
KIT – University of the State of Baden-Wuerttemberg and  
National Research Center of the Helmholtz Association

SOFTWARE DESIGN AND QUALITY GROUP  
INSTITUTE FOR PROGRAM STRUCTURES AND DATA ORGANIZATION, FACULTY OF INFORMATICS

www.kit.edu

Source: pixelio.de

sdq.ipd.kit.edu

Remodularizing Legacy Model Transformations  
with Automatic Clustering Techniques
Andreas Rentschler, Dominik Werle, Qais Noorshams, Lucia Happe, Ralf Reussner
!
3rd Workshop on the Analysis of Model Transformations
Monday, September 29, 2014

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Model-driven Software Quality Prediction

Performance model 
of a component-based 
software architecture

Performance data:

Execution time

Throughput

Resource utilisation

Motivation ◉ ⚪ Validation ⚪ Conclusion ⚪
2

Approach ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Model-driven Software Quality Prediction

Performance model 
of a component-based 
software architecture

Performance data:

Execution time

Throughput

Resource utilisation

Motivation ◉ ⚪ Validation ⚪

Palladio
Component

Model
Measurement

Data
Generated
Simulation

Code

SimuCom Simulation
Framework

Transformation Run

Conclusion ⚪
2

Approach ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Model-driven Software Quality Prediction

Performance model 
of a component-based 
software architecture

Performance data:

Execution time

Throughput

Resource utilisation

Motivation ◉ ⚪ Validation ⚪

Palladio
Component

Model
Measurement

Data
Generated
Simulation

Code

SimuCom Simulation
Framework

Transformation Run

5k lines of

code
Conclusion ⚪

2
Approach ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Model-driven Software Quality Prediction

Performance model 
of a component-based 
software architecture

Performance data:

Execution time

Throughput

Resource utilisation

Motivation ◉ ⚪ Validation ⚪

Palladio
Component

Model
Measurement

Data
Queueing
Petri Net

Model
SimulateTransformation

5k lines of

code
QVT-O

Conclusion ⚪
2

Approach ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Problem and Overall Approach

3
Motivation ⚫ ◉ Approach ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ Validation ⚪ Conclusion ⚪

Legacy
Transformation

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Problem and Overall Approach

3
Motivation ⚫ ◉ Approach ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ Validation ⚪ Conclusion ⚪

Legacy
Transformation Modularized

Transformation

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Problem and Overall Approach

3
Motivation ⚫ ◉ Approach ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ Validation ⚪ Conclusion ⚪

Legacy
Transformation Modularized

Transformation

Manual Decomposition

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Problem and Overall Approach

3
Motivation ⚫ ◉ Approach ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ Validation ⚪ Conclusion ⚪

Legacy
Transformation Modularized

Transformation

Manual Decomposition

ClustersCluster Analysis

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Problem and Overall Approach

3
Motivation ⚫ ◉ Approach ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ Validation ⚪ Conclusion ⚪

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Problem and Overall Approach

3
Motivation ⚫ ◉ Approach ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ Validation ⚪ Conclusion ⚪

How can we support typical transformation designs?

What dependence information is required?

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Problem and Overall Approach

3
Motivation ⚫ ◉ Approach ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪ Validation ⚪ Conclusion ⚪

How can we support typical transformation designs?

What dependence information is required?

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Design Rules
What’s makes model transformations different from GPL programs?

Data-centric operations

Data is hierarchically structured

Data models extrinsically defined

!

Common decompositional styles [Lawley04]:

4
Motivation ⚫ ⚫ Validation ⚪ Conclusion ⚪

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

Source-driven	 Target-driven	 Aspect-driven

one-to-many
mappings

many-to-one
mappings,

M2T templates

a mixture of both

Approach ◉ ⚪ ⚪ ⚪ ⚪ ⚪ ⚪

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

A Minimalistic Example Transformation

5
Motivation ⚫ ⚫ Validation ⚪ Conclusion ⚪

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

Approach ⚫ ◉ ⚪ ⚪ ⚪ ⚪ ⚪

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

A Minimalistic Example Transformation

5
Motivation ⚫ ⚫ Validation ⚪ Conclusion ⚪

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

StopAction

ActivityModel

Source Model

Activity

Action

StartAction

actions

successors

Approach ⚫ ◉ ⚪ ⚪ ⚪ ⚪ ⚪

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

A Minimalistic Example Transformation

5
Motivation ⚫ ⚫ Validation ⚪ Conclusion ⚪

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

StopAction

ActivityModel

Source Model

Activity

Action

StartAction

actions

successors

ProcessModel

Target Model

Process

Step
steps

next

Approach ⚫ ◉ ⚪ ⚪ ⚪ ⚪ ⚪

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

A Minimalistic Example Transformation

5
Motivation ⚫ ⚫ Validation ⚪ Conclusion ⚪

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

StopAction

ActivityModel

Source Model

Activity

Action

StartAction

actions

successors

ProcessModel

Target Model

Process

Step
steps

next

mapActivity2Process

Transformation

mapAction2Step

call

call

mapAction2Step

mapAction2Step

call

mapping

mapping

mapping

mappingin out

in

in

in

out

Approach ⚫ ◉ ⚪ ⚪ ⚪ ⚪ ⚪

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

A Minimalistic Example Transformation

5
Motivation ⚫ ⚫ Validation ⚪ Conclusion ⚪

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

StopAction

ActivityModel

Source Model

Activity

Action

StartAction

actions

successors

CompositeActions

Composite
Action

actions

ProcessModel

Target Model

Process

Step
steps

next

mapActivity2Process

Transformation

mapAction2Step

call

call

mapAction2Step

mapAction2Step

call

mapping

mapping

mapping

mappingin out

in

in

in

out

Approach ⚫ ◉ ⚪ ⚪ ⚪ ⚪ ⚪

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

A Minimalistic Example Transformation

5
Motivation ⚫ ⚫ Validation ⚪ Conclusion ⚪

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

StopAction

ActivityModel

Source Model

Activity

Action

StartAction

actions

successors

CompositeActions

Composite
Action

actions

ProcessModel

Target Model

Process

Step
steps

next

mapAction2Step

callmapping

call

in

outin

out

createProcess
helper

mapActivity2Process

Transformation

mapAction2Step

call

call

mapAction2Step

mapAction2Step

call

mapping

mapping

mapping

mappingin out

in

in

in

out

Approach ⚫ ◉ ⚪ ⚪ ⚪ ⚪ ⚪

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

A Minimalistic Example Transformation

5
Motivation ⚫ ⚫ Validation ⚪ Conclusion ⚪

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

Activity2Process

Action2Step

CompositeAction2Step

StopAction

ActivityModel

Source Model

Activity

Action

StartAction

actions

successors

CompositeActions

Composite
Action

actions

ProcessModel

Target Model

Process

Step
steps

next

mapAction2Step

callmapping

call

in

outin

out

createProcess
helper

mapActivity2Process

Transformation

mapAction2Step

call

call

mapAction2Step

mapAction2Step

call

mapping

mapping

mapping

mappingin out

in

in

in

out

Approach ⚫ ◉ ⚪ ⚪ ⚪ ⚪ ⚪

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

The Bunch Clustering Approach*

6
Motivation ⚫ ⚫ Approach ⚫ ⚫ ◉ ⚪ ⚪ ⚪ ⚪ Validation ⚪ Conclusion ⚪
* by [Mitchell06]; alternative approaches are ARCH, ACDC, LIMBO, … [Shtern12]

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

The Bunch Clustering Approach*

6
Motivation ⚫ ⚫ Approach ⚫ ⚫ ◉ ⚪ ⚪ ⚪ ⚪ Validation ⚪ Conclusion ⚪
* by [Mitchell06]; alternative approaches are ARCH, ACDC, LIMBO, … [Shtern12]

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

1
1
5

5

15

15

5
15

5

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

The Bunch Clustering Approach*

6
Motivation ⚫ ⚫ Approach ⚫ ⚫ ◉ ⚪ ⚪ ⚪ ⚪ Validation ⚪ Conclusion ⚪
* by [Mitchell06]; alternative approaches are ARCH, ACDC, LIMBO, … [Shtern12]

