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Overview

1. Some examples of (Multi-Formalism) Modelling

2. Domain-Specific (Visual) Modelling – DS(V)M

• What/Why of DS(V)M (and DS(V)Ls) ?

3. Building DS(V)M Tools Effectively

(a) Specifying syntax of DS(V)Ls:

• abstract (meta-modelling)

• concrete (visual)

(b) Modelling Reactive Visual Modelling Environments

• multi-formalism

• nesting/scoping of behaviour

• glue reactive behaviour, syntax check and layout

(c) Specifying DS(V)L semantics: transformations
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(d) Modelling (and executing) transformations: graph rewriting

4. DSVM examples

• step-by-step, in a tool

• Formalism Transformation uses

5. Semper Variabilis: dealing with evolution

6. Conclusions
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Available Information,

Questions to be Answered, . . .
⇒ Abstraction Level/Formalism

Hans Vangheluwe hv@cs.mcgill.ca Old and New Bits and Pieces of a CAMPaM Framework 4



Need Multiple Formalisms: Power Window
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The Model

www.mathworks.com/products/demos/simulink/PowerWindow/html/PowerWindow1.html
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Semantics of Coupled Models

• Super-formalism subsumes all formalisms

• Co-simulation (coupling resolved at trajectory level)

• Transform to common formalism
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Multi-formalism coupled model:
co-simulation

Msub_1
Msub_2

CoupledModel

CouplingGraph

Msub_3
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Co-simulation of multi-formalism coupled
models

• Sub-models simulated with formalism-specific simulators.

• Interaction due to coupling is resolved at trajectory level.

→ Loss of information.

→ Questions can only be answered at trajectory level.

→ Speed and numerical accuracy problems

for continuous formalisms.

→ Meaningful for discrete-event formalisms (beware of legitimacy !).

Basis of the DoD High Level Architecture (HLA)

for simulator interoperability.
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Multi-formalism coupled model:
multi-formalism modelling

Msub_1
Msub_2

CoupledModel

CouplingGraph

Msub_3

Hans Vangheluwe hv@cs.mcgill.ca Old and New Bits and Pieces of a CAMPaM Framework 10



Formalism Transformation Graph

DEVS

Process Interaction 
Discrete Event

state trajectory data (observation frame)

Petri Nets
Statecharts

scheduling-hybrid-DAE

Bond Graph a-causal

Bond Graph causal

DAE non-causal set

DAE causal set

PDE

Transfer Function

Difference Equations

System Dynamics

KTG Cellular Automata

Event Scheduling 
Discrete Event

3 Phase Approach 
Discrete Event

DAE causal sequence (sorted)

DEVS&DESS

Activity Scanning 
Discrete Event

Timed Automata

Causal Block Diagram
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Multi-formalism modelling 6= co-simulation

1. Start from a coupled multi-formalism model. Check consistency of

this model (e.g., whether causalites and types of connected ports

match).

2. Cluster all formalisms described in the same formalism.

3. For each cluster, implement closure under coupling.

4. Look for the best common formalism in the Formalism

Transformation Graph all the remaining different formalisms can

be transformed to. Worst case: trajectory level (fallback to

co-simulation).

5. Transform all the sub-models to the common formalism.

6. Implement closure under coupling of the common formalism.
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Domain-Specific Modelling Example

NATO’s Sarajevo WWTP

www.nato.int/sfor/cimic/env-pro/waterpla.htm
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DS(V)M Environment

www.hemmis.com/products/west/
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Why DS(V)M ?
(as opposed to General Purpose modelling)

• match the user’s mental model of the problem domain

• maximally constrain the user (to the problem at hand)

⇒ easier to learn

⇒ avoid errors

• separate domain-expert’s work

from analysis/transformation expert’s work

Anecdotal evidence of 5 to 10 times speedup
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DS(V)M Example in Software Domain
smart phones, the application

MetaEdit+ (www.metacase.com)
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DS(V)M Example: smart phones,
the Domain-Specific model
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Model-Based Development:
Modify the Model

model

model’ app’

apptransformation

transformation

small modification
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Model-Based Development:
Modify the Transformation

model

model app’

apptransformation

small modification

transformation’
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Divide and Conquer:
Transformation may be multi-step

Usual advantages . . .
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Building DS(V)M Tools Effectively . . .

• development cost of DS(V)M Tools may be prohibitive !

