
Towards Testing Model Transformation Chains 
Using Precondition Construction in 

Algebraic Graph Transformation

Elie Richa Télécom ParisTech & AdaCore
Etienne Borde Télécom ParisTech
Laurent Pautet Télécom ParisTech
Matteo Bordin AdaCore
José F. Ruiz AdaCore

September 29, 2014

Development of Critical Software
• Critical : Software failure can have catastrophic consequences

!

!

• Certification standards are mandatory and costly to apply

• Model-based development enables Automatic Code Generation
(ACG)

• ACGs must be Qualified. e.g. SCADE Suite KCG

• Qualification of an ACG is very costly

• Extensive testing of the ACG is required

2Future WorkRelated WorkDetailed ApproachContributionProblemContextContext

Source Code

ACG

Model-based
Specification

DO178C EN50128 ISO26262

Unit Testing v/s Integration Testing in ACGs

• An ACG is typically a Model Transformation Chain (MTC)

• Unit testing (Unit = = intermediate transformation)
– Consider intermediate transformations in isolation
– Develop test models in intermediate representations

• Integration testing
– Consider whole chain
– Develop test models in the input language

3Future WorkRelated WorkDetailed ApproachContributionProblemContext

Mi�1 MiTi�1 Ti Ti�2M0

Context

User-visible Language Intermediate Representations

Ti

Reality Check

• Feedback from developers of ACGs and the GCC compilation chain
– 10 ~ 20 intermediate transformations

• Unit testing of intermediate transformation is rarely performed

• Intermediate test models are difficult to produce and maintain
– Intermediate models increase in size along the chain
– Internal languages have no dedicated editors
– Intermediate languages and transformations evolve during the lifecycle

!
General Problem 

Perform only integration tests but cover all unit testing needs

4Future WorkRelated WorkDetailed ApproachContributionProblemProblemContext

Mi�1 MiTi�1 Ti Ti�2M0

Unit Testing of Model Transformations

• Coverage
– Testing all individual cases is unfeasible
– An analysis identifies sets of equivalent cases

!
• Test objective/requirement 

Constraint over the input language of a transformation
– Describes a set of input models exhibiting a common

property

!

!
• One test model is sufficient to cover a test objective

5Future WorkRelated WorkDetailed ApproachContributionProblemProblemContext

Mi�1 MiTi�1 Ti Ti�2M0

Coverage Criteria

Analysis

trj

Unit Testing of Model Transformations

• Coverage
– Testing all individual cases is unfeasible
– An analysis identifies sets of equivalent cases

!
• Test objective/requirement 

Constraint over the input language of a transformation
– Describes a set of input models exhibiting a common

property

!

!
• One test model is sufficient to cover a test objective

5Future WorkRelated WorkDetailed ApproachContributionProblemProblemContext

Mi�1 MiTi�1 Ti Ti�2M0

Coverage Criteria

Analysis

trj

tr1 : 9 p : Param | p.value = 0

tr2 : 9 p : Param | 0 < p.value <= 5

tr3 : 9 p : Param | 5 < p.value

Covering Non-Satisfied Test Requirements

• Constraint Satisfaction Problem (CSP)

• A CSP Solver can theoretically generate a satisfying instance

• Encoding all transformations in the CSP is not scalable

• The result is an instance and not a constraint which prevents an
iterative analysis

6Future WorkRelated WorkDetailed ApproachContributionProblemProblemContext

Mi�1 MiTi�1 Ti Ti�2M0

tri,j

Covering Non-Satisfied Test Requirements

• Constraint Satisfaction Problem (CSP)

• A CSP Solver can theoretically generate a satisfying instance

• Encoding all transformations in the CSP is not scalable

• The result is an instance and not a constraint which prevents an
iterative analysis

6Future WorkRelated WorkDetailed ApproachContributionProblemProblemContext

Mi�1 MiTi�1 Ti Ti�2M0

Solver

tri,j

Covering Non-Satisfied Test Requirements

• Constraint Satisfaction Problem (CSP)

