
Towards a Model Transformation Intent Catalog
Moussa AMRANI∗, Jürgen DINGEL†, Leen LAMBERS‡, Levi LÚCIO§, Rick SALAY¶, Gehan SELIM†,

Eugene SYRIANI‖ and Manuel WIMMER∗∗

∗ University of Luxembourg (Luxembourg), Moussa.Amrani@uni.lu
† Queen’s University (Canada), {Gehan, Dingel}@cs.queensu.ca

‡ Hasso Plattner Institute / Postdam University (Germany), Leen.Lambers@hpi.uni-potsdam.de
§ McGill University (Canada), Levi@cs.mcgill.ca

¶ University of Toronto (Canada), rsalay@cs.toronto.edu
‖ University of Alabama (USA), esyriani@cs.ua.edu

∗∗ University of Malaga (Spain), mw@lcc.uma.es

Abstract—We report on our ongoing effort to build a catalog
of model transformation intents which describes common uses
of model transformations in Model-Driven Engineering (MDE)
and the properties they must or may possess. We present a
preliminary list of intents and common properties. One intent
(transformation for analysis) is described in more detail and the
description is used to identify transformations with the same
intent in a case study on the use of MDE techniques for the
development of control software for a power window.

I. INTRODUCTION

While most model transformation languages are Turing-
complete and, as such, can be used to solve any com-
putable problem, most were developed to support Model-
Driven Engineering (MDE). We identify a limited set of model
transformation intents that appear repeatedly in most MDE
efforts. Awareness of these intents is useful for developers of
model transformations and model transformation languages.
For instance, the intent of a model transformation can be
to extract different views from a model (query), add or
remove detail (refinement or abstraction), translate the model
to another modeling language (translation), execute the model
(simulation), restructure the model to improve certain quality
attributes (refactoring), compose models (composition), or rec-
oncile the information in different models (synchronization).

Each of these intents has its own set of attributes and
properties. The effectiveness of a transformation in realising
an intent depends on how well it respects the intent’s attributes
and properties. For instance, queries should produce informa-
tion contained in the model in some form, translations and
refactorings should preserve model semantics, and refinements
should add information.

This paper is influenced by the survey conducted in [1] We
report on our ongoing work to build a model transformation
intent catalog which identifies and describes intents and the
properties that they may or must possess. There are several
potential uses of this catalog:

1) Requirements analysis for transformations: The cata-
log facilitates the description of transformation require-
ments, i.e., of what a transformation is supposed to
do. Improved requirements in turn can improve reuse,
because they may make it easier to locate suitable

transformations among a set of existing ones and reuse
them.

2) Identification of properties, certification methods, and
languages: The catalog may help transformation devel-
opers become aware of properties a transformation has
to have, how these properties can be certified, and which
transformation language is known to best support their
needs (i.e., if the used certification methods are language
dependent).

3) Model transformation language design: The catalog may
provide some useful input for designers of domain-
specific, transformation languages. For instance, it may
be appropriate to design dedicated languages for specific
intents. The properties and certification methods associ-
ated with an intent may also provide useful information
about requirements of a transformation language used
for an intent.

Due to the space limitation, a subset of our current intent
catalog and the supporting references is demonstrated in this
paper. Besides illustrating our catalog and its uses with differ-
ent transformation examples from the literature, a case study
on the use of transformations for the development of a car’s
power window software will be used. This case study shows
how important transformations are for the MDE of embedded
software and how diverse their intents can be. In future
work, we plan to complete the catalog and use it to classify
and compare model transformation analysis approaches by
extending the work in [1].

The remainder of the paper is structured as follows: Sec-
tion II presents a schema to describe an intent catalog,
identifies common transformation intents, and lists some of
their common properties; Section III details the transformation
for analysis intent; Section IV lists some of the matching
transformations in the power window case study; Section V
presents related work; and finally Section VI presents the
conclusion.