• we want to effectively (rapidly, correctly, re-usably, . . . )

1. Specify DS(V)L syntax:

– abstract ⇒ meta-modelling

– concrete (textual/visual)

2. Modelling Reactive Visual Modelling Environments

– multi-formalism

– nesting/scoping of behaviour

– glue reactive behaviour, syntax check and layout

3. Specify DS(V)L semantics:

transformation

4. Model (and analyze and execute) model transformations:

⇒ graph rewriting
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⇒ model everything

(in the most appropriate formalism,

at the appropriate level of abstraction)
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Dissecting a Modelling Language
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Modelling Languages as Sets
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Last year’s (more complete) version
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From now on: tool view using AToM3
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A model in the PacMan Formalism

0Your score

Hans Vangheluwe hv@cs.mcgill.ca Old and New Bits and Pieces of a CAMPaM Framework 28



Modelling Abstract Syntax (meta-model)

Cardinalities:
  - To gridBottomV3: 0 to N
  - From gridBottomV3: 0 to N
  - From pacLinkV3: 0 to N
  - From foodLinkV3: 0 to N
  - From scoreLinkV3: 0 to N
  - To gridLeftV3: 0 to N
  - From gridLeftV3: 0 to N
  - To gridRightV3: 0 to N
  - From gridRightV3: 0 to N
  - To gridTopV3: 0 to N
  - From gridTopV3: 0 to N
  - From ghostLinkV3: 0 to N

gridNodeCenter

Cardinalities:
  - To pacLinkV3: 0 to N

pacmanV3

Cardinalities:
  - To foodLinkV3: 0 to N

pacFoodV3

Attributes:
  - score :: Integer
Actions:
  > create
Cardinalities:
  - To scoreLinkV3: 0 to N

ScoreBoard

Cardinalities:
  - To ghostLinkV3: 0 to N

ghostV3

gridLeftV3

Cardinalities:
  - To gridNodeCenter: 0 to 1
  - From gridNodeCenter: 0 to 1

gridTopV3

Cardinalities:
  - To gridNodeCenter: 0 to 1
  - From gridNodeCenter: 0 to 1

gridBottomV3

Cardinalities:
  - To gridNodeCenter: 0 to 1
  - From gridNodeCenter: 0 to 1

gridRightV3

Cardinalities:
  - To gridNodeCenter: 0 to 1
  - From gridNodeCenter: 0 to 1

ghostLinkV3

Cardinalities:
  - To gridNodeCenter: 0 to N
  - From ghostV3: 0 to N

scoreLinkV3

Cardinalities:
  - To gridNodeCenter: 0 to N
  - From ScoreBoard: 0 to N

pacLinkV3

Cardinalities:
  - To gridNodeCenter: 0 to N
  - From pacmanV3: 0 to N

foodLinkV3

Cardinalities:
  - To gridNodeCenter: 0 to N
  - From pacFoodV3: 0 to N
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Modelling the Scoreboard Entity
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Synthesis of Code from this Design model
class ScoreBoard(ASGNode, ATOM3Type):

def __init__(self, parent = None):

ASGNode.__init__(self)

ATOM3Type.__init__(self)

self.graphClass_ = graph_ScoreBoard

self.isGraphObjectVisual = True

self.parent = parent

self.score=ATOM3Integer(0)

self.generatedAttributes = {’score’: (’ATOM3Integer’ ) }

self.directEditing = [1]

def clone(self):

cloneObject = ScoreBoard( self.parent )

for atr in self.realOrder:

cloneObject.setAttrValue(atr, self.getAttrValue(atr).clone() )

ASGNode.cloneActions(self, cloneObject)

return cloneObject
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Meta-modelling: model-instance morphism
or . . .

name type=String init.value=
tokens type=Integer init.value=0

PNPlace
name type=String init.value=
PNTransition

mapping mapping mappingmapping

place1
0

place2
0

transition

level M2: model

a model of the Petri Net formalism,
an INSTANCE of the Entity Relationship formalism

level M1: data

a Petri Net,
an INSTANCE of the Petri Net formalism

tran2pl

pl2tran

mappingmapping
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Meta-meta-. . . : Meta-circularity
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Modelling Ghost Concrete Visual Syntax
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PacFoodLink Concrete Visual Syntax
# Get n1, n2 end-points of the link

n1 = self.in_connections_[0]

n2 = self.out_connections_[0]

# g1 and g2 are the graphEntity visual objects

g0 = self.graphObject_ # the link

g1 = n1.graphObject_ # first end-point

g2 = n2.graphObject_ # second end-poing

# Get the high level constraint helper and solver

from Qoca.atom3constraints.OffsetConstraints

import OffsetConstraints

oc = OffsetConstraints(self.parent.qocaSolver)