• A CSP Solver can theoretically generate a satisfying instance

• Encoding all transformations in the CSP is not scalable

• The result is an instance and not a constraint which prevents an
iterative analysis

6Future WorkRelated WorkDetailed ApproachContributionProblemProblemContext

Mi�1 MiTi�1 Ti Ti�2M0

SolverSolver

tri,j

Covering Non-Satisfied Test Requirements

• Constraint Satisfaction Problem (CSP)

• A CSP Solver can theoretically generate a satisfying instance

• Encoding all transformations in the CSP is not scalable

• The result is an instance and not a constraint which prevents an
iterative analysis

6Future WorkRelated WorkDetailed ApproachContributionProblemProblemContext

Mi�1 MiTi�1 Ti Ti�2M0

SolverSolver

tri,j

Satisfying Intermediate Test Requirements

Problem 
How to produce a new model in the input language to satisfy a 

given intermediate test requirement

• It is a challenging problem because
– We have to consider an arbitrary number of preceding transformations
– Tester has to manually “inverse” transformations
– Transformations are non-injective and non-surjective
– We have to reason on constraints and not on instances

7Future WorkRelated WorkDetailed ApproachContributionProblemProblem

Mi�1 MiTi�1 TiM0 Ti�2

tri,j
?

Context

Step-by-step Advancement of Test Requirements

Contribution

• Step-by-step automatic advancement of test requirements 
up to input language
– Test requirement as a postcondition of previous step
– Transform a postcondition into a sufficient precondition
– Iterate process up to the input language

8Future WorkRelated WorkDetailed ApproachContributionContributionProblem

tri,jtri�1,j
Post2Pre

Mi�1 MiTi�1 TiM0 Ti�2

Post2Pre

Context

Algebraic Graph Transformation

• Algebraic Graph Transformation (AGT)
– Formal framework based on Category Theory

• Construction of Weakest Precondition
– Constructs a precondition ensuring the satisfaction of the postcondition

9Future WorkRelated WorkDetailed ApproachContributionContributionProblem

wp

Mi�1 MiTi�1

PostPre

tri,jtri�1,j
Post2Pre

Graph
Transformation

wp

AGT Theory

Context

Using AGT to Advance Test Requirements

• Transpose our problem into the AGT Theory

• The ACG is specified in industry standard languages
– ATL and OCL

10Future WorkRelated WorkDetailed ApproachContributionContributionProblem

tri,jtri�1,j

Mi�1 MiTi�1

PostPre

Post2Pre

Graph
Transformation

AGT Theory

Context

Using AGT to Advance Test Requirements

• 3 main components
– Translation of transformations ATL2AGT
– Translation of test requirements OCL2NGC (NGC2OCL)
– Advancement of constraints Post2Pre

11Future WorkRelated WorkDetailed ApproachContributionContributionProblemContext

AGT Theory

tri,jtri�1,j

ATL2AGT

Mi�1 MiTi�1

PostPre

Post2Pre

OCL2NGCNGC2OCL

ATL

OCL

NGC

Graph
Transformation

Nested Graph Constraints

Using AGT to Advance Test Requirements

• 3 main components
– Translation of transformations ATL2AGT
– Translation of test requirements OCL2NGC (NGC2OCL)
– Advancement of constraints Post2Pre

12Future WorkRelated WorkDetailed ApproachContributionContributionProblem

AGT Theory

tri,jtri�1,j

ATL2AGT

Mi�1 MiTi�1

PostPre

Post2Pre

OCL2NGCNGC2OCL

ATL

OCL

NGC

Graph
Transformation

Nested Graph Constraints

Context

Translation of Transformations – ATL2AGT
Challenge

• Semantic gap between Declarative Model Transformation and AGT

• ATL semantics – create a new output model
– Rules executed simultaneously
– A rule can resolve the output of other rules using implicit input to output tracing

• AGT semantics – in-place graph rewriting
– Rules applied sequentially and atomically
– No resolve mechanism

Contribution

• Model an ATL transformation as a 2-phase rewriting of the input graph
– Instantiation phase —> Resolving phase
– Explicit Trace nodes