II. A MODEL TRANSFORMATION INTENT CATALOG

In this section we propose a schema for a model transfor-
mation intent catalog, where each intent has a set of attributes
and properties, where a transformation with this intent should



ModelTransformationIntent

Name

Description

UseContext

Example

canBeExogenous

canBeEndogenous

Preconditions

PropertymandatoryProperty 1..*

relatedIntent

*

optionalProperty

*

Fig. 1. The portion of the intent domain metamodel showing the key classes
ModelTransformationIntent and Property.

demonstrate such properties to be able to achieve its underly-
ing goal. We then list a set of common transformation intents
and model transformation properties from the literature.

A. Transformation Intent Catalog Scheme
Our aim is to describe model transformation intents in a

systematic way. Thus, we developed a schema for model trans-
formation intents and their properties on which the intent cat-
alog is based. Figure 1 shows a fragment of this schema. The
root class in the metamodel is ModelTransformationIntent
with attributes as shown in Table I. Adapted from the Gang
Of Four [2], our definition of a transformation intent is as
follows:

Definition 1. A model transformation intent is a description
of the goal behind the model transformation and the reason
for using it.

The class Property is used to specify the properties of
transformations that fall under a specific intent. In this paper,
we restrict our definition of a model transformation property
to the following:

Definition 2. A model transformation property is any veri-
fiable characteristic inherent to a model transformation that
depends on the internal details of its input/output types and/or
the internal details of its implementation.

Definition 2 is used to justify cases where it is not
clear whether to use an attribute or a property to express
a concept related to an intent. For example, the attribute
CanBeEndogenous could potentially also be expressed as
a transformation property called IsEndogeneous and then
associating this as an optional property to each intent that can
have endogenous transformations. In this case, the concept of
being endogeneous does not satisfy Definition 2 since it is
dependent only on the fact of whether the input/output types
are the same or different and not on their internal details. Thus,
we do not use a property to express this concept.

B. Common Transformation Intents
As defined in [3], “a model transformation is an automated

manipulation of models according to a specific intent”. The
following list of model transformation intents extends previous
work [3], [4], [5]. The proposed list is not meant to be com-
plete, but it nevertheless covers a wide spectrum of common
transformation intents. Moreover, transformation chains may
combine multiple intents in separate phases.

Attributes

Name The name used to identify the intent.

Description An informal description of the underlying goal of the intent.

UseContext
A description of when to use a transformation with this
intent - i.e., what problems can it be used to solve?

Example Examples of transformations that have this intent.

canBeExogenous True iff it is possible for an exogeneous transformation to
have this intent.

canBeEndogenous True iff it is possible for an endogenous transformation to
have this intent.

Preconditions The conditions that must hold before this intent applies.

Associations

mandatoryProperty A property that a transformation must have in order to have
this intent.

optionalProperty A transformation property that is relevant for this intent.

relatedIntent Another intent that is often associated with this intent.

TABLE I
ATTRIBUTES OF ModelTransformationIntent

1) Manipulation: Simple atomic or bulk operations on
a model such as adding, removing, updating, accessing, or
navigating through model elements is considered a model
transformation when the system is completely and explicitly
modeled.

2) Restrictive Query: It requests for some information
about a model by a proper sub-model a.k.a. a view. We
consider any subsequent aggregation or restructuring of the
sub-model as an abstraction.

3) Refinement: Refinement produces a lower level specifi-
cation (e.g., a platform-specific model) from a higher level
specification (e.g., a platform-independent model) [6]. As
defined in [7], a model m1 refines another model m2 if m1

can answer all questions that m2 can answer. For example, a
non-deterministic finite state automaton (NFA) can be refined
into a deterministic finite state automaton (DFA).

4) Abstraction: Abstraction is the inverse of refinement: if
m1 refines m2 then m2 is an abstraction of m1. For example,
an NFA is an abstraction of a DFA.

5) Synthesis: A model is synthesized into a well-defined
language format that can be stored, such as in serialization.
Model-to-code generation is the case where the target language
is source code in a programming language. For example, Java
code can be synthesized from a UML class diagram model.

6) Reverse engineering: Reverse engineering is the inverse
of synthesis: it extracts higher level specifications from lower-
level ones. For example, a UML class diagram model can be
generated from Java code using Fujaba [8].

