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Development of Critical Software
• Critical : Software failure can have catastrophic consequences 

!

!

• Certification standards are mandatory and costly to apply 

• Model-based development enables Automatic Code Generation 
(ACG) 

• ACGs must be Qualified.  e.g. SCADE Suite KCG 

• Qualification of an ACG is very costly 

• Extensive testing of the ACG is required
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Unit Testing v/s Integration Testing in ACGs

• An ACG is typically a Model Transformation Chain (MTC) 

• Unit testing    (Unit =         = intermediate transformation) 
– Consider intermediate transformations in isolation 
– Develop test models in intermediate representations 

• Integration testing 
– Consider whole chain 
– Develop test models in the input language
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Reality Check

• Feedback from developers of ACGs and the GCC compilation chain 
– 10 ~ 20 intermediate transformations 

• Unit testing of intermediate transformation is rarely performed 

• Intermediate test models are difficult to produce and maintain 
– Intermediate models increase in size along the chain 
– Internal languages have no dedicated editors 
– Intermediate languages and transformations evolve during the lifecycle 

!
General Problem 

Perform only integration tests but cover all unit testing needs
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Unit Testing of Model Transformations

• Coverage 
– Testing all individual cases is unfeasible 
– An analysis identifies sets of equivalent cases 

!
• Test objective/requirement 

Constraint over the input language of a transformation 
– Describes a set of input models exhibiting a common 

property 

!

!
• One test model is sufficient to cover a test objective
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Covering Non-Satisfied Test Requirements

• Constraint Satisfaction Problem (CSP) 

• A CSP Solver can theoretically generate a satisfying instance 

• Encoding all transformations in the CSP is not scalable 

• The result is an instance and not a constraint which prevents an 
iterative analysis
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Satisfying Intermediate Test Requirements

Problem 
How to produce a new model in the input language to satisfy a 

given intermediate test requirement 

• It is a challenging problem because 
– We have to consider an arbitrary number of preceding transformations 
– Tester has to manually “inverse” transformations 
– Transformations are non-injective and non-surjective 
– We have to reason on constraints and not on instances
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Step-by-step Advancement of Test Requirements

Contribution 

• Step-by-step automatic advancement of test requirements 
up to input language 
– Test requirement as a postcondition of previous step 
– Transform a postcondition into a sufficient precondition 
– Iterate process up to the input language
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Algebraic Graph Transformation

• Algebraic Graph Transformation (AGT) 
– Formal framework based on Category Theory 

• Construction of Weakest Precondition 
– Constructs a precondition ensuring the satisfaction of the postcondition
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Using AGT to Advance Test Requirements

• Transpose our problem into the AGT Theory 

• The ACG is specified in industry standard languages 
– ATL and OCL
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Using AGT to Advance Test Requirements

• 3 main components 
– Translation of transformations ATL2AGT              
– Translation of test requirements OCL2NGC (NGC2OCL)           
– Advancement of constraints Post2Pre                  
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Translation of Transformations – ATL2AGT
Challenge 

• Semantic gap between Declarative Model Transformation and AGT 

• ATL semantics – create a new output model 
– Rules executed simultaneously 
– A rule can resolve the output of other rules using implicit input to output tracing 

• AGT semantics – in-place graph rewriting 
– Rules applied sequentially and atomically 
– No resolve mechanism 

Contribution 

• Model an ATL transformation as a 2-phase rewriting of the input graph 
– Instantiation phase —> Resolving phase 
– Explicit Trace nodes 

• Prototype implementation using Henshin framework (Eclipse-based) 
– Limited to structural aspects
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Example — ATL2AGT
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Translation of Transformations – ATL2AGT
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Advancement of Constraints – Post2Pre
Challenge 

• The theoretical construction in AGT consists in 
1. Enumerate all overlaps of a rule with the postcondition 
2. Unroll the effects of applying the rule (reverse application)
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Advancement of Constraints – Post2Pre
Challenge 

• The theoretical construction in AGT consists in 
1. Enumerate all overlaps of a rule with the postcondition 
2. Unroll the effects of applying the rule (reverse application) 

and add the application condition 

• Theoretical weakest precondition is infinite because of infinite rule iteration 
Contribution 

• Bound the number of iteration of rule iterations 
– Obtain a sufficient precondition instead of the weakest 
– Similar to size bounds in CSP-based approaches 

• Eliminate overlaps based on knowledge of ATL semantics 

• Prototype implementation in AGG framework for basic constraints ∃(graph)                       

• Validation of Post2Pre and ATL2AGT 
on a simplified code generation step : 3 ATL rules 

one-step advancement of simple test requirements
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Related Work
• Test suite quality for model transformation chains 

E. Bauer, J. Küster, and G. Engels 
Cover unit test requirements with integration tests 
Detect unsatisfied unit test requirements 
No support for producing new test models 

!

• Synthesis of OCL pre-conditions for graph transformation rules  
J. Cabot, R. Clariso, E. Guerra, and J. de Lara 

Construct OCL preconditions from OCL postconditions 
No formal proof of completeness and correctness
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Future Work
• OCL2NGC — Translation of Test Requirements 

– Very active topic in the community 
• ICGT, July 2014 T. Arendt et al. , “From Core OCL Invariants to Nested Graph Constraints”          
• MODELS, September 2014 G. Bergmann, “Translating OCL to Graph Patterns”                          

• ATL2AGT 
– Translate OCL embedded in ATL to AGT 
– Realistic ATL transformations 

• Post2Pre 
– Handle complete Nested Graph Constraints 
– Investigate performance of overlapping algorithm
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Thank you!
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