
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Certification of
Model Transformations

Dániel Varró

1st Workshop on the Analysis of Model Transformations (AMT 2012)

Sharing some challenges of the CERTIMOT project

Development Process for Critical Systems
Unique Development Process

(Traditional V-Model)

Critical Systems Design

 requires a certification process

 to develop justified evidence

 that the system is free of flaws

Software Tool Qualification

 obtain certification credit

 for a software tool

 used in critical system design

Qualified Tool Certified Output

DO-178B
IEC 61508

Innovative Tool Better System

Qualification of Software Tools

High-Level
Requirements

Low-Level
Requirements
(System Spec)

System
Architecture

Software
Component

Design

Implementation
(Source Code)

Software
Component
Verification

System
Integration &
Verification

System
Validation

Final Acceptance
Test

Verification tools:
• fail to detect errors

Development tools:
• input output
 deterministically
• introduce new errors

Promises of Tool Qualification
• reduce development + V&V cost
• increase quality and productivity
 reduce certification costs

Obstacles for Tool Qualification
• reusable features? tool chains?
• complex V&V tasks
 extreme qualification costs

 A. J. Kornecki, J. Zalewski: The Qualification of Software
Development Tools from the DO-178B Perspective,
Journal of Defense Software Engineering, Apr, 2006

Model-Driven Engineering of Critical Systems

Traditional V-Model Model-Driven Engineering

Main ideas of MDE
• early validation of system models
• automatic source code generation
 quality++ tools ++ development cost--

• DO-178B/C: Software Considerations in Airborne Systems and
Equipment Certification (RTCA, EUROCAE)
• Steven P. Miller: Certification Issues in Model Based Development
(Rockwell Collins)

Models and Transformations in Critical Systems

System Design
Model

Architecture
Design Model

Component
Design Model

Refine

Refine

Model Transformations
• systematic foundation of
 knowledge transfer:
 theoretical resultstools
• bridge / integrate
 existing languages&tools

Design + V&V Artifacts
(Source code, Glue code,
Config. Tables, Test Cases,
Monitors, Fault Trees, etc.)

Code
Generation

Test
Generation

V
e

rtical M
o

d
e

l Tran
sfo

rm
atio

n
s

Component
V&V Model

Architecture
V&V Model

System V&V
Model

Model generation

Back-Annotation

Model generation

Back-Annotation

Model generation

Back-Annotation

Use

Use

Horizontal Model Transformations

Formal
methods

Formal
methods

Design
rules

Design
rules

Design
rules

Related projects
• CESAR, SAVI, …
• HIDE, DECOS, DIANA,
MOGENTES, CERTIMOT,
GENESYS, SENSORIA

System Design

Model

Architecture

Design
Model

Component

Design
Model

Refine

Refine

Design + V&V Artifacts

(Source code, Glue code,
Config. Tables, Test Cases,
Monitors, Fault Trees, etc.)

Code

Generation

Test

Generation

Component

V&V
Model

Architecture

V&V
Model

System V&V

Model

Model generation

Back-Annotation

Model generation

Back-Annotation

Model generation

Back-Annotation

Use

Use

Formal

methods

Formal

methods

Problem: Transformation Errors

Code generator error
• model: OK, code: no

Model generator error
• model: OK, V&V: No
• model: No, V&V: OK

Main Certification Artifacts

 High Level Requirements (HLR):
o black-box view of the software,

o captured in a natural language
(e.g. using shall statements)

 Derived Requirements (DR)
o Capture design decisions

 Low Level Requirements (LLR):
o SC can be implemented without

further information

 Software Architecture (SA)
o Interfaces, information flow of SW

components

 Source Code (SC)
o Code written in a source language

 Executable Object Code (EOC)
o Obtained by traditional compilers

HLR

LLR SA

SC

OC

DR

DR

MT Tool (Design Environment)

Model Manipulation Library

MT Plugin (Execution Environment)

Java Source
classes

Java MT
Program (SA)

Java Target
classes

Source
model

Source
metamodel

Target
model

Target
metamodel

MT rules
(LLR)

MT engine Textu
al So

u
rce File

Java Source
model

ByteCode
Execution

Java Target
model

Textu
al Target File

Im
p

o
rter

Exp
o

rter

MT Reqs
(HLR)

Model Manipulation Library

Im
p

o
rter

Exp
o

rter