# The constraints

oc.CenterX((g1, g2, g0))

oc.CenterY((g1, g2, g0))

oc.resolve()
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Synthesize + Customize Buttons model

New Edit New Help

New gridNodeCenter

New pacmanV3 New pacFoodV3 New ScoreBoardNew ghostV3

Note: create vs. execute
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DChartActions

Default Idle

Composite Mode

Orthogonal Mode

State Mode

History Mode

<Create>*

<History Button>

<Composite Button>

(create)*

<State Button>

<Create>*

<Reset>

<Orthogonal Button>

<Create>*

<Create>*
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Can now build valid PacMan models ?

0Your score
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Model the GUI’s Complete Reactive

Behaviour !
in the Statechart formalism
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The GUI’s reactive behaviour in action

challenge: what is the optimal formalism to specify GUI reactive behaviour ?
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Optimal formalism: need more modularity !
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Example with nesting: DEVS
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Example with nesting: DCharts
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Modelling Reactive
Visual Modelling Environments

• multi-formalism, encapsulated

• nesting/scoping

• glue reactive behaviour, syntax check, and layout
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Scope Hierarchy

Scope A

Scope B

Scope C Scope D

Scope E Scope F
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Nested Event Propagation

Scope A

Scope B

Scope C Scope D

Scope E Scope F
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Attributes:

  - name :: String

  - is_default :: Boolean

  - useSimpleIcon :: Boolean

  - hideContents :: Boolean

  - import_DES_model :: String

  - enter_action :: Text

  - exit_action :: Text

  - hidden :: Hidden

Multiplicities:

  - To DC_Orthogonality: 0 to N

  - To DC_Contains: 0 to N

  - From DC_Contains: 0 to 1

  - From DC_SticksTo: 0 to N

  - From DC_DChartContains: 0 to 1

  - To DC_Hyperedge: 0 to N

  - From DC_Hyperedge: 0 to N

DC_Composite

Attributes:

  - name :: String

  - is_default :: Boolean

  - is_final :: Boolean

  - useSimpleIcon :: Boolean

  - enter_action :: Text

  - exit_action :: Text

  - hidden :: Hidden

Multiplicities:

  - From DC_Contains: 0 to 1

  - From DC_SticksTo: 0 to N

  - From DC_DChartContains: 0 to 1

  - From DC_Hyperedge: 0 to N

  - To DC_Hyperedge: 0 to N

DC_Basic

Attributes:

  - name :: String

  - star :: Boolean

  - useSimpleIcon :: Boolean

  - hidden :: Hidden

Multiplicities:

  - From DC_Contains: 0 to 1

  - From DC_SticksTo: 0 to N

  - From DC_Hyperedge: 0 to N

DC_History

Attributes:

  - name :: String

  - hidden :: Hidden

Multiplicities:

  - From DC_Orthogonality: 0 to 1

  - To DC_Contains: 0 to N

DC_Orthogonal

Attributes:

  - name :: String

  - disableLayout :: Boolean

  - DChart_block :: LayoutType

  - Composite_block :: LayoutType

  - Orthogonal_block :: LayoutType

  - globalAttributes :: GlobalAttributesType

  - fontPoints_per_pixel :: Float

  - horizontal_text_scale :: Float

  - vertical_text_scale :: Float

  - defaultStateColor :: String

  - normalStateColor :: String

  - defaultStateWidth :: Integer

  - normalStateWidth :: Integer

  - defaultStateStipple :: String

  - normalStateStipple :: String

  - hiddenCompositeColor :: String

  - shownCompositeColor :: String

Multiplicities:

  - To DC_DChartContains: 0 to N

DC_DChart

Attributes:

  - name :: String

  - text :: Text

Multiplicities:

  - To DC_SticksTo: 0 to N

  - From DC_DChartContains: 1 to 1

DC_StickyNote

Attributes:

  - name :: String

  - is_in :: Boolean

  - is_out :: Boolean

Multiplicities:

  - To DC_ServerPort: 0 to N

  - From DC_DChartContains: 0 to 1

  - From DC_SticksTo: 0 to N

DC_Port

Attributes:

  - id :: String

  - name_pattern :: String

Multiplicities:

  - From DC_ServerPort: 0 to N

  - From DC_DChartContains: 0 to 1

  - From DC_SticksTo: 0 to N

DC_Server

DC_ServerPort
Attributes:

  - connection :: String

Multiplicities:

  - To DC_Server: 1 to 1

  - From DC_Port: 1 to 1

DC_SticksTo

Multiplicities:

  - To DC_Composite: 0 to 1

  - From DC_StickyNote: 0 to 1

  - To DC_History: 0 to 1

  - To DC_Basic: 0 to 1

  - To DC_Server: 0 to 1

  - To DC_Port: 0 to 1

DC_Hyperedge

Attributes:

  - name :: String

  - trigger :: String

  - priority :: Integer

  - guard :: String

  - action :: Text

  - broadcast :: Text

  - broadcast_to :: String

  - multiple_transitions :: List

  - configureIcon :: HyperEdgeType

Multiplicities:

  - To DC_Basic: 0 to 1

  - From DC_Composite: 0 to 1

  - From DC_Basic: 0 to 1

  - To DC_Composite: 0 to 1

  - To DC_History: 0 to 1

DC_Contains
Multiplicities:

  - To DC_Composite: 0 to 1

  - From DC_Composite: 0 to 1

  - From DC_Orthogonal: 0 to 1

  - To DC_History: 0 to 1

  - To DC_Basic: 0 to 1

DC_Orthogonality

Multiplicities:

  - To DC_Orthogonal: 1 to 1

  - From DC_Composite: 1 to 1

DC_DChartContains

Multiplicities:

  - To DC_StickyNote: 0 to 1

  - From DC_DChart: 0 to 1

  - To DC_Composite: 0 to 1

  - To DC_Basic: 0 to 1

  - To DC_Port: 0 to 1

  - To DC_Server: 0 to 1
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Overall DChart Modelling Environment
Behaviour
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“DChart Transition” Behaviour

Default* Idle

<Edit>*

(create)
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“DChart Composite” Behaviour

Idle

Default* hierarchicalConnect*

requestLayoutOnParent*

NoParent HasParent

hierarchicalDisconnect*

requestLayoutOnOldParent*

serviceLayoutRequest+ Request Drop* finalLayoutRequest*

Edit*

H

History

[drop]

[Done]

[Request drop]

<layoutRequest>

[stayedConnected]

<DChartDelete>

[drop](loadModelCreate)

(loadModelConnect)

<Edit>

[notDropRoot]

[Done]

(create)

<DChartDrop>

[Done]

[Done]

[didNotConnect]

<DChartSelect>*

[didConnect]

[disconnected]
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“DCharts (Force Transfer) Layout”
Behaviour
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Graph Grammars
to Specify Model Transformations

Rationale:

Models are often graph-like ⇒ natural to express model transformation

by means of graph transformation models.

Ehrig, H., G. Engels, H.-J. Kreowski, and G. Rozenberg.

Handbook of graph grammars and computing by graph

transformation.

1999. World Scientific.

Tools:

GME/GReAT, PROGRES, AGG, AToM3, Fujaba, GROOVE, . . .

First two used (and Fujaba) in large industrial applications.
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Model Operational Semantics using GG
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PacMan Die rule
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PacMan Die rule LHS

2

4

1

3

5
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PacMan Die rule RHS

1

3

5
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PacMan Eat rule LHS

2

5

1

3

4
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PacMan Eat rule RHS

2

5

1

scoreBoard = None

scoreBoards = atom3i.ASGroot.listNodes[’ScoreBoard’]

if (not scoreBoards):

return

else:

scoreBoard = scoreBoards[0]

scoreVal = scoreBoard.score.getValue()

scoreBoard.score.setValue(scoreVal+1)

scoreBoard.graphObject_.ModifyAttribute(’score’,scoreVal+1)
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PacMan Move rule LHS

7

8

6 9

10
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PacMan Move rule RHS

7

1

6 9

10
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Specifying/Executing Transformations
using Graph Grammars

(+) Models are often Graph-like

(+) Visual specification (documentation)

For insight/debugging: execution + visual display

For performance: execution on data structures in memory

(+) Little or no programming knowledge required (allows

understanding/modification by domain-experts)

(-) Does it scale up ?