• Prototype implementation using Henshin framework (Eclipse-based)
– Limited to structural aspects

13Future WorkRelated WorkDetailed ApproachDetailed ApproachContributionProblemContext

Example — ATL2AGT

14Future WorkRelated WorkDetailed ApproachDetailed ApproachContributionProblemContext

rule S2VExp { from sig : SMM!Signal
 to varExp : CMM!VarExp (variable <- sig.srcPort) } -- Resolve
!
rule O2Var { from oport : SMM!Outport
 to var : CMM!Variable }

Instantiation

Resolving

:Signal

:Outport

srcPort

Initial Graph
S2VExp_Inst

O2Var_Inst

S2VExp_Res

Example — ATL2AGT

14Future WorkRelated WorkDetailed ApproachDetailed ApproachContributionProblemContext

rule S2VExp { from sig : SMM!Signal
 to varExp : CMM!VarExp (variable <- sig.srcPort) } -- Resolve
!
rule O2Var { from oport : SMM!Outport
 to var : CMM!Variable }

Instantiation

Resolving

:Signal

:Outport

srcPort

:VarExp:S2VExp_Trace

Initial Graph
S2VExp_Inst

O2Var_Inst

S2VExp_Res

Example — ATL2AGT

14Future WorkRelated WorkDetailed ApproachDetailed ApproachContributionProblemContext

rule S2VExp { from sig : SMM!Signal
 to varExp : CMM!VarExp (variable <- sig.srcPort) } -- Resolve
!
rule O2Var { from oport : SMM!Outport
 to var : CMM!Variable }

Instantiation

Resolving

:Signal

:Outport

srcPort

:VarExp

:Variable

:S2VExp_Trace

:O2Var_Trace

Initial Graph
S2VExp_Inst

O2Var_Inst

S2VExp_Res

Example — ATL2AGT

14Future WorkRelated WorkDetailed ApproachDetailed ApproachContributionProblemContext

rule S2VExp { from sig : SMM!Signal
 to varExp : CMM!VarExp (variable <- sig.srcPort) } -- Resolve
!
rule O2Var { from oport : SMM!Outport
 to var : CMM!Variable }

Instantiation

Resolving

:Signal

:Outport

srcPort

:VarExp

:Variable

:S2VExp_Trace

:O2Var_Trace

variable

Initial Graph
S2VExp_Inst

O2Var_Inst

S2VExp_Res

Example — ATL2AGT

14Future WorkRelated WorkDetailed ApproachDetailed ApproachContributionProblemContext

rule S2VExp { from sig : SMM!Signal
 to varExp : CMM!VarExp (variable <- sig.srcPort) } -- Resolve
!
rule O2Var { from oport : SMM!Outport
 to var : CMM!Variable }

Instantiation

Resolving

:Signal

:Outport

srcPort

:VarExp

:Variable

:S2VExp_Trace

:O2Var_Trace

variable

Initial Graph Output Model
S2VExp_Inst

O2Var_Inst

S2VExp_Res

Translation of Transformations – ATL2AGT
Challenge

• Semantic gap between Declarative Model Transformation and AGT

• ATL semantics – create a new output model
– Rules executed simultaneously
– A rule can resolve the output of other rules using implicit input to output tracing

• AGT semantics – in-place graph rewriting
– Rules applied sequentially and atomically
– No resolve mechanism

Contribution

• Model an ATL transformation as a 2-phase rewriting of the input graph
– Instantiation phase —> Resolving phase
– Explicit Trace nodes

• Prototype implementation using Henshin framework (Eclipse-based)
– Limited to structural aspects

15Future WorkRelated WorkDetailed ApproachDetailed ApproachContributionProblemContext

Advancement of Constraints – Post2Pre
Challenge

• The theoretical construction in AGT consists in
1. Enumerate all overlaps of a rule with the postcondition
2. Unroll the effects of applying the rule (reverse application)

16Future WorkRelated WorkDetailed ApproachDetailed ApproachContributionProblemContext