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

1
1
5

5

15

15

5
15

5

1
1
5

5

15

15

5
15

5

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

The Bunch Clustering Approach*

6
Motivation ⚫ ⚫ Approach ⚫ ⚫ ◉ ⚪ ⚪ ⚪ ⚪ Validation ⚪ Conclusion ⚪
* by [Mitchell06]; alternative approaches are ARCH, ACDC, LIMBO, … [Shtern12]

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

Clustering methods: hill climbing, genetic, exhaustive

1
1
5

5

15

15

5
15

5

1
1
5

5

15

15

5
15

5

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

The Bunch Clustering Approach*

6

composition. It traverses the tree-like structured activity model, and each node
embodies an own high-level concept that is mapped to target concepts.
Target-driven decomposition. When objects of a particular class in the target
domain are constructed from information distributed over instances of multiple
classes in the source domain (many-to-one mappings), a target-driven decom-
position is deemed more adequate. Transformations from low-level to high-level
concepts (synthesizing transformations) use this style.
Aspect-driven decomposition. In several cases, a mixture of the two ap-
plies. Aspect-driven decompositions are required whenever a single concern is
distributed over multiple concepts in both domains (many-to-many mappings). In-
place transformations (i.e., transformations within a single domain) that replace
concepts with low-level concepts often follow this style, particularly if operations
are executed per concern and affect multiple elements in the domain.

Any of these styles – and preferably also mixtures – must be supported by an
automatic decomposition analysis in order to produce meaningful results.

3 Automatic Software Clustering
The principal objective of software clustering methodologies is to help software
engineers in understanding and maintaining large software systems with outdated
or missing documentation and inferior structure. They do so by partitioning
system entities – including methods, classes, and modules – into manageable
sub systems. A survey on algorithms that had been used to cluster general
software systems has been carried out by Shtern et al. [3]. They describe various
classes of algorithms that can be used for this purpose, including algorithms
from graph-theory, constructive, hierarchical agglomerative, and optimization
algorithms.

In this paper, we employ the Bunch tool, a clustering system that uses one
of two optimization algorithms, hill climbing or a genetic algorithm, to find
near-optimal solutions [4]. Bunch operates on a graph with weighted edges,
the so-called Module Dependency Graph (MDG). Nodes represent the low-level
concepts to be grouped into modules, and may correspond to methods and classes.
As a fitness function for the optimization algorithms, Modularization Quality
(MQ) is used, a metric that integrates coupling and cohesion among the clusters
into a single value. Optimization starts with a randomly created partitioning,
for which neighboring partitions – with respect to atomic move operations – are
explored.

According to Mitchell et al. [4], a dependency graph is a directed graph
G = (V,E) that consists of a set of vertices and edges, E ⇢ V ⇥ V . A partition
(or clustering) of G into n clusters (n-partition) is then formally defined as ⇧G =Sn

i=1 Gi with Gi = (Vi, Ei), and 8v 2 V 91k 2 [1, n], v 2 Vk. Edges Ei are edges
that leave or remain inside the partition, Ei = {hv1, v2i 2 E : v1 2 Vi ^ v2 2 V }.

The MQ value is the sum of the cluster factors CFi over all i 2 {1, . . . , k}
clusters. The cluster factor of the i-th cluster is defined as the normalized ratio
between the weight of all the edges within the cluster, intraedges µi, and the
sum of weights of all edges that connect with nodes in one of the other clusters,
interedges ✏i,j or ✏j,i. Penalty of interedges is equally distributed to each of the
affected clusters i and j:

MQ =
kX

i=1

CFi, CFi =

8
<

:

0, µi = 0
µi

µi+ 1
2

Pk
j=1
j 6=i

(✏i,j+✏j,i)
, otherwise

Motivation ⚫ ⚫ Approach ⚫ ⚫ ◉ ⚪ ⚪ ⚪ ⚪ Validation ⚪ Conclusion ⚪
* by [Mitchell06]; alternative approaches are ARCH, ACDC, LIMBO, … [Shtern12]

Modularity quality index: favor low coupling & high cohesion

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

Clustering methods: hill climbing, genetic, exhaustive

1
1
5

5

15

15

5
15

5

1
1
5

5

15

15

5
15

5

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Dependence Analysis

7
Motivation ⚫ ⚫ Approach ⚫ ⚫ ⚫ ◉ ⚪ ⚪ ⚪ Validation ⚪ Conclusion ⚪

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

mapping_mapAction2Stepclass_core_Action

package_core

class_core_BasicAction

mapping_mapActivity2Process

entry_main

class_core_Activity

class_core_StartAction mapping_mapAction2Step2

mapping_mapAction2Step3class_core_StopAction

package_process

class_process_Step

class_process_Process

helper_createProcess

package_composite

mapping_mapAction2Step
class_composite_CompositeAction

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Dependence Analysis

7

«package»

«package»

«package»

«write»

«write»

«write»

«read»

«read»

«read»

«read»

«read»

«read»

«call»

«call»

«call»

«call»

«call»

«call»

«write»

Motivation ⚫ ⚫ Approach ⚫ ⚫ ⚫ ◉ ⚪ ⚪ ⚪ Validation ⚪ Conclusion ⚪

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

mapping_mapAction2Stepclass_core_Action

package_core

class_core_BasicAction

mapping_mapActivity2Process

entry_main

class_core_Activity

class_core_StartAction mapping_mapAction2Step2

mapping_mapAction2Step3class_core_StopAction

package_process

class_process_Step

class_process_Process

helper_createProcess

package_composite

mapping_mapAction2Step
class_composite_CompositeAction

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Weight Configuration
Depending on the style…

!

!

!

!

!

!

…initialize a configuration vector for weighting the various types of edges:

8
Motivation ⚫ ⚫ Approach ⚫ ⚫ ⚫ ⚫ ◉ ⚪ ⚪ Validation ⚪ Conclusion ⚪

Wwrite for write-access dependencies to classes and packages, Wread for read-
access dependencies to classes and packages from one of the method’s parameters,
Wcall for method call dependencies, and Wpackage for containment of classes and
packages to their directly containing package.These weights constitute a particular
weight configuration, vector WC := hWwrite ,Wread ,Wcall ,Wpackagei 2 N4

0.
Choosing a weight of zero naturally results in the respective type of edge

being ignored by the clustering algorithm. Choosing values Wwrite � Wread

promotes a mainly target-driven decomposition, whereas values Wwrite ⌧ Wread

enforce a mainly source-driven decomposition.

4.2 Cluster Analysis

Once dependence information has been extracted from the source files in form of
a graph, and weights have been configured accordingly, cluster analysis can be
performed on the obtained graph structure in a follow-up step.
Algorithm and parameters. Bunch supports three clustering algorithms, ex-
haustive search, hill climbing, and a genetic algorithm. In this paper, we use
Bunch’s hill climbing algorithm which appeared to produce more stable results.
We use a consistent configuration, with population size set to 100, the minimum
search space set to 90%, leaving 10% of the neighbors selected randomly.

Fig. 3 depicts the graph that had been extracted from the Activity2Process
example. Colored nodes represent the transformation’s methods, and gray nodes
mark the transformation’s model elements. Boxes mark a two-level partitioning
created by Bunch – L0 stands for the lower and more detailed level, whereas
L1 partitions subsume one or more L0 partitions. For this clustering, a weight
configuration h1, 15, 5, 15i had been used. With a sufficiently higher weight for
read than for write dependencies, 15 � 1, a source-driven decomposition had
been performed. Therefore, mapping methods have been grouped together with
their respective source model elements (Activity, Action, etc.) on L0. Two
of the clusters solely contain model elements and can be ignored. In the L1
partition, two clusters remain: One cluster aggregates Activity2Process and
Action2Stepmethods, the other cluster aggregates CompositeAction2Step
methods. The reference to class CompositeAction may have primarily induced
the algorithm to correctly group the respective methods together. When compar-
ing the Bunch-derived L0 partition with our handmade partitioning illustrated
by colors blue, red and yellow (cf. Fig. 3), we can observe that both partitions
are highly similar. Bunch, however, decided to agglomerate the red and blue L0
clusters to a single L1 cluster. Developers may think about adopting Bunch’s
recommendation and merge clusters Activity2Process and Action2Step.

