a common choice.
ATL is designed as a hybrid model transformation language
containing a mixture of declarative and imperative constructs
for defining uni-directional transformations. An ATL trans-
formation is mainly composed by a set of rules. A rule de-
scribes how a subset of the target model should be generated
from a subset of the source model. A rule consists of an in-
put pattern (having an optional filter condition) which is
matched on the source model and an output pattern which
produces certain elements in the target model for each match
of the input pattern. The values of the target model ele-
ments are assigned in bindings which calculate the values
by OCL expressions. Given the metamodels in Figure 2 and
the tracts, a possible implementation in ATL may be as fol-
lows:

module Families2Persons;
create OUT: Persons from IN: Families;

helper context Families!Member def: isFemale ():
Boolean = ...

helper context Families!Member def: familyName:
String = ...

rule Member2Male { -- R1 for short
from

s: Families!Member (not s.isFemale ())
to

t: Persons!Male (fullName <- s.firstName + ’ ’ +
s.familyName)

}

rule Member2Female { -- R2 for short
from

s: Families!Member (s.isFemale ())
to

t: Persons!Female (fullName <- s.firstName + ’ ’
+ s.familyName)

}

3. MATCHING CONSTRAINTS AND RULES
As we have seen in the previous section, Tracts allow defin-
ing constraints for transformations, while ATL uses rules
to express model transformations. Having independent ar-
tifacts for the specification and implementation allows for
freedom which formalisms to choose for both levels and how
to implement the specifications. However, the following
questions cannot be answered without through reasoning on
both artifact types: (a) Which transformation rule(s) im-
plement(s) which constraint(s)? (b) Are all constraints cov-
ered by transformation rules? and (c) Are all transformation
rules covered by constraints?

3.1 Challenges
In general, we there are two possibilities to compute align-
ments between rules and constraints to answer the previous
questions. First, there is static alignment by reasoning only
on the constraints and transformation rules without execut-
ing them, and second, there is the possibility to dynamically
explore the relationships by running the transformations as
well as checking the constraints to find overlaps on accessed
model elements.

While the second approach may lead to more precise align-
ments, the alignments are always specific to a given in-
put model. If a more general alignment should be derived,
the static approach would more beneficial. However, static
alignment seems to be more challenging, because there is a
complete paradigm mismatch of the specification language
and the implementation language. While in Tracts general
OCL expressions are used, in ATL the prime elements are
rules. Thus, current generic model matching frameworks
cannot be employed, because they produce matches based
on structural equivalences. But in our case we have two dif-
ferent languages following different programming paradigms.
Thus no structural equivalences are identifiable in a generic
manner and other means for comparison have to be found.

The common denominator of constraints and rules are the
metamodel elements used, which may give an indication of
the relatedness. Therefore, we describe next how this in-
formation can be obtained from constraints and rules, com-
pare the extracted information, and present the results to
the user.

3.2 Matching Tables: 3 different Viewpoints
For representing the alignments between constraints and
rules, we use tabular representations which we call match-
ing tables. Our aim is to automatically compute such tabu-
lar representations by employing matching functions and to
provide different viewpoints on the alignments found. Us-
ing different viewpoints on alignments supports answering
different questions as outlined in [15].

Given a set of constraints and a set of rules, the correspond-
ing matching tables are computed based on the types of the
elements, i.e., the classes from the metamodels, that they
contain. In these tables, each cell links a constraint and a
rule with a specific value between 0 and 1. Let Ci be the set
of types extracted for constraint i and Rj for rule j. In the
following, three different metrics are introduced that provide
different viewpoints on the types overlaps.

The constraint coverage (CC) metric states the coverage for
constraint i by a given rule j. For this metric, the value for
the cell [i, j] is given by the following formula.

CCi,j =
|Ci ∩Rj |

|Ci|
(1)

As the denominator is the number of types in Ci, the result
is relative to constraint i and we interpret this value for
rule traceability, i.e., to find rules which are related to the
given constraint.

The rule coverage (RC) metric states the coverage for rule
j by a given constraint i. We use this value to express con-
straint traceability, i.e., to find the constraints most closely
related to a given rule. The following formula is used to
compute the values for this metric.