PostconditionPrecondition
Post2Pre

∃

:VarExp

:Variable

variable

:AssignmentStatement

lhs

Advancement of Constraints – Post2Pre
Challenge

• The theoretical construction in AGT consists in
1. Enumerate all overlaps of a rule with the postcondition
2. Unroll the effects of applying the rule (reverse application)

16Future WorkRelated WorkDetailed ApproachDetailed ApproachContributionProblemContext

PostconditionPrecondition
Post2Pre

∃

:VarExp

:Variable

variable

:AssignmentStatement

lhs
S2VExp_Res

Advancement of Constraints – Post2Pre
Challenge

• The theoretical construction in AGT consists in
1. Enumerate all overlaps of a rule with the postcondition
2. Unroll the effects of applying the rule (reverse application)

16Future WorkRelated WorkDetailed ApproachDetailed ApproachContributionProblemContext

PostconditionPrecondition
Post2Pre

∃

:VarExp

:Variable

variable

:AssignmentStatement

lhs

Overlap

S2VExp_Res

Advancement of Constraints – Post2Pre
Challenge

• The theoretical construction in AGT consists in
1. Enumerate all overlaps of a rule with the postcondition
2. Unroll the effects of applying the rule (reverse application)

16Future WorkRelated WorkDetailed ApproachDetailed ApproachContributionProblemContext

PostconditionPrecondition
Post2Pre

∃∃

:VarExp

:Variable

variable

:AssignmentStatement

lhs

:VarExp

:Variable

:AssignmentStatement

lhs

Overlap

S2VExp_Res

Advancement of Constraints – Post2Pre
Challenge

• The theoretical construction in AGT consists in
1. Enumerate all overlaps of a rule with the postcondition
2. Unroll the effects of applying the rule (reverse application)

16Future WorkRelated WorkDetailed ApproachDetailed ApproachContributionProblemContext

PostconditionPrecondition
Post2Pre

∃∃

:VarExp

:Variable

variable

:AssignmentStatement

lhs

:VarExp

:Variable

:AssignmentStatement

lhs

:Signal

:Outport

:S2VExp_Trace

:Trace

Overlap

S2VExp_Res

Advancement of Constraints – Post2Pre
Challenge

• The theoretical construction in AGT consists in
1. Enumerate all overlaps of a rule with the postcondition
2. Unroll the effects of applying the rule (reverse application) 

and add the application condition

• Theoretical weakest precondition is infinite because of infinite rule iteration
Contribution

• Bound the number of iteration of rule iterations
– Obtain a sufficient precondition instead of the weakest
– Similar to size bounds in CSP-based approaches

• Eliminate overlaps based on knowledge of ATL semantics

• Prototype implementation in AGG framework for basic constraints ∃(graph)

• Validation of Post2Pre and ATL2AGT 
on a simplified code generation step : 3 ATL rules

one-step advancement of simple test requirements

17Future WorkRelated WorkDetailed ApproachDetailed ApproachContributionProblemContext

Related Work
• Test suite quality for model transformation chains 

E. Bauer, J. Küster, and G. Engels
Cover unit test requirements with integration tests
Detect unsatisfied unit test requirements
No support for producing new test models

!

• Synthesis of OCL pre-conditions for graph transformation rules  
J. Cabot, R. Clariso, E. Guerra, and J. de Lara

Construct OCL preconditions from OCL postconditions
No formal proof of completeness and correctness

18Future WorkRelated WorkRelated WorkDetailed ApproachContributionProblemContext

Future Work
• OCL2NGC — Translation of Test Requirements

– Very active topic in the community
• ICGT, July 2014 T. Arendt et al. , “From Core OCL Invariants to Nested Graph Constraints”
• MODELS, September 2014 G. Bergmann, “Translating OCL to Graph Patterns”

• ATL2AGT
– Translate OCL embedded in ATL to AGT
– Realistic ATL transformations

• Post2Pre
– Handle complete Nested Graph Constraints
– Investigate performance of overlapping algorithm

19Future WorkFuture WorkRelated WorkDetailed ApproachContributionProblemContext

Thank you!

Credits
Slide 5: Alert by Juergen Bauer from The Noun Project

