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1. INTRODUCTION
Model transformations play one of the key roles in Model-
Driven Engineering (MDE). Therefore, their correctness is
of major importance. Triple Graph Grammars[6] (TGGs)
are an important representative of a relational model trans-
formation specification technique for describing bidirectional
transformations. A TGG specifies relations between source
and target models, but cannot be executed directly to per-
form a corresponding model transformation. Instead, a TGG
Implementation has to be derived, which must be conform to
the TGG, i.e., the target model it produces with derived op-
erational rules for a given source model must also be a valid
target model for that source model according to the TGG.
TGG implementations can be generated from the TGG spec-
ification for performing forward and backward model trans-
formations, but also to perform model integration as well as
synchronization.

In this paper, we present a tool framework (cf. Figure 1) that
we developed as part of our MDELab1 tool set for develop-
ing correct TGG-based model transformations. Thereby, we
aim at verifying correctness properties on the specification
level (cf.Section 2), i.e. for a particular TGG, and ensure
that these correctness properties can be carried over to the
implementation by conformance checking (cf.Section 3). As
a consequence, correctness is shown independently of the
input model of a model transformation. Moreover, we sup-
port the developers of the TGG specification and TGG im-
plementation to find errors already at design time, so that
the transformation user is spared from errors at runtime as
much as possible.

∗This work was developed in the course of the project
- Correct Model Transformations - Hasso Plattner In-
stitut, Universität Potsdam and was published on its
behalf and funded by the Deutsche Forschungsgemein-
schaft. See http://www.hpi.uni-potsdam.de/giese/
projekte/kormoran.html?L=1.
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Figure 1: Overview

2. ANALYSIS
We concentrate on analyzing TGGs for three key proper-
ties of model transformations in MDE: determinism, validity
with meta-model constraints, and behavior preservation.

2.1 Determinism
A forward (backward) deterministic TGG relates a unique
target model to a given source model (and the other way
round). In practice, model transformations are mostly re-
quired to be a function. Therefore, knowing whether a TGG
is deterministic is an important information. In addition,
a TGG implementation of a deterministic TGG does not
need backtracking, which eases developing the implemen-
tation and increases performance. Termination of model
transformations derived from a TGG is guaranteed in our
framework by checking simple syntactic criteria on the TGG
rules [1]. To check result uniqueness, we can export a TGG
to AGG2, a graph transformation and analysis tool. AGG
checks the derived TGG operational rules for conflicts, i.e.,
situations, where a model element can be transformed by
more than one rule, potentially leading to non-determinism.

2.2 Validity of TGGs with Constraints
Metamodels often contain OCL constraints, which express
additional conditions that models have to fulfill to be valid
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instances of that metamodel. In general, a model transfor-
mation is expected to always output a valid target model
for a valid source model (forward validity). To check for-
ward validity of a TGG, we provide an Invariant Checker
and a Counter Example Generator [3]. Both tools search
for pairs of corresponding source and target models, where
the source model is valid but the target is not. The Invari-
ant Checker performs a complete static analysis, but cannot
handle arbitrary OCL expressions. Such expressions have to
be translated to graph patterns, which is only possible for
a subset of OCL, due to the higher expressiveness of OCL.
The Counter Example Generator generates counter exam-
ple models by randomly applying TGG rules and validating
all metamodel constraints on these models afterwards. This
allows to handle arbitrary OCL expressions, but, of course,
this is an incomplete analysis because the number of models
that can be generated by a TGG is, in general, infinite.

2.3 Behavior Preservation
When transforming behavior models, the output model of
a model transformation is often expected to behave like the
input model, i.e., the transformation preserves the model’s
behavior. Usually, automated behavior preservation veri-
fication techniques either show that specific properties are
preserved, or more generally and complex, they show some
kind of bisimulation between source and target model of
the transformation. Both kinds of behavior preservation
verification goals have been presented with automatic tool
support for the instance level. However, we aim at devel-
oping automatic verification approaches for the transforma-
tion level, i.e., for all source and target models specified
by the model transformation. In [2] we presented a first
approach toward automatic behavior preservation verifica-
tion on the transformation level for model transformations
specified by TGGs and semantic definitions given by graph
transformation rules. In particular, we show that the behav-
ior preservation problem can be reduced to invariant check-
ing for graph transformation. Investigating the limitations
of this approach and integrating this analysis technique into
our tool framework is part of current work.

3. CONFORMANCE
We have developed a proof as well as an automatic testing
framework for checking conformance of the TGG with its
implementation.

3.1 Conformance Proof
A TGG implementation often introduces several optimiza-
tions to improve transformation performance, e.g., book-
keeping mechanisms. For our own TGG implementation,
we have proven[1] the conformance of the implemented opti-
mizations with the semantics of TGGs. We have formulated
several conditions, that a TGG must fulfill so that the de-
rived implementation is conform. Most of these conditions
imply simple syntactical checks on the TGG rules. However,
it is also required that the TGG rules imply deterministic
model transformations. This involves a more complex check
using critical pair analysis in AGG as mentioned in Subsec-
tion 2.1. In case of scalability problems, we also developed
a run-time check [1] verifying for a particular model trans-
formation instance the uniqueness of its result.

3.2 Conformance Testing
Occasionally, there is no formal conformance proof available
for a TGG implementation. But even if so, it may be uncer-
tain whether each formal concept is realized correctly by the
implementation. Moreover, usually, available formal con-
cepts neither cover every technicality, nor cover each addi-
tional optimization an implementation relies on. Therefore,
we have proposed an automatic conformance testing frame-
work[4] for TGG implementations and have implemented it
for our own TGG implementation. The whole process of
generating the test input models and test oracles, execut-
ing the transformation, and comparing the output model
with the oracle is completely automated. In addition, the
framework can also output specification and implementation
coverage data. This data helps the user assess the quality
of a set of test cases.

4. CONCLUSION
In this tool paper we characterize our framework to fos-
ter the development of correct model transformations. In
this framework we exploit the sound formal foundation of
TGGs[1, 6] to support advanced analysis capabilities to en-
sure determinism, the generation of valid results, and behav-
ior preservation. These results, based on the formal model
of TGGs, are linked with the implementation level by a con-
formance proof for our TGG implementation and a confor-
mance testing approach that is also applicable to other TGG
implementations. As future work it is planned to further
improve the expressiveness of TGGs, tool integration, and
attribute handling (cf. [5]).
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