4.3 Structural Analysis

The main objective of the approach is to gain a better understanding of the code,
but also to agree on a modular decomposition that fosters understandability and
that can be used to restructure the code. To achieve this goal, in this last step, the
existing modular structure and partitions computed by the algorithm on different
parameters are compared against each other regarding their modularization
quality and structural differences. Although this is a manual step that requires
to find a compromise on two or more partitions and to refine the solution based
on expert knowledge, developers can profit from a set of metrics.

To include the legacy modular structure of the code into the assessment, an
automatized structural analysis is used that extracts this kind of information.

Method creates/updates model element
Method reads model element

Method invokes another method
Model element is contained in package

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

Source-driven	 Target-driven	 Aspect-driven

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Assigning Weights

9

Wwrite for write-access dependencies to classes and packages, Wread for read-
access dependencies to classes and packages from one of the method’s parameters,
Wcall for method call dependencies, and Wpackage for containment of classes and
packages to their directly containing package.These weights constitute a particular
weight configuration, vector WC := hWwrite ,Wread ,Wcall ,Wpackagei 2 N4

0.
Choosing a weight of zero naturally results in the respective type of edge

being ignored by the clustering algorithm. Choosing values Wwrite � Wread

promotes a mainly target-driven decomposition, whereas values Wwrite ⌧ Wread

enforce a mainly source-driven decomposition.

4.2 Cluster Analysis

Once dependence information has been extracted from the source files in form of
a graph, and weights have been configured accordingly, cluster analysis can be
performed on the obtained graph structure in a follow-up step.
Algorithm and parameters. Bunch supports three clustering algorithms, ex-
haustive search, hill climbing, and a genetic algorithm. In this paper, we use
Bunch’s hill climbing algorithm which appeared to produce more stable results.
We use a consistent configuration, with population size set to 100, the minimum
search space set to 90%, leaving 10% of the neighbors selected randomly.

Fig. 3 depicts the graph that had been extracted from the Activity2Process
example. Colored nodes represent the transformation’s methods, and gray nodes
mark the transformation’s model elements. Boxes mark a two-level partitioning
created by Bunch – L0 stands for the lower and more detailed level, whereas
L1 partitions subsume one or more L0 partitions. For this clustering, a weight
configuration h1, 15, 5, 15i had been used. With a sufficiently higher weight for
read than for write dependencies, 15 � 1, a source-driven decomposition had
been performed. Therefore, mapping methods have been grouped together with
their respective source model elements (Activity, Action, etc.) on L0. Two
of the clusters solely contain model elements and can be ignored. In the L1
partition, two clusters remain: One cluster aggregates Activity2Process and
Action2Stepmethods, the other cluster aggregates CompositeAction2Step
methods. The reference to class CompositeAction may have primarily induced
the algorithm to correctly group the respective methods together. When compar-
ing the Bunch-derived L0 partition with our handmade partitioning illustrated
by colors blue, red and yellow (cf. Fig. 3), we can observe that both partitions
are highly similar. Bunch, however, decided to agglomerate the red and blue L0
clusters to a single L1 cluster. Developers may think about adopting Bunch’s
recommendation and merge clusters Activity2Process and Action2Step.

4.3 Structural Analysis

The main objective of the approach is to gain a better understanding of the code,
but also to agree on a modular decomposition that fosters understandability and
that can be used to restructure the code. To achieve this goal, in this last step, the
existing modular structure and partitions computed by the algorithm on different
parameters are compared against each other regarding their modularization
quality and structural differences. Although this is a manual step that requires
to find a compromise on two or more partitions and to refine the solution based
on expert knowledge, developers can profit from a set of metrics.

To include the legacy modular structure of the code into the assessment, an
automatized structural analysis is used that extracts this kind of information.

Wwrite for write-access dependencies to classes and packages, Wread for read-
access dependencies to classes and packages from one of the method’s parameters,
Wcall for method call dependencies, and Wpackage for containment of classes and
packages to their directly containing package.These weights constitute a particular
weight configuration, vector WC := hWwrite ,Wread ,Wcall ,Wpackagei 2 N4

0.
Choosing a weight of zero naturally results in the respective type of edge

being ignored by the clustering algorithm. Choosing values Wwrite � Wread

promotes a mainly target-driven decomposition, whereas values Wwrite ⌧ Wread

enforce a mainly source-driven decomposition.

4.2 Cluster Analysis

Once dependence information has been extracted from the source files in form of
a graph, and weights have been configured accordingly, cluster analysis can be
performed on the obtained graph structure in a follow-up step.
Algorithm and parameters. Bunch supports three clustering algorithms, ex-
haustive search, hill climbing, and a genetic algorithm. In this paper, we use
Bunch’s hill climbing algorithm which appeared to produce more stable results.
We use a consistent configuration, with population size set to 100, the minimum
search space set to 90%, leaving 10% of the neighbors selected randomly.

Fig. 3 depicts the graph that had been extracted from the Activity2Process
example. Colored nodes represent the transformation’s methods, and gray nodes
mark the transformation’s model elements. Boxes mark a two-level partitioning
created by Bunch – L0 stands for the lower and more detailed level, whereas
L1 partitions subsume one or more L0 partitions. For this clustering, a weight
configuration h1, 15, 5, 15i had been used. With a sufficiently higher weight for
read than for write dependencies, 15 � 1, a source-driven decomposition had
been performed. Therefore, mapping methods have been grouped together with
their respective source model elements (Activity, Action, etc.) on L0. Two
of the clusters solely contain model elements and can be ignored. In the L1
partition, two clusters remain: One cluster aggregates Activity2Process and
Action2Stepmethods, the other cluster aggregates CompositeAction2Step
methods. The reference to class CompositeAction may have primarily induced
the algorithm to correctly group the respective methods together. When compar-
ing the Bunch-derived L0 partition with our handmade partitioning illustrated
by colors blue, red and yellow (cf. Fig. 3), we can observe that both partitions
are highly similar. Bunch, however, decided to agglomerate the red and blue L0
clusters to a single L1 cluster. Developers may think about adopting Bunch’s
recommendation and merge clusters Activity2Process and Action2Step.

4.3 Structural Analysis

The main objective of the approach is to gain a better understanding of the code,
but also to agree on a modular decomposition that fosters understandability and
that can be used to restructure the code. To achieve this goal, in this last step, the
existing modular structure and partitions computed by the algorithm on different
parameters are compared against each other regarding their modularization
quality and structural differences. Although this is a manual step that requires
to find a compromise on two or more partitions and to refine the solution based
on expert knowledge, developers can profit from a set of metrics.

To include the legacy modular structure of the code into the assessment, an
automatized structural analysis is used that extracts this kind of information.

Wwrite for write-access dependencies to classes and packages, Wread for read-
access dependencies to classes and packages from one of the method’s parameters,
Wcall for method call dependencies, and Wpackage for containment of classes and
packages to their directly containing package.These weights constitute a particular
weight configuration, vector WC := hWwrite ,Wread ,Wcall ,Wpackagei 2 N4

0.
Choosing a weight of zero naturally results in the respective type of edge

being ignored by the clustering algorithm. Choosing values Wwrite � Wread

promotes a mainly target-driven decomposition, whereas values Wwrite ⌧ Wread

enforce a mainly source-driven decomposition.

4.2 Cluster Analysis

Once dependence information has been extracted from the source files in form of
a graph, and weights have been configured accordingly, cluster analysis can be
performed on the obtained graph structure in a follow-up step.
Algorithm and parameters. Bunch supports three clustering algorithms, ex-
haustive search, hill climbing, and a genetic algorithm. In this paper, we use
Bunch’s hill climbing algorithm which appeared to produce more stable results.
We use a consistent configuration, with population size set to 100, the minimum
search space set to 90%, leaving 10% of the neighbors selected randomly.