RCi,j =
|Ci ∩Rj |

|Rj |
(2)

The last metric is relative to both constraints and rules.
Thus, it gives a statement of the relatedness of both without
defining a direction for interpreting the values. The related-
ness of constraints and rules (RCR) metric is as follows.

RCRi,j =
|Ci ∩Rj |
|Ci ∪Rj |

(3)

After extracting the types for constraints and rules, there
exist five possible cases, as depicted in Figure 3 using Venn
diagrams. Let us study each one and comment some of the
particular properties of these metrics.

In case (a), every constraint type is contained by the set of
rule types, Ci ⊆ Rj , thus the value for the CC metric is 1
and it means that the constraint is fully covered by the rule.
The other metrics have a value lower than 1.

Case (b) is the opposite to case (a), Rj ⊆ Ci, and here
the RC metric is always 1. One possible interpretation fol-
lows. If after the transformation execution and constraint
verification we detect that Ci fails, we know that the failure
probably comes from Rj or a part of it and the bigger the
value of RC is, the most likely it is that the failure comes
from Rj .

For case (c), Ci and Rj are disjoint sets. Thus all the metrics
are 0 which means that the given constraint and the given
rule are completely independent.

In case (d), every metric will have a value between 0 and 1.
The exact value will be dependent on the size of the sets and

Figure 3: Possible situations for Ci and Rj.

Table 1: Used types for Families2Person example.
Constraint/Rule Involved Types

C1 Member, Family
C2 Member, Family, Female
C3 Member, Family, Female
C4 Member, Family, Male
C5 Member, Family, Female
C6 Member, Family, Male
C7 Member, Person
C8 Person
R1 Member, Male
R2 Member, Female

Table 2: Families2Person matching tables.
CC RC RCR

R1 R2 R1 R2 R1 R2
C1 0.5 0.5 0.5 0.5 0.33 0.33
C2 0.33 0.66 0.5 1 0.25 0.66
C3 0.33 0.66 0.5 1 0.25 0.66
C4 0.66 0.33 1 0.5 0.66 0.25
C5 0.33 0.66 0.5 1 0.25 0.66
C6 0.66 0.33 1 0.5 0.66 0.25
C7 0.5 0.5 0.5 0.5 0.33 0.33
C8 0.0 0.0 0.0 0.0 0.33 0.33

the number of common elements. For example, the bigger
the common part for Ci is, the closer the value for metric
CC will be to 1. The lower the common part is, the closer
CC will be to 0. It is the same with Rj and metric RC.
Considering the third metric in case (d), its value depends
only on the size of the common part. Thus, the bigger it is,
the closer the value is to 1.

In case (e), both types of constraints and rules are the same
set, consequently each metric is 1. It is the situation where
a constraint and a rule are totally covered by each other.

The Families2Persons example presented in the previous
section counts on two rules and eight constraints. The types
used in the constraints and rules are summarized in Table
1. According to the types extracted for this example, the
corresponding matching tables are shown in Table 2. The
second and third columns express the constraint coverage,
the fourth and fifth the rule coverage, and the sixth and
seventh the relatedness. Please note that this is a small
example with the only intention of showing how the metrics
are computed. Section 4 shows matching tables for a larger
example as well as their interpretation.

3.3 Implementation
In order to obtain the result shown in the previous sub-
section, it is beneficial to have automation support for the
matching process. Figure 4 depicts each step of the match-
ing process. The initial input for this processes are the con-
straints and the transformation rules. The output are the
matching tables as explained before.

Starting with the constraint branch, the first step is to ex-
tract the types for each constraint. This is achieved by

OCL Constraints
(as text)

Types of
OCL Constraints

Types of
ATL Rules

Input

Matching function

Matching tableOutput

Constraints
types extraction

Rules
types extraction

ATL Rules
(as text)

Parser
(T2M)

OCL Constraints
(as model)

Parser
(T2M)

ATL Rules
(as model)

Figure 4: Matching process at a glance.

employing the API of the USE (UML based Specification
Environment) tool [10]. This API allows to parse an OCL
expression and provides the parsing results in a model-based
representation. Using this representation, we are able to ex-
tract all the types used within an OCL expression. This
is actually provided by having the parse tree representing
each subexpression by an explicit node which also provides
the return type for each subexpression.