7) Approximation: As defined in [7], approximation is a
refinement with respect to negated properties. That is m1

approximates m2 if m1 negates the answer to all questions that
m1 negates. In practice, m2 is an idealization of m1 where an
approximation is only extremely likely. For example, a Fast
Fourier Transform is an approximation of a Fourier Transform



which is computationally very expensive.
8) Translational Semantics: The semantics of a language

can be defined in terms of another formalism. In this case,
the semantic mapping function of the original language is
defined by a model transformation that translates any of its
instances to a valid instance of the reference formalism with
well-defined semantics. For example, the meaning of a Causal
Block Diagram is given by mapping it onto an Ordinary
Differential Equation.

9) Analysis: A model transformation can be used to map
a modeling language to a formalism that can be analyzed
more appropriately than the original language. The target
language is typically a formal language with known analysis
techniques. For example, a Petri net model is transformed
into a reachability graph on which liveness properties can be
evaluated.

10) Simulation: A simulation is a model transformation
that updates the state of the system modeled. A simulation
defines the operational semantics of the modeling language.
For example, a model transformation can simulate a Petri net
model and produces a trace of the transition firing.

11) Normalization: Normalization aims to decrease the
syntactic complexity of models by translating complex lan-
guage constructs into more primitive constructs, which results
in a canonical form of a model. For example, a Statechart
model is normalized into its flattened form by removing OR-
and AND-states.

12) Rendering: It is the assignment of a concrete represen-
tation to each abstract syntax elements or group of elements,
as long as a meta-model of the concrete syntax is defined
explicitly. Furthermore, multiple concrete syntaxes can be
assigned to a single abstract syntax: for example a textual
and a graphical representation of the same model.

13) Model Generation: The meta-model of a language can
be defined by a graph grammar [9]. The grammar execution
leads to model transformations able to generate all possible
instances of the language such as in [10].

14) Migration: In [11], the authors define migration as a
transformation from a software model written in one language
or framework into another language, keeping the models at the
same level of abstraction. When a language, e.g., Enterprise
Java Beans 2.0 (EJB2), evolves to a newer version, e.g.,
Enterprise Java Beans 3.0 (EJB3), one must migrate all models
conforming to the meta-model of EJB2 so that they conform
to the new meta-model of EJB3.

15) Optimization: This model transformation aims at im-
proving operational qualities of models such as scalability and
efficiency. For example, replacing an n-ary association with
a set of binary associations in a UML class diagram may
optimize the subsequent code generation process.

16) Refactoring: Model refactoring is a restructuring that
changes the internal structure of the model to improve certain
quality characteristics without changing its observable behav-
ior [12]. For example, Zhang et al. [13] proposed a generic
model transformation engine that can be used to specify
refactorings for domain-specific models.

17) Composition: Model composition integrates models
that have been produced in isolation into a compound model.
Typically, each isolated model represents a concern which may
overlap. On the one hand, model merging creates a new model
such that every element from each model is present exactly
once in the merged model. On the other hand, model weaving
creates correspondence links between overlapping entities.

18) Synchronization: Model synchronization integrates
models that have evolved in isolation but that are subject
to global consistency constraints. It requires that changes are
propagated to the models that are being integrated as done in
triple graph grammars for example.

C. Common Transformation Properties

In the text that follows we identify a relevant set of model
transformation properties for our purposes. Very little work
exists in the literature for classifying model transformation
properties. Due to that fact and due to the space limitation,
the set of properties we present is tentative and incomplete.
The properties we describe are based on the classification of
transformation properties presented in [1] and on the literature
survey conducted for this paper. We focus on transformation
properties required for Section III where we investigate in
detail the model transformation analysis intent.