Fig. 3 depicts the graph that had been extracted from the Activity2Process
example. Colored nodes represent the transformation’s methods, and gray nodes
mark the transformation’s model elements. Boxes mark a two-level partitioning
created by Bunch – L0 stands for the lower and more detailed level, whereas
L1 partitions subsume one or more L0 partitions. For this clustering, a weight
configuration h1, 15, 5, 15i had been used. With a sufficiently higher weight for
read than for write dependencies, 15 � 1, a source-driven decomposition had
been performed. Therefore, mapping methods have been grouped together with
their respective source model elements (Activity, Action, etc.) on L0. Two
of the clusters solely contain model elements and can be ignored. In the L1
partition, two clusters remain: One cluster aggregates Activity2Process and
Action2Stepmethods, the other cluster aggregates CompositeAction2Step
methods. The reference to class CompositeAction may have primarily induced
the algorithm to correctly group the respective methods together. When compar-
ing the Bunch-derived L0 partition with our handmade partitioning illustrated
by colors blue, red and yellow (cf. Fig. 3), we can observe that both partitions
are highly similar. Bunch, however, decided to agglomerate the red and blue L0
clusters to a single L1 cluster. Developers may think about adopting Bunch’s
recommendation and merge clusters Activity2Process and Action2Step.

4.3 Structural Analysis

The main objective of the approach is to gain a better understanding of the code,
but also to agree on a modular decomposition that fosters understandability and
that can be used to restructure the code. To achieve this goal, in this last step, the
existing modular structure and partitions computed by the algorithm on different
parameters are compared against each other regarding their modularization
quality and structural differences. Although this is a manual step that requires
to find a compromise on two or more partitions and to refine the solution based
on expert knowledge, developers can profit from a set of metrics.

To include the legacy modular structure of the code into the assessment, an
automatized structural analysis is used that extracts this kind of information.

«package»

«package»

«package»

«write»

«write»

«write»

«read»

«read»

«read»

«read»

«read»

«read»

«call»

«call»

«call»

«call»

«call»

«call»

«write»

Motivation ⚫ ⚫ Approach ⚫ ⚫ ⚫ ⚫ ⚫ ◉ ⚪ Validation ⚪ Conclusion ⚪

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

mapping_mapAction2Stepclass_core_Action

package_core

class_core_BasicAction

mapping_mapActivity2Process

entry_main

class_core_Activity

class_core_StartAction mapping_mapAction2Step2

mapping_mapAction2Step3class_core_StopAction

package_process

class_process_Step

class_process_Process

helper_createProcess

package_composite

mapping_mapAction2Step
class_composite_CompositeAction

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Assigning Weights

9

Wwrite for write-access dependencies to classes and packages, Wread for read-
access dependencies to classes and packages from one of the method’s parameters,
Wcall for method call dependencies, and Wpackage for containment of classes and
packages to their directly containing package.These weights constitute a particular
weight configuration, vector WC := hWwrite ,Wread ,Wcall ,Wpackagei 2 N4

0.
Choosing a weight of zero naturally results in the respective type of edge

being ignored by the clustering algorithm. Choosing values Wwrite � Wread

promotes a mainly target-driven decomposition, whereas values Wwrite ⌧ Wread

enforce a mainly source-driven decomposition.

4.2 Cluster Analysis

Once dependence information has been extracted from the source files in form of
a graph, and weights have been configured accordingly, cluster analysis can be
performed on the obtained graph structure in a follow-up step.
Algorithm and parameters. Bunch supports three clustering algorithms, ex-
haustive search, hill climbing, and a genetic algorithm. In this paper, we use
Bunch’s hill climbing algorithm which appeared to produce more stable results.
We use a consistent configuration, with population size set to 100, the minimum
search space set to 90%, leaving 10% of the neighbors selected randomly.

Fig. 3 depicts the graph that had been extracted from the Activity2Process
example. Colored nodes represent the transformation’s methods, and gray nodes
mark the transformation’s model elements. Boxes mark a two-level partitioning
created by Bunch – L0 stands for the lower and more detailed level, whereas
L1 partitions subsume one or more L0 partitions. For this clustering, a weight
configuration h1, 15, 5, 15i had been used. With a sufficiently higher weight for
read than for write dependencies, 15 � 1, a source-driven decomposition had
been performed. Therefore, mapping methods have been grouped together with
their respective source model elements (Activity, Action, etc.) on L0. Two
of the clusters solely contain model elements and can be ignored. In the L1
partition, two clusters remain: One cluster aggregates Activity2Process and
Action2Stepmethods, the other cluster aggregates CompositeAction2Step
methods. The reference to class CompositeAction may have primarily induced
the algorithm to correctly group the respective methods together. When compar-
ing the Bunch-derived L0 partition with our handmade partitioning illustrated
by colors blue, red and yellow (cf. Fig. 3), we can observe that both partitions
are highly similar. Bunch, however, decided to agglomerate the red and blue L0
clusters to a single L1 cluster. Developers may think about adopting Bunch’s
recommendation and merge clusters Activity2Process and Action2Step.

4.3 Structural Analysis

The main objective of the approach is to gain a better understanding of the code,
but also to agree on a modular decomposition that fosters understandability and
that can be used to restructure the code. To achieve this goal, in this last step, the
existing modular structure and partitions computed by the algorithm on different
parameters are compared against each other regarding their modularization
quality and structural differences. Although this is a manual step that requires
to find a compromise on two or more partitions and to refine the solution based
on expert knowledge, developers can profit from a set of metrics.

To include the legacy modular structure of the code into the assessment, an
automatized structural analysis is used that extracts this kind of information.

Wwrite for write-access dependencies to classes and packages, Wread for read-
access dependencies to classes and packages from one of the method’s parameters,
Wcall for method call dependencies, and Wpackage for containment of classes and
packages to their directly containing package.These weights constitute a particular
weight configuration, vector WC := hWwrite ,Wread ,Wcall ,Wpackagei 2 N4

0.
Choosing a weight of zero naturally results in the respective type of edge

being ignored by the clustering algorithm. Choosing values Wwrite � Wread

promotes a mainly target-driven decomposition, whereas values Wwrite ⌧ Wread

enforce a mainly source-driven decomposition.

4.2 Cluster Analysis

Once dependence information has been extracted from the source files in form of
a graph, and weights have been configured accordingly, cluster analysis can be
performed on the obtained graph structure in a follow-up step.
Algorithm and parameters. Bunch supports three clustering algorithms, ex-
haustive search, hill climbing, and a genetic algorithm. In this paper, we use
Bunch’s hill climbing algorithm which appeared to produce more stable results.
We use a consistent configuration, with population size set to 100, the minimum
search space set to 90%, leaving 10% of the neighbors selected randomly.

Fig. 3 depicts the graph that had been extracted from the Activity2Process
example. Colored nodes represent the transformation’s methods, and gray nodes
mark the transformation’s model elements. Boxes mark a two-level partitioning
created by Bunch – L0 stands for the lower and more detailed level, whereas
L1 partitions subsume one or more L0 partitions. For this clustering, a weight
configuration h1, 15, 5, 15i had been used. With a sufficiently higher weight for
read than for write dependencies, 15 � 1, a source-driven decomposition had
been performed. Therefore, mapping methods have been grouped together with
their respective source model elements (Activity, Action, etc.) on L0. Two
of the clusters solely contain model elements and can be ignored. In the L1
partition, two clusters remain: One cluster aggregates Activity2Process and
Action2Stepmethods, the other cluster aggregates CompositeAction2Step
methods. The reference to class CompositeAction may have primarily induced
the algorithm to correctly group the respective methods together. When compar-
ing the Bunch-derived L0 partition with our handmade partitioning illustrated
by colors blue, red and yellow (cf. Fig. 3), we can observe that both partitions
are highly similar. Bunch, however, decided to agglomerate the red and blue L0
clusters to a single L1 cluster. Developers may think about adopting Bunch’s
recommendation and merge clusters Activity2Process and Action2Step.

4.3 Structural Analysis

The main objective of the approach is to gain a better understanding of the code,
but also to agree on a modular decomposition that fosters understandability and
that can be used to restructure the code. To achieve this goal, in this last step, the
existing modular structure and partitions computed by the algorithm on different
parameters are compared against each other regarding their modularization
quality and structural differences. Although this is a manual step that requires
to find a compromise on two or more partitions and to refine the solution based
on expert knowledge, developers can profit from a set of metrics.