The types extraction for ATL transformations is more chal-
lenging compared to the OCL part, because currently there
is no support offered by the ATL implementation. How-
ever, the textual ATL transformations can be automatically
injected to model-based representations. This model-based
representation allows to extract the needed information from
an ATL transformation by applying another ATL transfor-
mation (a so-called higher-order transformation) which gen-
erates a model stating for each ATL rule all used types of
the input and output pattern elements. Currently, we only
support to extract the explicitly given types. The extrac-
tion of implicit types used in filter and binding expressions
is subject to future work.

Having the used types of all constraints and rules, we may
apply the matching functions—which coincide with the met-
rics described in the previous subsection. The matching
functions are implemented in Java and the output of the
computation is either represented as an Excel file as well as
can be exported as an EMF-based model for further compu-
tations, e.g., by applying further model transformations for
analysing the matching tables. The Tracts2ATL Matcher
prototype can be downloaded from our project website.

4. CASE STUDY
Tracts also provide mechanisms for testing model transfor-
mations. But when a tract fails, it is useful to know which
rule or rules are responsible for the failure. This need origi-

nated the work we are presenting in this paper. Finding the
“guilty” rules is supported by rule traceability (CC metric),
and complemented by the RCR metric that reflects addi-
tional information. As we presented in the previous section,
we count on several metrics which allows us to reason on
more complicated cases.

4.1 Transformation Example: UML2ER
The Families2Persons example is a rather small example,
but sufficient for demonstrating the basic process of com-
puting the different metrics. Of course, the usefulness of the
process described above is intended to show up for larger ex-
amples having a comprehensive set of constraints and rules.
In comparison with the Families2Persons example, the fol-
lowing UML2ER example is larger. This transformation
scenario considers the metamodels for a simplified version
of UML class diagrams and Entity-Relationship diagrams.
The artifacts for this case study can be found at our project
website.

The specification of the transformation comprises eight source-
target constraints where two kinds of constraints are used.
One kind is comparing the amount of instances for a given
source and target class, while the other kind is checking
for equivalency of elements based on containment relation-
ships and value correspondences. The transformation con-
tains eight transformation rules, whereas three of the rules
are abstract rules and a multitude of inheritance relation-
ships between the rules exists: R8, R7 < R6; R6, R5 < R4;
R4, R3 < R2.

4.2 Results
We now report on the results we got when applying our
approach for the UML2ER example. Tables 3-5 illustrate
the corresponding matching tables.

Now assume that the transformation is executed, the con-
straints are checked, and C6 fails. By looking at Table 3, we
find a complete coverage of C6 by R3. Thus, it is more likely
that the failure is due to R3, instead of coming from R4, R5,
R6, R7 or R8. In contrast, the cells R1/C6 and R2/C6 in-
dicate that C6 is completely independent from R1 and R2.
Thus, it seems more appropriate in the error tracking pro-
cess to start with R3 and then continuing with R4-R8.

Let us now suppose that C7 fails. As we can easily identify,
the value in R4/C7 of Table 3 is 1, while the value of that
cell in the other two tables is different. In this case, R4 is a
good candidate for review. If there were more rules with 1
for C7 in Table 3 and lower values for C7 in the other two
tables, we should chose the rule which has the higher value
for RCR metric (Table 5).

Another situation happens when a rule is fully covered by
a constraint. Consequently, the value of the corresponding
cell in Table 4 is 1, but not 1 in the rest of the tables. For
instance, in Table 4, C8 has value 1 for R1, R3, R4 and R5
but less than 1 in Tables 3 and 5. Again, in this situation
it is better to chose the rule with a higher value in Table 5.
Another interesting information that we can extract from
Table 4 is whether each rule is fully covered by a set of
Tracts or if further Tracts are needed to enhance the test
coverage.