1) Termination: A terminating transformation produces an
output model from an input model in finite time. Termination
of transformations directly refers to Turing’s halting problem,
which is known to be undecidable for Turing-complete, model
transformation languages. Termination has been addressed
extensively in several studies, including [14], [15], [16], [17];

2) Determinism: A deterministic transformation always
produces the same output model for the same input model.
Determinism has been addressed extensively in several studies,
including [18], [15], [19];

3) Type Correctness: In a type correct transformation,
the transformation’s input and output models conform with
their respective metamodels. Usually, structural conformance,
involving only the metamodel, is distinguished from confor-
mance w.r.t. additional well-formedness rules (e.g.,[20]);

4) Property preservation: A transformation can preserve
the syntactic [21], [22] or semantic [23], [24] properties
of a model. Since exogenous transformations are usually
investigated, a formal property of the input model needs to be
transformed into an equivalent property of the output model.
Varro and Pataricza examine this problem in [24];

5) Traceability: Most transformation languages allow log-
ging a transformation’s traceability links between the transfor-
mation’s input and output model elements. This mechanism
is often used to alleviate the problem of tracing the analysis
results from the transformation’s input model to its output
model as done in [21], [25]. In cases where the traceability of
the analysis results is simple (e.g. in [26] where the termination
of a transformation is decided by simulating a Petri Net
that abstracts the transformation’s semantics and that always
runs out of tokens in finite time), less costly means may be
employed.



6) Readability: A transformation is readable if it is compre-
hensible and amenable to be read by humans. Distinct parts
in a transformation may be individually readable: the input
model, the output model or the transformation specification
itself. Mens mentions the readability property of model trans-
formations in [4]. To the best of our knowledge there is little
work done on the readability of software models, but metrics
do exist for evaluating software readability [27]. Readability
is a non-functional property of the transformation.

7) Mathematical underpinning: A transformation has a
mathematical underpinning if the transformation language’s
semantics and/or the input and output metamodels’ semantics
are mathematically formalised. Mens refers to the mathemati-
cal properties of transformation languages in [4]. There is vast
literature on the formalisation of programming and modeling
languages, e.g. [28]. Mathematical underpinning is a non-
functional property of the transformation.

III. OVERVIEW OF THE ANALYSIS INTENT (IAna)

Due to space limitations, we demonstrate one intent, namely
the analysis intent. First, we overview studies in the literature
that fall under this intent. We then summarize the commonal-
ities of these studies using the proposed intent scheme.

Several example transformations from the literature fall un-
der the analysis intent. Kühne et al. [29] defined the semantics
of Finite State Automata in terms of Petri Nets. de Lara
and Taentzer [30] implemented a graph rewriting system to
transform process interaction models to timed transition Petri
Nets (TTPNs) for analysis. The graph rewriting system was
proven to be terminating, deterministic, type correct and be-
haviour preserving (i.e., property preserving). Varró et al. [26]
transformed graph rewriting systems into Petri Nets to analyze
them for termination. König and Kozioura [31] proposed a
tool, Augur2, that approximates graph rewriting systems as
Petri Nets and analyzes them for property preservation. A
property of interest is specified as a graph pattern which is
transformed by Augur2 to an equivalent Petri Net marking.
Accordingly, Augur2 either verifies that the property is satis-
fied or produces a counter example. Narayanan and Karsai [21]
implemented a graph rewriting system in GREAT to transform
UML activity diagrams to communicating sequential process
models. The graph rewriting system was then checked for pre-
serving structural correspondences between input and output
models (property preservation). Narayanan and Karsai [23]
implemented a graph rewriting system in GREAT to transform
state charts to Extended Hybrid Automata (EHA) models
for analysis. The graph rewriting system was then checked
to preserve bisimilarity (i.e. property preservation) between
input and output models. Rivera et al. [32] mapped graph
rewriting systems to Maude and used reachability analysis and
LTL model checking in Maude to analyze the graph rewriting
system for property preservation. Properties were expressed
as invariants, safety properties and liveness properties. Schätz
et al. [33] formalized transformations using a relational, rule-
based characterization of the transformation’s constraints to
analyse different possible mappings of the transformation.

Attributes

Name Analysis, IAna

Description
To indirectly analyse a property of the input model by run-
ning the analysis algorithm on the transformation’s output
model

UseContext
Need to analyse models that are not analysable in the
transformation’s input language, or are more efficiently
analysable in the transformation’s output language

Example Transforming graph rewriting systems into Petri Nets to
analyse them for termination [26]

canBeExogenous True

canBeEndogenous True (if transforming to a profile of the original language).

