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Sharing some challenges of the CERTIMOT project 



Development Process for Critical Systems 
Unique Development Process 

(Traditional V-Model) 

Critical Systems Design 

 requires a certification process  

 to develop justified evidence  

 that the system is free of flaws 

 

Software Tool Qualification 

 obtain certification credit 

 for a software tool 

 used in critical system design 

 
 

Qualified Tool  Certified Output 

DO-178B 
IEC 61508 
 

Innovative Tool  Better System 



Qualification of Software Tools 
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Verification tools: 
• fail to detect errors 

Development  tools: 
• input  output   
  deterministically 
• introduce new errors 

Promises of Tool Qualification 
• reduce development + V&V cost  
• increase quality and productivity 
 reduce certification costs 
 
Obstacles for Tool Qualification 
• reusable features? tool chains? 
• complex V&V tasks  
 extreme qualification costs 
 

 A. J. Kornecki, J. Zalewski: The Qualification of Software 
Development Tools from the DO-178B Perspective,  
Journal of Defense Software Engineering, Apr, 2006 



Model-Driven Engineering of Critical Systems 

Traditional V-Model Model-Driven Engineering 

Main ideas of MDE 
• early validation of system models  
• automatic source code generation 
 quality++  tools ++ development cost-- 
 

• DO-178B/C: Software Considerations in Airborne Systems  and 
Equipment Certification (RTCA, EUROCAE)  
• Steven P. Miller: Certification Issues in Model Based Development 
(Rockwell Collins) 



Models and Transformations in Critical Systems 
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Model Transformations 
• systematic foundation of  
  knowledge transfer:  
  theoretical resultstools 
• bridge / integrate  
  existing languages&tools 

Design + V&V Artifacts  
(Source code, Glue code,  
Config. Tables, Test Cases, 
Monitors, Fault Trees, etc.) 
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Horizontal Model Transformations 
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Related projects 
• CESAR, SAVI, … 
• HIDE, DECOS, DIANA, 
MOGENTES, CERTIMOT, 
GENESYS, SENSORIA 



System Design 

Model

Architecture

Design
Model

Component

Design
Model

Refine

Refine

Design + V&V Artifacts

(Source code, Glue code, 
Config. Tables, Test Cases, 
Monitors, Fault Trees, etc.)

Code

Generation

Test

Generation

Component 

V&V
Model

Architecture

V&V
Model

System V&V 

Model

Model generation

Back-Annotation

Model generation

Back-Annotation

Model generation

Back-Annotation

Use

Use

Formal

methods

Formal

methods

Problem: Transformation Errors 

Code generator error 
• model: OK, code: no  

Model generator error 
• model: OK, V&V: No  
• model: No, V&V: OK 



Main Certification Artifacts 

 High Level Requirements (HLR): 
o black-box view of the software, 

o captured in a natural language 
(e.g. using shall statements) 

 Derived Requirements (DR) 
o Capture design decisions 

 Low Level Requirements (LLR): 
o SC can be implemented without 

further information 

 Software Architecture (SA) 
o Interfaces, information flow of SW 

components 

 Source Code (SC) 
o Code written in a source language 

 Executable Object Code (EOC) 
o Obtained by traditional compilers 
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MT Tool (Design Environment) 

Model Manipulation Library 

MT Plugin (Execution Environment) 
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