To include the legacy modular structure of the code into the assessment, an
automatized structural analysis is used that extracts this kind of information.

Wwrite for write-access dependencies to classes and packages, Wread for read-
access dependencies to classes and packages from one of the method’s parameters,
Wcall for method call dependencies, and Wpackage for containment of classes and
packages to their directly containing package.These weights constitute a particular
weight configuration, vector WC := hWwrite ,Wread ,Wcall ,Wpackagei 2 N4

0.
Choosing a weight of zero naturally results in the respective type of edge

being ignored by the clustering algorithm. Choosing values Wwrite � Wread

promotes a mainly target-driven decomposition, whereas values Wwrite ⌧ Wread

enforce a mainly source-driven decomposition.

4.2 Cluster Analysis

Once dependence information has been extracted from the source files in form of
a graph, and weights have been configured accordingly, cluster analysis can be
performed on the obtained graph structure in a follow-up step.
Algorithm and parameters. Bunch supports three clustering algorithms, ex-
haustive search, hill climbing, and a genetic algorithm. In this paper, we use
Bunch’s hill climbing algorithm which appeared to produce more stable results.
We use a consistent configuration, with population size set to 100, the minimum
search space set to 90%, leaving 10% of the neighbors selected randomly.

Fig. 3 depicts the graph that had been extracted from the Activity2Process
example. Colored nodes represent the transformation’s methods, and gray nodes
mark the transformation’s model elements. Boxes mark a two-level partitioning
created by Bunch – L0 stands for the lower and more detailed level, whereas
L1 partitions subsume one or more L0 partitions. For this clustering, a weight
configuration h1, 15, 5, 15i had been used. With a sufficiently higher weight for
read than for write dependencies, 15 � 1, a source-driven decomposition had
been performed. Therefore, mapping methods have been grouped together with
their respective source model elements (Activity, Action, etc.) on L0. Two
of the clusters solely contain model elements and can be ignored. In the L1
partition, two clusters remain: One cluster aggregates Activity2Process and
Action2Stepmethods, the other cluster aggregates CompositeAction2Step
methods. The reference to class CompositeAction may have primarily induced
the algorithm to correctly group the respective methods together. When compar-
ing the Bunch-derived L0 partition with our handmade partitioning illustrated
by colors blue, red and yellow (cf. Fig. 3), we can observe that both partitions
are highly similar. Bunch, however, decided to agglomerate the red and blue L0
clusters to a single L1 cluster. Developers may think about adopting Bunch’s
recommendation and merge clusters Activity2Process and Action2Step.

4.3 Structural Analysis

The main objective of the approach is to gain a better understanding of the code,
but also to agree on a modular decomposition that fosters understandability and
that can be used to restructure the code. To achieve this goal, in this last step, the
existing modular structure and partitions computed by the algorithm on different
parameters are compared against each other regarding their modularization
quality and structural differences. Although this is a manual step that requires
to find a compromise on two or more partitions and to refine the solution based
on expert knowledge, developers can profit from a set of metrics.

To include the legacy modular structure of the code into the assessment, an
automatized structural analysis is used that extracts this kind of information.

«package»

«package»

«package»

«write»

«write»

«write»

«read»

«read»

«read»

«read»

«read»

«read»

«call»

«call»

«call»

«call»

«call»

«call»

«write»

Motivation ⚫ ⚫ Approach ⚫ ⚫ ⚫ ⚫ ⚫ ◉ ⚪ Validation ⚪ Conclusion ⚪

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

mapping_mapAction2Stepclass_core_Action

package_core

class_core_BasicAction

mapping_mapActivity2Process

entry_main

class_core_Activity

class_core_StartAction mapping_mapAction2Step2

mapping_mapAction2Step3class_core_StopAction

package_process

class_process_Step

class_process_Process

helper_createProcess

package_composite

mapping_mapAction2Step
class_composite_CompositeAction

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Assigning Weights

9

Wwrite for write-access dependencies to classes and packages, Wread for read-
access dependencies to classes and packages from one of the method’s parameters,
Wcall for method call dependencies, and Wpackage for containment of classes and
packages to their directly containing package.These weights constitute a particular
weight configuration, vector WC := hWwrite ,Wread ,Wcall ,Wpackagei 2 N4

0.
Choosing a weight of zero naturally results in the respective type of edge

being ignored by the clustering algorithm. Choosing values Wwrite � Wread

promotes a mainly target-driven decomposition, whereas values Wwrite ⌧ Wread

enforce a mainly source-driven decomposition.

4.2 Cluster Analysis

Once dependence information has been extracted from the source files in form of
a graph, and weights have been configured accordingly, cluster analysis can be
performed on the obtained graph structure in a follow-up step.
Algorithm and parameters. Bunch supports three clustering algorithms, ex-
haustive search, hill climbing, and a genetic algorithm. In this paper, we use
Bunch’s hill climbing algorithm which appeared to produce more stable results.
We use a consistent configuration, with population size set to 100, the minimum
search space set to 90%, leaving 10% of the neighbors selected randomly.

Fig. 3 depicts the graph that had been extracted from the Activity2Process
example. Colored nodes represent the transformation’s methods, and gray nodes
mark the transformation’s model elements. Boxes mark a two-level partitioning
created by Bunch – L0 stands for the lower and more detailed level, whereas
L1 partitions subsume one or more L0 partitions. For this clustering, a weight
configuration h1, 15, 5, 15i had been used. With a sufficiently higher weight for
read than for write dependencies, 15 � 1, a source-driven decomposition had
been performed. Therefore, mapping methods have been grouped together with
their respective source model elements (Activity, Action, etc.) on L0. Two
of the clusters solely contain model elements and can be ignored. In the L1
partition, two clusters remain: One cluster aggregates Activity2Process and
Action2Stepmethods, the other cluster aggregates CompositeAction2Step
methods. The reference to class CompositeAction may have primarily induced
the algorithm to correctly group the respective methods together. When compar-
ing the Bunch-derived L0 partition with our handmade partitioning illustrated
by colors blue, red and yellow (cf. Fig. 3), we can observe that both partitions
are highly similar. Bunch, however, decided to agglomerate the red and blue L0
clusters to a single L1 cluster. Developers may think about adopting Bunch’s
recommendation and merge clusters Activity2Process and Action2Step.

4.3 Structural Analysis

The main objective of the approach is to gain a better understanding of the code,
but also to agree on a modular decomposition that fosters understandability and
that can be used to restructure the code. To achieve this goal, in this last step, the
existing modular structure and partitions computed by the algorithm on different
parameters are compared against each other regarding their modularization
quality and structural differences. Although this is a manual step that requires
to find a compromise on two or more partitions and to refine the solution based
on expert knowledge, developers can profit from a set of metrics.

To include the legacy modular structure of the code into the assessment, an
automatized structural analysis is used that extracts this kind of information.

Wwrite for write-access dependencies to classes and packages, Wread for read-
access dependencies to classes and packages from one of the method’s parameters,
Wcall for method call dependencies, and Wpackage for containment of classes and
packages to their directly containing package.These weights constitute a particular
weight configuration, vector WC := hWwrite ,Wread ,Wcall ,Wpackagei 2 N4

0.
Choosing a weight of zero naturally results in the respective type of edge

being ignored by the clustering algorithm. Choosing values Wwrite � Wread

promotes a mainly target-driven decomposition, whereas values Wwrite ⌧ Wread

enforce a mainly source-driven decomposition.

4.2 Cluster Analysis

Once dependence information has been extracted from the source files in form of
a graph, and weights have been configured accordingly, cluster analysis can be
performed on the obtained graph structure in a follow-up step.
Algorithm and parameters. Bunch supports three clustering algorithms, ex-
haustive search, hill climbing, and a genetic algorithm. In this paper, we use
Bunch’s hill climbing algorithm which appeared to produce more stable results.
We use a consistent configuration, with population size set to 100, the minimum
search space set to 90%, leaving 10% of the neighbors selected randomly.