Table 3: Matching table using CC metric.
R1 R2 R3 R4 R5 R6 R7 R8

C1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C2 0.5 0.0 0.5 0.25 0.25 0.25 0.25 0.25
C3 0.33 0.0 0.33 0.5 0.33 0.33 0.33 0.33
C4 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
C5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C6 0.0 0.0 1.0 0.5 0.5 0.5 0.5 0.5
C7 0.0 0.0 0.0 1.0 0.5 0.5 0.5 0.5
C8 0.28 0.0 0.28 0.42 0.42 0.28 0.28 0.28
C9 0.25 0.0 0.25 0.37 0.25 0.37 0.37 0.25
C10 0.25 0.0 0.25 0.37 0.25 0.25 0.25 0.37

Table 4: Matching table using RC metric.
R1 R2 R3 R4 R5 R6 R7 R8

C1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C2 1.0 0.0 1.0 0.33 0.33 0.33 0.33 0.33
C3 1.0 0.0 1.0 1.0 0.66 0.66 0.66 0.66
C4 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
C5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C6 0.0 0.0 1.0 0.33 0.33 0.33 0.33 0.33
C7 0.0 0.0 0.0 0.66 0.33 0.33 0.33 0.33
C8 1.0 0.0 1.0 1.0 1.0 0.66 0.66 0.66
C9 1.0 0.0 1.0 1.0 0.66 1.0 1.0 0.66
C10 1.0 0.0 1.0 1.0 0.66 0.66 0.66 1.0

Table 5: Matching table using RCR metric.
R1 R2 R3 R4 R5 R6 R7 R8

C1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C2 0.5 0.0 0.5 0.16 0.16 0.16 0.16 0.16
C3 0.33 0.0 0.33 0.5 0.28 0.28 0.28 0.28
C4 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
C5 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C6 0.0 0.0 1.0 0.25 0.25 0.25 0.25 0.25
C7 0.0 0.0 0.0 0.66 0.25 0.25 0.25 0.25
C8 0.28 0.0 0.28 0.42 0.42 0.25 0.25 0.25
C9 0.25 0.0 0.25 0.37 0.22 0.37 0.37 0.22
C10 0.25 0.0 0.25 0.37 0.22 0.22 0.22 0.37

In the last case (although not shown in our example), a
constraint which fails has values in all tables different from
1. In that case, one more time, we must review the rule with
the higher value for Table 5.

To sum up, what is the possibility of finding a rule for a
failed constraint? As mentioned before, we have two kinds
of constraints. For constraints checking that the amount of
instances for source and target classes should be equal (cf.
C4 and C5), unambiguous alignments can be found. For the
other kind, the situation is different. Depending on the size
of the constraints and the amount of used types, we may
find several rules having similar alignment ratings.

5. RELATED WORK
With respect to the contribution of this paper, two threads
of related work are discussed: first, general traceability ap-
proaches in software engineering, and second, specific ap-
proaches for tracking“guilty”transformation rules, i.e., those

whose behaviour violate the transformation specifications.

IEEE [4] defines traceability as the degree to which a rela-
tionship between two or more artifacts can be established.
Most tracing approaches are dedicated to establish trace-
ability links between artifacts that are in a predecessor/-
successor relationship with respect to their creation time,
e.g., between requirements, features, design, architecture,
and code. Our approach for automatically finding the align-
ments between constraints and transformation rules are in
the spirit of traceability rules as presented in [9, 8]. A survey
dedicated to traceability in the field of MDE is presented in
[2], where the possibilities of using trace links established by
model transformations are discussed. However, this survey
does not report on tracing approaches between transforma-
tion specifications and implementations.

Tracking guilty transformation rules using a dynamic ap-
proach, i.e., by executing the model transformation under
test, has been subject to investigations. In [14], we used
OCL-based queries to backwards debugging of model trans-
formations using an explicit runtime model based on the
trace model between the source and target models. Aranega
et al. [1] present an approach for situating transformations
errors by exploiting also the traces between the source and
target models. The dynamic approach is also used by [11]
to build slices of model transformations. While these ap-
proaches are all tracking transformation rules using specific
test input models, our aim is to statically build more general
traceability models between transformations’ specifications
and their implementations. In [5], model footprints of op-
erations are statically computed by the use of metamodel
footprints. We pursue the idea of computing metamodel
footprints from transformation specifications and implemen-
tations for establishing traceability links instead of reasoning
on model footprints.