Yes, need to use modular GGs (e.g., GReAT, PROGRES)

(-) Performance is bad ! (due to sub-graph matching)

But sometimes no alternative

– model transformation for graph-like models

– don’t want to code matching yourself

But give (domain-specific) hints to kernel (Marc Provost’s thesis)

But use as specification for manual implementation

– executable specification = reference implementation

– automatic generation of unit tests
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Modular Graph Rewriting:
Control Structures
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GReAT Control Structures: Sequence
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GReAT Control Structures: Nesting
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Current work:
use DEVS as control framework
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Formalism Transformation Example:
Model/Analyze/Simulate Traffic Networks
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Un-timed and timed Traffic meta-model
(a UML Class Diagram)

FlowTo

+ name: String
+ num_vehicles: Integer

Sink

TimedRoadSectionTrafficLight
+ State: {green, red}

TimedSource
+ inter_arrival_time: Float

+ name: String
+ num_vehicles: Integer
+ infinite_supply: Bool

Source

+ name: String
+ capacity: Integer

Capacity

+ name: String
+ num_vehicles: Integer

RoadSection

+ state: {normal, added
0..*

Section2Sink
0..1 0..*

0..*

0..*
TimedFlowTo

+ length: Float
+ velocity_limit: Float

0..*

0..*

0..1 Source2Section 0..*

ControlledSection 0..1

0..1 D
ire

ct
io

n

TimedTrafficLight
+ timing_red: Float
+ timing_green: Float

0..*

1..*

CapacityOf
+ updated: Bool

Synchronized

0..1
0..1

0..*
           , removed}
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Traffic Concrete Syntax
(the Capacity Entity)
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Synthesized Traffic
Visual Modelling Environment
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Modelling Traffic’s Semantics

• choices: timed, un-timed, . . . (level of abstraction)

• denotational: map onto known formalism (TTPN, PN)

. . . good for analysis purposes

• operational: procedure to execute/simulate model

. . . may act as a reference implementation

• note: need to prove consistency between denotational and

operational semantics if both are given !
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Place-Transition Petri Net Abstract Syntax
(UML Class Diagram formalism)

PetriNet

+addPlace()
+addTransition()
+addArc(weight:int=1)
+draw()

Place
+name: String
+numTokens (marking): int = 0
+draw()

places
0..*

1

unique name

Transition
+name: String
+enabled: Boolean
+draw()

transitions
0..*

1

unique name

0..* 1

1 0..*

Arc
+weight: int = 1
+draw()
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Place-Transition Petri Net Concrete Syntax

place1
2

place2
1

transition

2
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Petri Net Behaviour

State Transition Function f of marked Petri net (P, T, A, w, x0)

f : Nn × T → Nn

is defined for transition tj ∈ T if and only if

x(pi) ≥ w(pi, tj), ∀pi ∈ I(tj)

If f(x, tj) is defined, set x′ = f(x, tj) where

x′(pi) = x(pi) − w(pi, tj) + w(tj , pi)

• State transition function f based on structure of Petri net

• Number of tokens need not be conserved (but can)
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Behaviour: Fork

p1
0

p2
0

p3
1

t1
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Behaviour: Join

p1
1

p2
1

t1
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Behaviour: Conflict, choice, decision

p3
1

p1
0

p2
0

t1 t2
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Behaviour: Concurrency

t1 t2

p11
1

p21
1

p12
0

p22
0
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The Big Picture: Transformations

neglect tim
e

Traffic (un-timed)

Place-Transition Petri Nets

Coverability Graph

describe semantics
by mapping onto

compute all
possible behaviours

simulate

simulate

analyze:
reachability,
coverability, ...

describ
e semantics

by mapping onto

simulate

DEVS

map onto

map onto Timed Transition Petri Nets

de
sc

rib
e 

se
m

an
tic

s

by
 m

ap
pi

ng
 o

nt
o

simulate
analyze

describe semantics
by mapping onto

TINA

simulate
analyze

pythonDEVS

simulate

DEVSJava

simulate

TimedTraffic

simulate
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Traffic’s (un-timed) semantics
in terms of Petri Nets

• need a meta-model of Traffic (shown before)

• need a meta-model of Petri Nets (shown before)

• need a meta-model of Generic Graph (glue)

• need a model of the mapping: Traffic ⇒ Petri Net
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A very simple Traffic model

2
segment1

1
segment2

4
capacity
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Traffic to Petri Net Graph Grammar rules

INITIAL ACTION:
for node in graph.listNodes["RoadSection"]:
 node.vehiclesPNPlaceGenerated=False
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Traffic to Petri Net Graph Grammar rules