Preconditions

(1) Access to intended semantics,
(2) The property of interest (that should be analysed) is
defined,
(3) There exists an exhaustive (up to a given abstraction)
automated method to analyse the property of interest on the
transformation’s output language,
(4) There exists a method to translate the property of
interest onto the transformation’s output language (if the
transformation is exogenous)

Associations

mandatoryProperty

(1) Termination,
(2) Type correctness,
(3) Preservation of the property of interest (specialises
Property preservation),
(4) Analysis result can be mapped back onto the input model
(specialises Traceability)

optionalProperty

(1) Readability of the transformation’s output for debugging
purposes,
(2) Semantics of the input language is formally defined
(specialises Mathematical underpinning)

relatedIntent Translational Semantics, Simulation

TABLE II
ANALYSIS INTENT, IAna

Models were represented as Prolog terms and transformation
rules were represented as Prolog predicates. The state space of
a transformation was formalized using a relational, rule-based
description of design constraints in terms of the predicates
representing the transformation rules. This formalization was
then interpreted by Prolog as a non-confluent transformation.

Table II instantiates the intent metamodel (Figure 1) for
the analysis intent, summarizing our findings in the literature
as formerly described. Not all surveyed studies analyzed
properties inherent to a transformation. Some studies analyzed
properties of a transformation’s output, only. For example,
different design options (i.e. non-functional requirements) of
the output models were explored in [33]. Such output model
properties were not stated in Table II since they are not specific
to a transformation per se, but only to its output models.

IV. APPLYING THE ANALYSIS INTENT TO THE POWER
WINDOW CASE STUDY

The power window case study [34] is an industrially ori-
ented study on the application of transformations to MDE of
software. This study is of interest to us because it describes
in terms of metamodels, model transformations and UML 2.0
activity diagrams chaining those transformations, the process
of building the software for controlling an automobile’s power
window. A power window is basically an electrically powered
window. The development of control software for such devices



is nowadays highly complex, due to the set of functionalities
required for the comfort and security of the vehicle’s passen-
gers. The case study [34] is relevant to us because it exposes
in a detailed fashion a large number of transformations that
span many intents identified in Section II-B.

The power window case study’s authors provide in their
text, using varying degrees of detail, the context where their
transformations occur and the properties those transforma-
tions should satisfy. We use this information as a means to
validate our work. Several transformations from the power
window case study apparently fall under the analysis intent.
In table III we summarize these transformations according to
the classification of the analysis intent in Table II. Due to
space limitations we provide only very brief descriptions the
transformations in the case study, which can be found in [34].

Model Trans-
formation

Description Precon-
ditions

Mand.
Prop-
erties

Opt.
Prop-
erties

EnvToPN

Build a Petri net repre-
sentation of a specialised
model of the passenger’s
interactions with the pow-
erwindow. Allows check-
ing power window security
requirements.

(1),(2),
(3)

(1),(2),
(3)

PlantToPN

Build a Petri net representa-
tion of a specialised model
of the powerwindow physical
configuration. Allows check-
ing power window security
requirements.

(1),(2),
(3)

(1),(2),
(3)

ScToPN

Build a Petri net representa-
tion of a specialised model
of the powerwindow con-
trol software. Allows check-
ing power window security
requirements.

(1),(2),
(3)

(1),(2),
(3) (1),(2)

ToBinPacking-
Analysis

Build an equational alge-
braic representation of the
dynamic behavior of the in-
volved hardware components
from an AUTOSAR [35]
specification. Allows check-
ing processor load distribu-
tion.

(1),(2),
(3),(4)

(1),(2),
(3),(4) (1)

ToSchedulability-
Analysis

Build an equational alge-
braic representation of the
dynamic behavior of the in-
volved hardware and soft-
ware components from an
AUTOSAR specification. Al-
lows checking software re-
sponse times.

(1),(2),
(3),(4)

(1),(2),
(3),(4) (1)

ToDeployment-
Simulation

Build a DEVS representation
of the deployment solution
to check for latency times,
deadlocks and lost messages.