Fig. 3 depicts the graph that had been extracted from the Activity2Process
example. Colored nodes represent the transformation’s methods, and gray nodes
mark the transformation’s model elements. Boxes mark a two-level partitioning
created by Bunch – L0 stands for the lower and more detailed level, whereas
L1 partitions subsume one or more L0 partitions. For this clustering, a weight
configuration h1, 15, 5, 15i had been used. With a sufficiently higher weight for
read than for write dependencies, 15 � 1, a source-driven decomposition had
been performed. Therefore, mapping methods have been grouped together with
their respective source model elements (Activity, Action, etc.) on L0. Two
of the clusters solely contain model elements and can be ignored. In the L1
partition, two clusters remain: One cluster aggregates Activity2Process and
Action2Stepmethods, the other cluster aggregates CompositeAction2Step
methods. The reference to class CompositeAction may have primarily induced
the algorithm to correctly group the respective methods together. When compar-
ing the Bunch-derived L0 partition with our handmade partitioning illustrated
by colors blue, red and yellow (cf. Fig. 3), we can observe that both partitions
are highly similar. Bunch, however, decided to agglomerate the red and blue L0
clusters to a single L1 cluster. Developers may think about adopting Bunch’s
recommendation and merge clusters Activity2Process and Action2Step.

4.3 Structural Analysis

The main objective of the approach is to gain a better understanding of the code,
but also to agree on a modular decomposition that fosters understandability and
that can be used to restructure the code. To achieve this goal, in this last step, the
existing modular structure and partitions computed by the algorithm on different
parameters are compared against each other regarding their modularization
quality and structural differences. Although this is a manual step that requires
to find a compromise on two or more partitions and to refine the solution based
on expert knowledge, developers can profit from a set of metrics.

To include the legacy modular structure of the code into the assessment, an
automatized structural analysis is used that extracts this kind of information.

Wwrite for write-access dependencies to classes and packages, Wread for read-
access dependencies to classes and packages from one of the method’s parameters,
Wcall for method call dependencies, and Wpackage for containment of classes and
packages to their directly containing package.These weights constitute a particular
weight configuration, vector WC := hWwrite ,Wread ,Wcall ,Wpackagei 2 N4

0.
Choosing a weight of zero naturally results in the respective type of edge

being ignored by the clustering algorithm. Choosing values Wwrite � Wread

promotes a mainly target-driven decomposition, whereas values Wwrite ⌧ Wread

enforce a mainly source-driven decomposition.

4.2 Cluster Analysis

Once dependence information has been extracted from the source files in form of
a graph, and weights have been configured accordingly, cluster analysis can be
performed on the obtained graph structure in a follow-up step.
Algorithm and parameters. Bunch supports three clustering algorithms, ex-
haustive search, hill climbing, and a genetic algorithm. In this paper, we use
Bunch’s hill climbing algorithm which appeared to produce more stable results.
We use a consistent configuration, with population size set to 100, the minimum
search space set to 90%, leaving 10% of the neighbors selected randomly.

Fig. 3 depicts the graph that had been extracted from the Activity2Process
example. Colored nodes represent the transformation’s methods, and gray nodes
mark the transformation’s model elements. Boxes mark a two-level partitioning
created by Bunch – L0 stands for the lower and more detailed level, whereas
L1 partitions subsume one or more L0 partitions. For this clustering, a weight
configuration h1, 15, 5, 15i had been used. With a sufficiently higher weight for
read than for write dependencies, 15 � 1, a source-driven decomposition had
been performed. Therefore, mapping methods have been grouped together with
their respective source model elements (Activity, Action, etc.) on L0. Two
of the clusters solely contain model elements and can be ignored. In the L1
partition, two clusters remain: One cluster aggregates Activity2Process and
Action2Stepmethods, the other cluster aggregates CompositeAction2Step
methods. The reference to class CompositeAction may have primarily induced
the algorithm to correctly group the respective methods together. When compar-
ing the Bunch-derived L0 partition with our handmade partitioning illustrated
by colors blue, red and yellow (cf. Fig. 3), we can observe that both partitions
are highly similar. Bunch, however, decided to agglomerate the red and blue L0
clusters to a single L1 cluster. Developers may think about adopting Bunch’s
recommendation and merge clusters Activity2Process and Action2Step.

4.3 Structural Analysis

The main objective of the approach is to gain a better understanding of the code,
but also to agree on a modular decomposition that fosters understandability and
that can be used to restructure the code. To achieve this goal, in this last step, the
existing modular structure and partitions computed by the algorithm on different
parameters are compared against each other regarding their modularization
quality and structural differences. Although this is a manual step that requires
to find a compromise on two or more partitions and to refine the solution based
on expert knowledge, developers can profit from a set of metrics.

To include the legacy modular structure of the code into the assessment, an
automatized structural analysis is used that extracts this kind of information.

15

15

15

1

1

1

15

15

15

15

15

15

5

5

5

5

5

5

1

Motivation ⚫ ⚫ Approach ⚫ ⚫ ⚫ ⚫ ⚫ ◉ ⚪ Validation ⚪ Conclusion ⚪

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

mapping_mapAction2Stepclass_core_Action

package_core

class_core_BasicAction

mapping_mapActivity2Process

entry_main

class_core_Activity

class_core_StartAction mapping_mapAction2Step2

mapping_mapAction2Step3class_core_StopAction

package_process

class_process_Step

class_process_Process

helper_createProcess

package_composite

mapping_mapAction2Step
class_composite_CompositeAction

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Example Clustering

10

(SS-L1):mapping_mapActivity2Process

(SS-L0):mapping_mapAction2Step

mapping_mapAction2Step

class_core_Action

(SS-L0):package_core

package_core

class_core_BasicAction

(SS-L0):mapping_mapActivity2Process

mapping_mapActivity2Processentry_main

class_core_Activity

(SS-L0):mapping_mapAction2Step2

class_core_StartAction

mapping_mapAction2Step2

(SS-L0):mapping_mapAction2Step3

mapping_mapAction2Step3

class_core_StopAction

(SS-L1):helper_createProcess

(SS-L0):class_process_Step

package_process

class_process_Step

(SS-L0):helper_createProcess

class_process_Process

helper_createProcess

(SS-L0):mapping_mapAction2Step

package_composite

mapping_mapAction2Step

class_composite_CompositeAction

Motivation ⚫ ⚫ Validation ⚪ Conclusion ⚪Approach ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ◉

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Assessing Results
Compare derived clustering with a manual expert clustering

Using three similarity/distance metrics

11
Motivation ⚫ ⚫ Approach ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ Validation ◉ Conclusion ⚪

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Assessing Results
Compare derived clustering with a manual expert clustering

Using three similarity/distance metrics

11
Motivation ⚫ ⚫ Approach ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ Validation ◉ Conclusion ⚪

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

Table 1: Activity2Process – Manual vs. derived clustering
Configuration Statistics Similarity to expert clustering

#

C

l

u

s

t

e

r

s

M

Q

i

n

d

e

x

P

r

e

c

i

s

i

o

n

R

e

c

a

l

l

E

d

g

e

S

i

m

M

e

C

l

Expert clustering

Derived manually 3 1.067 100% 100% 100 100%

Method-call dependencies only

Hill Climbing, WC = h0, 0, 1, 0i 2 1.214 20.00% 100% 54.54 60%

Class-level dependencies

Hill Climbing, WC = h1, 15, 5, 15i 2 1.083 33.33% 100% 72.72 85%

Modularization Quality. Quality metrics can be used for a quick estimation
of the quality of a particular partition. In context of the Bunch approach, it
makes sense to observe the MQ index that Bunch uses to assess partitions when
searching for a (quasi-)optimal partition. The MQ value can be computed for
both method and model dependencies (which it has been optimized for), but also
for method dependencies alone.