<ANY>
<ANY>

1

LHS

rule1: RoadSection2PNPlace

CONDITION:
node = LHS.nodeWithLabel(1)
return not node.vehiclesPNPlaceGenerated

ACTION:
node = RHS.nodeWithLabel(1)
node.vehiclesPNPlaceGenerated = True

<COPIED>
<COPIED>

<SPECIFIED>
<SPECIFIED>

1

2

3

RHS

LHS.nodeWithLabel(1)).name

LHS.nodeWithLabel(1)).num_vehicles
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Road Sections converted to Petri Net Places

2
segment1

1
segment2

4
capacity

segment1
2

segment2
1
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Traffic to Petri Net Graph Grammar rules

<ANY>
<ANY>

<ANY>
<ANY>

<ANY>
<ANY>

<ANY>
<ANY>

1 2
7

3 4

5 6

LHS

<COPIED>
<COPIED>

<COPIED>
<COPIED>

<COPIED>
<COPIED>

<COPIED>
<COPIED>

0

1 2

10
3 4

9

5 6

8

RHS

rule 2: Flow2PNTransition

CONDITION:
node = getMatched(LHS.nodeWithLabel(1))
return node.in_connections_ == []

ACTION:
node = RHS.nodeWithLabel(1)
node.capacityPNPlaceGenerated = True
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Traffic Flow to Petri Net Transitions

2
segment1

1
segment2

4
capacity

segment1
2

segment2
1
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Traffic to Petri Net Graph Grammar rules

rule 3: Capacity2PNPlace
<COPIED>

<COPIED> <SPECIFIED>
<SPECIFIED>

1 2
3

RHS LHS.nodeWithLabel(1)).name

LHS.nodeWithLabel(1)).capacity

<ANY>
<ANY>

1

LHS
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Traffic Capacity to Petri Net Place

2
segment1

1
segment2

4
capacity

segment1
2

segment2
1

capacity
4
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Traffic to Petri Net Graph Grammar rules

<ANY>
<ANY>

<ANY>
<ANY> <ANY>

<ANY>

4

1

5

2
3

LHS

<COPIED>
<COPIED>

<COPIED>
<COPIED> <COPIED>

<COPIED>

4

1

6

2
3

RHS

rule 4: Capacity2PNPlaceLinks
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Traffic Capacity to Petri Net Place (links)

2
segment1

1
segment2

4
capacity

segment1
2

segment2
1

capacity
4
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Traffic to Petri Net Graph Grammar rules

<ANY>
<ANY> <ANY>

<ANY>
1 2

3

LHS <COPIED>
<COPIED>

2

RHS

rule 5: Capacity2PNPlaceCleanup
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Traffic Capacity to Petri Net Place cleanup

2
segment1

1
segment2

segment1
2

segment2
1

capacity
4
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Traffic to Petri Net Graph Grammar rules

<ANY>
<ANY>

<ANY>
<ANY>

<ANY>
<ANY>

<ANY>

<ANY>

1
7

2

6

5

3

4

LHS

<COPIED>
<COPIED>

<COPIED>
<COPIED>

<COPIED>
<COPIED>

<COPIED>

<COPIED>

1

8

7

2

6

5

3

4

RHS

rule 6: CapacityConstraintOnPl2Tr

CONDITION:
cap_place = LHS.nodeWithLabel(6)
out_trans = LHS.nodeWithLabel(4)
capacity_transition_absent = True
for in_link in cap_place.in_connections_:
 for out_link in out_trans.out_connections_:
  if (in_link == out_link) and 
      isinstance(in_link,tran2pl): 
   capacity_transition_absent = False
   break
return capacity_transition_absent
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Capacity Constraint on Place to Transition

2
segment1

1
segment2

segment1
2

segment2
1

capacity
4
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Traffic to Petri Net Graph Grammar rules

<ANY>
<ANY>

<ANY>
<ANY>

<ANY>

<ANY>
<ANY>

<ANY>

1

5

7

2

6

4

3

LHS

<COPIED>
<COPIED>

<COPIED>
<COPIED>

<COPIED>
<COPIED>

<COPIED>

1

5

7

2

6

4

8

3

RHS

rule 7: CapacityConstraintOnTr2Pl

CONDITION:
cap_place = LHS.nodeWithLabel(6)
in_trans = LHS.nodeWithLabel(4)
capacity_transition_absent = True
for out_link in cap_place.out_connections_:
 for in_link in in_trans.in_connections_:
  if (in_link == out_link) and 
      isinstance(in_link, pl2tran): 
   capacity_transition_absent = False
   break
return capacity_transition_absent
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Capacity Constraint on Transition to Place