6. NEXT STEPS
The main motivation for this work was the need to track
transformation rules that can be considered “guilty” for vio-
lating parts of the transformation specifications. Due to the
generic nature of the matching tables, a multitude of further
use cases emerge.

Properties of Alignments. Based on the matching tables,
we are able to reason on the degree of tangling and scatter-
ing between constraints and rules. Scattering occurs when
a single constraint is scattered across multiple rules, while
tangling occurs when a single transformation rule is imple-
menting multiple constraints at once. The work of Berg et
al. [13] may be valid input to reason about design guidelines
of transformation specifications and implementations based
on matching tables.

Refinement of Alignments. More information may be
extracted from constraints and transformation rules. For ex-
ample, from the ATL transformations, inheritance between
transformation rules, lazy rule calls, and types used in filters
and bindings may be extracted. From the constraints, the
accessed metamodel features may be extracted, too. Based
on this additional information, more refined alignments may
be explored. Furthermore, as we have mentioned in the eval-
uation, some constraints are using a multitude of types. To
distinguish between types, e.g., types only required to nav-
igate to the most relevant information in a model, types

occurring more often in constraints may have less impact on
the alignments as types that do not as frequently occur.

Alignment-based Slicing. Another direction for future
work is to slice model transformations, metamodels, and
models based on constraints. This is of course useful for de-
bugging model transformations, however, using slicing tech-
niques may be also beneficial for maintenance tasks. Imag-
ine the requirements are changed by modifying a specific
constraint. Adapting the transformation implementation to
this change may be easier by reasoning only on a particular
slice of the transformation problem referring to a subset of
the transformation, metamodel, and models.

7. ACKNOWLEDGMENTS
This work is supported by the research project TIN2011-
23795 and by the Austrian Science Fund (FWF) under grant
J 3159-N23.

8. REFERENCES
[1] V. Aranega, J.-M. Mottu, A. Etien, and J.-L.

Dekeyser. Traceability mechanism for error
localization in model transformation. In ICSOFT,
2009.

[2] I. Galvão and A. Goknil. Survey of traceability
approaches in model-driven engineering. In EDOC,
2007.

[3] M. Gogolla and A. Vallecillo. Tractable model
transformation testing. In ECMFA, 2011.

[4] IEEE. Standard Glossary of Software Engineering
Terminology. Technical report, IEEE, 1990.

[5] C. Jeanneret, M. Glinz, and B. Baudry. Estimating
footprints of model operations. In ICSE, 2011.

[6] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev.
ATL: A model transformation tool. SCP,
72(1-2):31–39, 2008.

[7] B. Meyer. Applying design by contract. IEEE
Computer, 25(10):40–51, 1992.

[8] F. A. C. Pinheiro and J. A. Goguen. An
object-oriented tool for tracing requirements. IEEE
Software, 13(2):52–64, 1996.

[9] B. Ramesh and V. Dhar. Supporting systems
development by capturing deliberations during
requirements engineering. TSE, 18(6):498–510, 1992.

[10] M. Richters and M. Gogolla. OCL: Syntax, semantics,
and tools. In Object Modeling with the OCL, 2002.

[11] Z. Ujhelyi, Á. Horváth, and D. Varró. Dynamic
backward slicing of model transformations. In ICST,
2012.

[12] A. Vallecillo, M. Gogolla, L. Burgueño, M. Wimmer,
and L. Hamann. Formal Specification and Testing of
Model Transformations. In SFM, 2012.

[13] K. van den Berg, J. M. Conejero, and J. Hernández.
Analysis of crosscutting in early software development
phases based on traceability. TAOSD, 3:73–104, 2007.

[14] M. Wimmer, G. Kappel, J. Schönböck, A. Kusel,
W. Retschitzegger, and W. Schwinger. A Petri Net
Based Debugging Environment for QVT Relations. In
ASE, 2009.

[15] W. E. Wong, S. S. Gokhale, and J. R. Horgan.
Quantifying the closeness between program
components and features. JSS, 54(2):87–98, 2000.