We use three similarity measures to quantify the similarity of a sample
clustering with the expert clustering, Precision/Recall, EdgeSim, and MeCl. The
latter two had been specifically built for the software domain by Mitchell et al.,
all three are supported by the Bunch tool. Other measurements that are used in
other contexts include MojoFM [9] and the Koschke-Eisenbarth metric [10].
Precision/Recall. Precision is calculated as the percentage of node pairs in
a single cluster of a sample clustering that are also contained within a single
cluster in the authoritative clustering. Recall, on the other hand, is defined as the
percentage of node pairs within a single cluster in the authoritative clustering
that are also node pairs within a single cluster in the sample clustering [3]. Edges
are not considered, and the metric is sensitive to number and size of clusters [11].
EdgeSim. The EdgeSim similarity measure [11] calculates the normalized ratio
of intra and intercluster edges present in both partitions. Nodes are ignored.
MeCl. The MergeClumps (MeCl) metric is a distance measure [11]. Starting with
the largest subsets of entities that had been placed in each of the partitions into
the same clusters, a series of merge operations, needed to convert one partition
into the other, is calculated. Both directions are considered, and the largest
number of merge operations (in a normalized form) is taken as the MeCl distance.

We used the above measurements to compare quality and similarity of manu-
ally and two automatically derived partitions in the Activity2Process example.
We computed a partition based on method-level dependencies alone, and another
partition based on method and class-level dependencies (Tab. 1). Due to the
small number of nodes in the input graphs, the output partition per dependence
graph produced was identical for five independent runs.

The expert clustering – the one manually done – comprises three clusters,
whereas both derived clusterings comprise two. The method-level clustering
produced the best MQ value. Despite having a slightly worse modularization
quality, the partition derived from class-level dependencies still produces an
(albeit marginally) better MQ value than that of the expert clustering.

Even more importantly, for this example, all three metrics agree that model-
use dependencies result in a partition more similar to the expert clustering than
a partition derived from method-call dependencies alone. The still relatively low

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Assessing Results
Compare derived clustering with a manual expert clustering

Using three similarity/distance metrics

11
Motivation ⚫ ⚫ Approach ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ Validation ◉ Conclusion ⚪

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

Table 1: Activity2Process – Manual vs. derived clustering
Configuration Statistics Similarity to expert clustering

#

C

l

u

s

t

e

r

s

M

Q

i

n

d

e

x

P

r

e

c

i

s

i

o

n

R

e

c

a

l

l

E

d

g

e

S

i

m

M

e

C

l

Expert clustering

Derived manually 3 1.067 100% 100% 100 100%

Method-call dependencies only

Hill Climbing, WC = h0, 0, 1, 0i 2 1.214 20.00% 100% 54.54 60%

Class-level dependencies

Hill Climbing, WC = h1, 15, 5, 15i 2 1.083 33.33% 100% 72.72 85%

Modularization Quality. Quality metrics can be used for a quick estimation
of the quality of a particular partition. In context of the Bunch approach, it
makes sense to observe the MQ index that Bunch uses to assess partitions when
searching for a (quasi-)optimal partition. The MQ value can be computed for
both method and model dependencies (which it has been optimized for), but also
for method dependencies alone.

We use three similarity measures to quantify the similarity of a sample
clustering with the expert clustering, Precision/Recall, EdgeSim, and MeCl. The
latter two had been specifically built for the software domain by Mitchell et al.,
all three are supported by the Bunch tool. Other measurements that are used in
other contexts include MojoFM [9] and the Koschke-Eisenbarth metric [10].
Precision/Recall. Precision is calculated as the percentage of node pairs in
a single cluster of a sample clustering that are also contained within a single
cluster in the authoritative clustering. Recall, on the other hand, is defined as the
percentage of node pairs within a single cluster in the authoritative clustering
that are also node pairs within a single cluster in the sample clustering [3]. Edges
are not considered, and the metric is sensitive to number and size of clusters [11].
EdgeSim. The EdgeSim similarity measure [11] calculates the normalized ratio
of intra and intercluster edges present in both partitions. Nodes are ignored.
MeCl. The MergeClumps (MeCl) metric is a distance measure [11]. Starting with
the largest subsets of entities that had been placed in each of the partitions into
the same clusters, a series of merge operations, needed to convert one partition
into the other, is calculated. Both directions are considered, and the largest
number of merge operations (in a normalized form) is taken as the MeCl distance.

We used the above measurements to compare quality and similarity of manu-
ally and two automatically derived partitions in the Activity2Process example.
We computed a partition based on method-level dependencies alone, and another
partition based on method and class-level dependencies (Tab. 1). Due to the
small number of nodes in the input graphs, the output partition per dependence
graph produced was identical for five independent runs.

The expert clustering – the one manually done – comprises three clusters,
whereas both derived clusterings comprise two. The method-level clustering
produced the best MQ value. Despite having a slightly worse modularization
quality, the partition derived from class-level dependencies still produces an
(albeit marginally) better MQ value than that of the expert clustering.

Even more importantly, for this example, all three metrics agree that model-
use dependencies result in a partition more similar to the expert clustering than
a partition derived from method-call dependencies alone. The still relatively low

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Assessing Results
Compare derived clustering with a manual expert clustering

Using three similarity/distance metrics

11
Motivation ⚫ ⚫ Approach ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ Validation ◉ Conclusion ⚪

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

Table 1: Activity2Process – Manual vs. derived clustering
Configuration Statistics Similarity to expert clustering

#

C

l

u

s

t

e

r

s

M

Q

i

n

d

e

x

P

r

e

c

i

s

i

o

n

R

e

c

a

l

l

E

d

g

e

S

i

m

M

e

C

l

Expert clustering

Derived manually 3 1.067 100% 100% 100 100%

Method-call dependencies only

Hill Climbing, WC = h0, 0, 1, 0i 2 1.214 20.00% 100% 54.54 60%

Class-level dependencies

Hill Climbing, WC = h1, 15, 5, 15i 2 1.083 33.33% 100% 72.72 85%

Modularization Quality. Quality metrics can be used for a quick estimation
of the quality of a particular partition. In context of the Bunch approach, it
makes sense to observe the MQ index that Bunch uses to assess partitions when
searching for a (quasi-)optimal partition. The MQ value can be computed for
both method and model dependencies (which it has been optimized for), but also
for method dependencies alone.

We use three similarity measures to quantify the similarity of a sample
clustering with the expert clustering, Precision/Recall, EdgeSim, and MeCl. The
latter two had been specifically built for the software domain by Mitchell et al.,
all three are supported by the Bunch tool. Other measurements that are used in
other contexts include MojoFM [9] and the Koschke-Eisenbarth metric [10].
Precision/Recall. Precision is calculated as the percentage of node pairs in
a single cluster of a sample clustering that are also contained within a single
cluster in the authoritative clustering. Recall, on the other hand, is defined as the
percentage of node pairs within a single cluster in the authoritative clustering
that are also node pairs within a single cluster in the sample clustering [3]. Edges
are not considered, and the metric is sensitive to number and size of clusters [11].
EdgeSim. The EdgeSim similarity measure [11] calculates the normalized ratio
of intra and intercluster edges present in both partitions. Nodes are ignored.
MeCl. The MergeClumps (MeCl) metric is a distance measure [11]. Starting with
the largest subsets of entities that had been placed in each of the partitions into
the same clusters, a series of merge operations, needed to convert one partition
into the other, is calculated. Both directions are considered, and the largest
number of merge operations (in a normalized form) is taken as the MeCl distance.

We used the above measurements to compare quality and similarity of manu-
ally and two automatically derived partitions in the Activity2Process example.
We computed a partition based on method-level dependencies alone, and another
partition based on method and class-level dependencies (Tab. 1). Due to the
small number of nodes in the input graphs, the output partition per dependence
graph produced was identical for five independent runs.

The expert clustering – the one manually done – comprises three clusters,
whereas both derived clusterings comprise two. The method-level clustering
produced the best MQ value. Despite having a slightly worse modularization
quality, the partition derived from class-level dependencies still produces an
(albeit marginally) better MQ value than that of the expert clustering.