2
segment1

1
segment2

segment1
2

segment2
1

capacity
4
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Traffic to Petri Net Graph Grammar rules

rule 8: InitialCapacity

<COPIED>
<COPIED> <COPIED>

<SPECIFIED>
1

2

RHS

initial_num_vehicles = LHS.nodeWithLabel(1).num_vehicles
capacity_tokens = LHS.nodeWithLabel(2).tokens
return capacity_tokens-initial_num_vehicles

<ANY>
<ANY> <ANY>

<ANY>
1

3
2

LHS
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Model Initial Capacity (applied rule twice)

2
segment1

1
segment2

segment1
2

segment2
1

capacity
1
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Traffic to Petri Net Graph Grammar rules

<ANY>
<ANY>

1

2LHS RHS

rule 9: RemoveRoadSection
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Removed Traffic Road Section,
now only Petri Net

segment1
2

segment2
1

capacity
1
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Static Analysis of the Transformation Model

The transformation specified by the Graph Grammar model must

satisfy the following requirements:

• Termination:

the transformation process is finite

• Convergence/Uniqueness:

the transformation results in a single target model

• Syntactic Consistency:

the target model must be exclusively in the target formalism

These properties can often (but not always)

be statically checked/proved.
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Un-timed Analysis

neglect tim
e

Timed Transition Petri Nets

Traffic (timed)

Traffic (un-timed)

Place-Transition Petri Nets

Coverability Graph

de
sc

rib
e 

se
m

an
tic

s

by
 m

ap
pi

ng
 o

nt
o

describe semantics
by mapping onto

compute all
possible behaviours

simulate

simulate

simulate

analyze:
reachability,
coverability, ...

simulate
analyze
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An un-timed Traffic model

0
bot_W2E

0
turn1

0
to_N_or_W

0
turn2

0
bot_N2S

2
cars

1
bot_CAP 1

turn1_CAP

1
top_CAP

1
turn2_CAP
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the Petri Net describing its behaviour
obtained by Graph Rewriting

bot_W2E
0

turn1
0

to_N_or_W
0

turn2
0

bot_N2S
0

cars
2

bot_W2E_dep

top_S2W_dep

bot_N2S_dep

top_arr
bot_N2S_arr

bot_W2E_arr

top_S2N_dep

bot_CAP
1

turn1_CAP
1

top_CAP
1

turn2_CAP
1
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Analysis: Coverability Graph of the Petri Net

[turn1_CAP, cars(2), bot_CAP, top_CAP, turn2_CAP]

[turn1_CAP, cars, bot_W2E, top_CAP, turn2_CAP]

bot_W2E_arr

[cars, turn1, bot_CAP, top_CAP, turn2_CAP]

bot_W2E_dep

[turn1_CAP, cars, bot_CAP, turn2_CAP, to_N_or_W]

top_arr

[turn1_CAP, turn2, cars, bot_CAP, top_CAP]

top_S2W_dep

[turn1_CAP, cars, top_CAP, turn2_CAP, bot_N2S]

bot_N2S_arr
bot_N2S_dep

[turn1_CAP, turn2, bot_W2E, top_CAP]

bot_W2E_arr

[turn2, turn1, bot_CAP, top_CAP]

bot_W2E_dep

[turn1_CAP, turn2, bot_CAP, to_N_or_W]

top_arr

[turn1_CAP, turn2_CAP, bot_N2S, to_N_or_W]

bot_N2S_arr

[turn1_CAP, turn2, top_CAP, bot_N2S]

top_S2W_dep

bot_N2S_dep

bot_N2S_dep

top_S2N_dep

top_S2N_dep

[turn1, top_CAP, turn2_CAP, bot_N2S]

bot_N2S_arr
bot_N2S_dep

top_arr

[turn1_CAP, bot_W2E, turn2_CAP, to_N_or_W]

bot_W2E_arr

[turn1, bot_CAP, turn2_CAP, to_N_or_W]

bot_W2E_dep

top_S2W_dep

top_S2N_dep

top_S2W_dep

top_S2N_dep

top_S2N_dep

[turn1, bot_W2E, top_CAP, turn2_CAP]

bot_W2E_arr

top_arr
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Liveness Analysis

[turn1_CAP, cars(2), bot_CAP, top_CAP, turn2_CAP]