(1),(2),
(4)

(1),(2),
(3),(4) (1)

TABLE III
MODEL TRANSFORMATION EXAMPLES FROM THE POWER WINDOW CASE

STUDY THAT FALL UNDER IAna

Several interesting questions are raised by the transfor-
mations we describe in table III. First, only two of the
transformations fulfill the four preconditions listed in table II.
This may point to two issues: the transformation does indeed
have the analysis intent, but has not been fully implemented;
the transformation does not have the analysis intent. After
looking at the detailed description of the transformations in
table III, we found that transformations EnvToPN, PlantToPN
and ScToPN are missing precondition (4) (property translation
implementation) described in table II. Work to address that

problem within the case study is foreseen. On the other hand,
we found that the ToDeploymentSimulation transformation
has the simulation rather than the analysis intent, which seems
to be a good indicator of the discriminating power of table II.

Regarding the mandatory properties, the EnvToPN,
PlantToPN and ScToPN transformations do not implement
property (4) of table II. As previously, this is mainly due to
the fact that the case study is not fully developed. In fact,
traceability for interpreting the analysis result on the input
model is yet to be implemented.

Finally, regarding the optional properties, the results in
table III are to be expected. Some of the transformations
do exhibit the optional properties while others do not. This
indicates that our choice for such properties is indeed correct,
although most likely not complete.

V. RELATED WORK

The notion of intent in the software engineering discipline
is not new. Yu and Mylopoulos [36] realized in 1994 that
current research in this area was more focused on design
and implementation—the what and the how for developing
software—rather than on the requirements necessary to un-
derstand the software to improve the underlying production
processes—the why. To a certain extent, MDE is following the
same path: historically, research was more dedicated towards
the management of different modelling and transformation
activities instead of exploring the intents behind them.

Three contributions [4], [5], [37] are related to our study; all
aiming for a classification of different transformation aspects.
Mens and Van Gorp [4] provide a multidimensional taxonomy
of transformations. This taxonomy exhibits several syntactic
classification dimensions with respect to the manipulated
metamodels, e.g., if they are on the same abstraction level, and
used transformation execution strategies, e.g., in-place and out-
place transformations. While all these dimensions represent
meta-information on syntactical aspects, the dimensions are
illustrated on transformations related to our intents. However,
our catalog aims at reflecting known, documented uses of
transformations and proposes, in addition to the seven intents
presented in [4], ten additional intents whereas one of them is
characterised by its properties.

Tisi et al. [37] examined higher-order transformations, i.e.,
transformations manipulating transformations. They classify
them based on whether source and/or target models are trans-
formations or not. Our intents are more general in the sense
that we do not distinguish between transformation and non-
transformation models allowing for a wider applicability of
the intent catalog.

The goal of Czarnecki and Helsen [5] was to classify the
features of transformations languages by establishing a feature
model. To do so, they introduced five intended applications of
transformations which are also reflected by our transformation
intent catalog.

A taxonomy of program transformations is presented by
Visser [38]. Instead of proposing a taxonomy of multiple
dimensions as in [4], Visser employs one discriminator for



the taxonomy: out-place vs. in-place transformations (named
as translations and rephrasing). Some of the leaf nodes in the
taxonomy are program-specific, e.g., (de-)compilation, inlin-
ing, and desugaring. However, other nodes in the taxonomy
are covered by our intent catalog. Moreover, we present several
intents specifically tailored to transformations.

To sum up, the presented transformation intent catalog is
more comprehensive than previous attempts. Besides provid-
ing a name and an example of each intent, comprehensive
meta-information (e.g., the use context, preconditions, etc.)
and properties of interest for the given intent are proposed. To
the best of our knowledge, the later has not been subject of
research in previous work.

VI. CONCLUSION AND DISCUSSION

In this paper, we have presented our ongoing work on using
the notion of intent to help us understand the uses of model
transformations in MDE and how they can be best supported.
More concretely, we have listed some common transformation
intents and properties, presented a schema to describe intents,
and briefly illustrated its use on a case study.

Future work includes making our catalog more comprehen-
sive and work on describing other intents has already begun.
We also plan on identifying certification methods that allow
a given transformation property to be analyzed, together with
suitable references to corresponding research efforts on the
analysis and verification of transformations.