Even more importantly, for this example, all three metrics agree that model-
use dependencies result in a partition more similar to the expert clustering than
a partition derived from method-call dependencies alone. The still relatively low

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Assessing Results
Compare derived clustering with a manual expert clustering

Using three similarity/distance metrics

11
Motivation ⚫ ⚫ Approach ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ Validation ◉ Conclusion ⚪

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

Table 1: Activity2Process – Manual vs. derived clustering
Configuration Statistics Similarity to expert clustering

#

C

l

u

s

t

e

r

s

M

Q

i

n

d

e

x

P

r

e

c

i

s

i

o

n

R

e

c

a

l

l

E

d

g

e

S

i

m

M

e

C

l

Expert clustering

Derived manually 3 1.067 100% 100% 100 100%

Method-call dependencies only

Hill Climbing, WC = h0, 0, 1, 0i 2 1.214 20.00% 100% 54.54 60%

Class-level dependencies

Hill Climbing, WC = h1, 15, 5, 15i 2 1.083 33.33% 100% 72.72 85%

Modularization Quality. Quality metrics can be used for a quick estimation
of the quality of a particular partition. In context of the Bunch approach, it
makes sense to observe the MQ index that Bunch uses to assess partitions when
searching for a (quasi-)optimal partition. The MQ value can be computed for
both method and model dependencies (which it has been optimized for), but also
for method dependencies alone.

We use three similarity measures to quantify the similarity of a sample
clustering with the expert clustering, Precision/Recall, EdgeSim, and MeCl. The
latter two had been specifically built for the software domain by Mitchell et al.,
all three are supported by the Bunch tool. Other measurements that are used in
other contexts include MojoFM [9] and the Koschke-Eisenbarth metric [10].
Precision/Recall. Precision is calculated as the percentage of node pairs in
a single cluster of a sample clustering that are also contained within a single
cluster in the authoritative clustering. Recall, on the other hand, is defined as the
percentage of node pairs within a single cluster in the authoritative clustering
that are also node pairs within a single cluster in the sample clustering [3]. Edges
are not considered, and the metric is sensitive to number and size of clusters [11].
EdgeSim. The EdgeSim similarity measure [11] calculates the normalized ratio
of intra and intercluster edges present in both partitions. Nodes are ignored.
MeCl. The MergeClumps (MeCl) metric is a distance measure [11]. Starting with
the largest subsets of entities that had been placed in each of the partitions into
the same clusters, a series of merge operations, needed to convert one partition
into the other, is calculated. Both directions are considered, and the largest
number of merge operations (in a normalized form) is taken as the MeCl distance.

We used the above measurements to compare quality and similarity of manu-
ally and two automatically derived partitions in the Activity2Process example.
We computed a partition based on method-level dependencies alone, and another
partition based on method and class-level dependencies (Tab. 1). Due to the
small number of nodes in the input graphs, the output partition per dependence
graph produced was identical for five independent runs.

The expert clustering – the one manually done – comprises three clusters,
whereas both derived clusterings comprise two. The method-level clustering
produced the best MQ value. Despite having a slightly worse modularization
quality, the partition derived from class-level dependencies still produces an
(albeit marginally) better MQ value than that of the expert clustering.

Even more importantly, for this example, all three metrics agree that model-
use dependencies result in a partition more similar to the expert clustering than
a partition derived from method-call dependencies alone. The still relatively low

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Assessing Results
Compare derived clustering with a manual expert clustering

Using three similarity/distance metrics

11
Motivation ⚫ ⚫ Approach ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ Validation ◉ Conclusion ⚪

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

➡ Significantly better results with model elements considered

Table 1: Activity2Process – Manual vs. derived clustering
Configuration Statistics Similarity to expert clustering

#

C

l

u

s

t

e

r

s

M

Q

i

n

d

e

x

P

r

e

c

i

s

i

o

n

R

e

c

a

l

l

E

d

g

e

S

i

m

M

e

C

l

Expert clustering

Derived manually 3 1.067 100% 100% 100 100%

Method-call dependencies only

Hill Climbing, WC = h0, 0, 1, 0i 2 1.214 20.00% 100% 54.54 60%

Class-level dependencies

Hill Climbing, WC = h1, 15, 5, 15i 2 1.083 33.33% 100% 72.72 85%

Modularization Quality. Quality metrics can be used for a quick estimation
of the quality of a particular partition. In context of the Bunch approach, it
makes sense to observe the MQ index that Bunch uses to assess partitions when
searching for a (quasi-)optimal partition. The MQ value can be computed for
both method and model dependencies (which it has been optimized for), but also
for method dependencies alone.

We use three similarity measures to quantify the similarity of a sample
clustering with the expert clustering, Precision/Recall, EdgeSim, and MeCl. The
latter two had been specifically built for the software domain by Mitchell et al.,
all three are supported by the Bunch tool. Other measurements that are used in
other contexts include MojoFM [9] and the Koschke-Eisenbarth metric [10].
Precision/Recall. Precision is calculated as the percentage of node pairs in
a single cluster of a sample clustering that are also contained within a single
cluster in the authoritative clustering. Recall, on the other hand, is defined as the
percentage of node pairs within a single cluster in the authoritative clustering
that are also node pairs within a single cluster in the sample clustering [3]. Edges
are not considered, and the metric is sensitive to number and size of clusters [11].
EdgeSim. The EdgeSim similarity measure [11] calculates the normalized ratio
of intra and intercluster edges present in both partitions. Nodes are ignored.
MeCl. The MergeClumps (MeCl) metric is a distance measure [11]. Starting with
the largest subsets of entities that had been placed in each of the partitions into
the same clusters, a series of merge operations, needed to convert one partition
into the other, is calculated. Both directions are considered, and the largest
number of merge operations (in a normalized form) is taken as the MeCl distance.

We used the above measurements to compare quality and similarity of manu-
ally and two automatically derived partitions in the Activity2Process example.
We computed a partition based on method-level dependencies alone, and another
partition based on method and class-level dependencies (Tab. 1). Due to the
small number of nodes in the input graphs, the output partition per dependence
graph produced was identical for five independent runs.

The expert clustering – the one manually done – comprises three clusters,
whereas both derived clusterings comprise two. The method-level clustering
produced the best MQ value. Despite having a slightly worse modularization
quality, the partition derived from class-level dependencies still produces an
(albeit marginally) better MQ value than that of the expert clustering.

Even more importantly, for this example, all three metrics agree that model-
use dependencies result in a partition more similar to the expert clustering than
a partition derived from method-call dependencies alone. The still relatively low

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Conclusion
Problem: 	 Model transformation programs are often badly structured.

12
Motivation ⚫ ⚫ Approach ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ Validation ⚫ Conclusion ◉

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Conclusion
Problem: 	 Model transformation programs are often badly structured.

12
Motivation ⚫ ⚫ Approach ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ Validation ⚫ Conclusion ◉

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

Approach: 	Apply automatic clustering algorithms to do the job.

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Conclusion
Problem: 	 Model transformation programs are often badly structured.

12
Motivation ⚫ ⚫ Approach ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ Validation ⚫ Conclusion ◉

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

By including the model structure, we can derive clusterings that
follow source and target-driven decompositional styles.

Selecting ‘good’ weights requires expertise and/or experimenting.

Findings:

Approach: 	Apply automatic clustering algorithms to do the job.

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Conclusion
Problem: 	 Model transformation programs are often badly structured.

12

Can we support aspectual decompositions?

How do the results compare in maintenance scenarios?

Motivation ⚫ ⚫ Approach ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ Validation ⚫ Conclusion ◉

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

By including the model structure, we can derive clusterings that
follow source and target-driven decompositional styles.

Selecting ‘good’ weights requires expertise and/or experimenting.

Open challenges:

Findings:

Approach: 	Apply automatic clustering algorithms to do the job.

2014-04-25Remodularizing Legacy Model Transformations with Automatic Clustering Techniques – Andreas Rentschler et al.

Conclusion
Problem: 	 Model transformation programs are often badly structured.

Thanks!
12

Can we support aspectual decompositions?

How do the results compare in maintenance scenarios?

Motivation ⚫ ⚫ Approach ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ ⚫ Validation ⚫ Conclusion ◉

Legacy
Transformation Modularized

Transformation

Manual Decomposition

Control
and Data

Dependencies

Dependency
Analysis

ClustersCluster Analysis

By including the model structure, we can derive clusterings that
follow source and target-driven decompositional styles.

Selecting ‘good’ weights requires expertise and/or experimenting.

Open challenges:

Findings:

Approach: 	Apply automatic clustering algorithms to do the job.