[turn1_CAP, cars, bot_W2E, top_CAP, turn2_CAP]

bot_W2E_arr

[cars, turn1, bot_CAP, top_CAP, turn2_CAP]

bot_W2E_dep

[turn1_CAP, cars, bot_CAP, turn2_CAP, to_N_or_W]

top_arr

[turn1_CAP, turn2, cars, bot_CAP, top_CAP]

top_S2W_dep

[turn1_CAP, cars, top_CAP, turn2_CAP, bot_N2S]

bot_N2S_arr
bot_N2S_dep

[turn1_CAP, turn2, bot_W2E, top_CAP]

bot_W2E_arr

[turn2, turn1, bot_CAP, top_CAP]

bot_W2E_dep

[turn1_CAP, turn2, bot_CAP, to_N_or_W]

top_arr

[turn1_CAP, turn2_CAP, bot_N2S, to_N_or_W]

bot_N2S_arr

[turn1_CAP, turn2, top_CAP, bot_N2S]

top_S2W_dep

bot_N2S_dep

bot_N2S_dep

top_S2N_dep

top_S2N_dep

[turn1, top_CAP, turn2_CAP, bot_N2S]

bot_N2S_arr
bot_N2S_dep

top_arr

[turn1_CAP, bot_W2E, turn2_CAP, to_N_or_W]

bot_W2E_arr

[turn1, bot_CAP, turn2_CAP, to_N_or_W]

bot_W2E_dep

top_S2W_dep

top_S2N_dep

top_S2W_dep

top_S2N_dep

top_S2N_dep

[turn1, bot_W2E, top_CAP, turn2_CAP]

bot_W2E_arr

top_arr
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Conservation Analysis

1.0 x[turn1_CAP] + 1.0 x[turn1] = 1.0

1.0 x[cars] + 1.0 x[bot_W2E] + 1.0 x[turn1] +

1.0 x[to_N_or_W] + 1.0 x[turn2] + 1.0 x[bot_N2S] = 2.0

1.0 x[top_CAP] + 1.0 x[to_N_or_W] = 1.0

1.0 x[turn2_CAP] + 1.0 x[turn2] = 1.0

1.0 x[bot_CAP] + 1.0 x[bot_W2E] + 1.0 x[bot_N2S] = 1.0
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Timed Traffic Network

length:

capacity:

40

2

length:

capacity:

40

0

length:

capacity:

40

1

length:

capacity:

40

0

length:

capacity:

40

1

length:

capacity:

40

0

length:

capacity:

40

0

length:

capacity:

40

0

length:

capacity:

40

1

length:

capacity:

40

0

length:

capacity:

40

1

length:

capacity:

40

0

length:

capacity:

40

0

length:

capacity:

40

0

length:

capacity:

40

0

length:

capacity:

40

0

length:

capacity:

40

0

length:

capacity:

40

0

length:

capacity:

40

0

length:

capacity:

40

0

length:

capacity:

40

0

length:

capacity:

40

0

length:

capacity:

40

0

length:

capacity:

40

0

0

0

red

10

state:

timeleft:

direction:
fromNorth

0

globalTime:
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Mapping onto DEVS for Simulation
(performance Analysis)

neglect tim
e

Traffic (un-timed)

Place-Transition Petri Nets

Coverability Graph

describe semantics
by mapping onto

compute all
possible behaviours

simulate

simulate

analyze:
reachability,
coverability, ...

describ
e semantics

by mapping onto

simulate

DEVS

map onto

map onto Timed Transition Petri Nets

de
sc

rib
e 

se
m

an
tic

s

by
 m

ap
pi

ng
 o

nt
o

simulate
analyze

describe semantics
by mapping onto

TINA

simulate
analyze

pythonDEVS

simulate

DEVSJava

simulate

TimedTraffic

simulate

Hans Vangheluwe hv@cs.mcgill.ca Old and New Bits and Pieces of a CAMPaM Framework 108



Timed Traffic mapped onto a DEVS model
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Timed Traffic mapped onto a DEVS model

ClosedTrafficSystem

Road0

out_1

ic_1

in_1oc_1

in_2oc_2

Road1

in_1

oc_1 out_1

ic_1

out_2 ic_2

in_2 oc_2

Road2

in_1

oc_1

out_1 ic_1

Road3

in_1

oc_1

out_1 ic_1

ic_2

out_2

Road4 in_1 oc_1

ic_1out_1
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Semper Variabilis: Model Evolution

• model evolution

• meta-model evolution

• semantics evolution
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Model Evolution poor man’s approach:
Backward Links
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Model Evolution (Version Control):
need Model Comparison

express difference as sequence of creation, removal, attribute change
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Meta-model evolution
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Cases
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Semantics evolution
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Conclusions

model everything !
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