On the more abstract level, we hope to gain a better
understanding of how potential uses of the catalog outlined
in the introduction can best be realized, if at all. For instance,
it is currently unclear how “crisply” intents and their properties
can be described and how useful our descriptions are in
practice, as transformations in practice may have overlapping
intents and properties that span too large a spectrum. Also,
it may be more useful to think of intents as a form of
“requirements patterns” [39] for transformations. To support
formal transformation analysis, a formal framework for the
description of properties would be useful. Finally, how intents
and the certification of properties can be best supported by,
possibly, dedicated transformation languages is another topic
for future work.

REFERENCES

[1] M. Amrani, L. Lúcio, G. Selim, B. Combemale, J. Dingel,
H. Vangheluwe, Y. Le Traon, and J. R. Cordy, “A Tridimensional Ap-
proach for Studying the Formal Verification of Model Transformations,”
in VOLT Workshop, 2012.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, 1994.

[3] E. Syriani, “A Multi-Paradigm Foundation for Model Transformation
Language Engineering,” Ph.D. Thesis, McGill University, 2011.

[4] T. Mens, K. Czarnecki, and P. Van Gorp, “A Taxonomy Of Model
Transformation,” ENTCS, vol. 152, pp. 125–142, 2006.

[5] K. Czarnecki and S. Helsen, “Feature-Based Survey of Model Transfor-
mation Approaches,” IBM Systems J., vol. 45(3), pp. 621–645, 2006.

[6] A. G. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model
Driven Architecture: Practice and Promise. Addison-Wesley, 2003.

[7] Holger Giese, Tihamer Levendovszky, and Hans Vangheluwe, “Sum-
mary of the Workshop on Multi-Paradigm Modeling: Concepts and
Tools,” in Models in Software Engineering, vol. 4364, 2007.

[8] T. Fischer, J. Niere, L. Turunski, and A. Zündorf, “Story Diagrams: A
New Graph Rewrite Language Based on UML and Java,” in Theory and
Application of Graph Transformations, 2000, Chapter, pp. 296–309.

[9] G. Viehstaedt and M. Minas, “DiaGen: A Generator for Diagram Editors
Based on a Hypergraph Model,” in International Workshop on Next
Generation Information Technologies and Systems, 1995, pp. 155–162.

[10] J. Winkelmann, G. Taentzer, K. Ehrig, and J. Küster, “Translation of
Restricted OCL Constraints into Graph Constraints for Generating Meta
Model Instances by Graph Grammars,” ENTCS, vol. 211, pp. 159–170,
2008.

[11] P. Mc Brien and A. Poulovassi, “Automatic Migration and Wrapping
of Database Applications - A Schema Transformation Approach,” in
Conceptual Modeling ER, vol. 1782, 1999, pp. 99–114.

[12] W. G. Griswold, “Program Restructuring as an Aid to Software Main-
tenance,” Ph.D. dissertation, University of Washington, August 1991.

[13] J. Zhang, Y. Lin, and J. Gray, “Generic and Domain-Specific Model
Refactoring Using a Model Transformation Engine,” in Research and
Practice in Software Engineering (Vol. II), 2005, pp. 199–218.

[14] H.-K. Ehrig, G. Taentzer, J. de Lara, D. Varró, and S. Varró Gyapai,
“Termination Criteria for Model Transformation,” in FASE, 2005.

[15] J. M. Küster, “Definition and Validation of Model Transformations,”
SOSYM, vol. 5(3), pp. 233–259, 2006.

[16] H. S. Bruggink, “Towards a Systematic Method for Proving Termination
of Graph Transformation Systems,” ENTCS, vol. 213(1), 2008.

[17] F. Spoto, P. M. Hill, and E. Payet, “Path-Length Analysis of Object-
Oriented Programs,” in EAAI, 2006.

[18] R. Heckel, J. M. Küster, and G. Taentzer, “Confluence of Typed
Attributed Graph Transformation Systems,” in ICGT, 2002.

[19] L. Lambers, H. Ehrig, and F. Orejas, “Efficient Detection of Conflicts
in Graph-based Model Transformation,” ENTCS, vol. 152, 2006.

[20] A. Boronat, “MOMENT: A Formal Framework for MOdel man-
ageMENT,” Ph.D. dissertation, University of Valencia, 2007.

[21] A. Narayanan and G. Karsai, “Verifying Model Transformations by
Structural Correspondence,” ECEASST, vol. 10, 2008.

[22] L. Lúcio, B. Barroca, and V. Amaral, “A Technique for Automatic
Validation of Model Transformations,” in MODELS, 2010, pp. 136–150.

[23] A. Narayanan and G. Karsai, “Towards Verifying Model Transforma-
tions,” ENTCS, vol. 211, pp. 191–200, 2008.

[24] Dániel Varró and András Pataricza, “Automated Formal Verification of
Model Transformations,” in CSDUML Workshop, 2003, pp. 63–78.

[25] L. Lúcio, Q. Zhang, V. Sousa, and Y. Le Traon, “Verifying Access
Control in Statecharts,” ECEASST, 2012.

[26] D. Varró, S. Varró-Gyapay, H. Ehrig, U. Prange, and G. Taentzer,
“Termination Analysis of Model Transformations by Petri Nets,” In-
ternational Conference on Graph Transformations, pp. 260–274, 2006.

[27] R. P. Buse and W. R. Weimer, “A metric for software readability,” in
Proceedings of ISSTA ’08. NY, USA: ACM, 2008, pp. 121–130.

[28] D. Harel and B. Rumpe, “Modeling languages: Syntax, semantics and
all that stuff, part i: The basic stuff,” Israel, Tech. Rep., 2000.

[29] T. Kühne, G. Mezei, E. Syriani, H. Vangheluwe, and M. Wimmer,
“Systematic Transformation Development,” ECEASST, vol. 21, 2009.

[30] J. de Lara and G. Taentzer, “Automated Model Transformation and its
Validation Using AToM3 and AGG,” in Diagrams, 2004, pp. 182–198.

[31] B. König and V. Kozioura, “Augur 2–A New Version of a Tool for
the Analysis of Graph Transformation Systems,” Electronic Notes in
Theoretical Computer Science (ENTCS), vol. 211, pp. 201–210, 2008.

[32] J. Rivera, E. Guerra, J. de Lara, and A. Vallecillo, “Analyzing Rule-
Based Behavioral Semantics of Visual Modeling Languages with
Maude,” Software Language Engineering, pp. 54–73, 2009.

[33] B. Schätz, F. Hölzl, and T. Lundkvist, “Design-Space Exploration
Through Constraint-Based Model-Transformation,” in Engineering of
Computer Based Systems Workshop (ECBS), 2010, pp. 173–182.

[34] L. Lúcio, J. Denil, and H. Vangheluwe, “An Overview of Model
Transformations for a Simple Automotive Power Window,” McGill
University, Tech. Rep. SOCS-TR-2012.1, 2012.

[35] AUTOSAR, “Official webpage,” http://www.autosar.org, 2010.
[36] E. S. Yu and J. Mylopoulos, “Understanding “Why” in Software Process

Modelling, Analysis, and Design,” in ICSE, 1994, pp. 159–168.
[37] M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin, “On the Use of

Higher-Order Model Transformations,” in ECMDA-FA, 2009, pp. 18–33.
[38] Eelco Visser, “A survey of strategies in rule-based program transforma-

tion systems,” J. Symbolic Computation, vol. 40(1), pp. 831–873, 2005.
[39] S. Withall, Software Requirement Patterns. Microsoft Press, 2007.

http://www.autosar.org

	Introduction
	A Model Transformation Intent Catalog
	Transformation Intent Catalog Scheme
	Common Transformation Intents
	Manipulation
	Restrictive Query
	Refinement
	Abstraction
	Synthesis
	Reverse engineering
	Approximation
	Translational Semantics
	Analysis
	Simulation
	Normalization
	Rendering
	Model Generation
	Migration
	Optimization
	Refactoring
	Composition
	Synchronization

	Common Transformation Properties
	Termination
	Determinism
	Type Correctness
	Property preservation
	Traceability
	Readability
	Mathematical underpinning


	Overview of the Analysis Intent (IAna)
	Applying the Analysis Intent to the Power Window Case Study 
	Related Work
	Conclusion and Discussion
	References

