Position Paper for Campam '06

Ben Denckla*

April 20, 2006

Multi-paradigm modeling means different things to
different people. For that matter, “paradigm” and
“modeling” may mean different things to different
people. Perhaps only “multi” would fail to spark con-
troversy, since it is so generic.

1 Computer-assisted modeling

Let’s start by discussing modeling. In particular,
we are concerned with computer-assisted modeling.
Here I have changed the “CA” in “CAMPaM” from
“computer automated” to “computer assisted.” This
is a mild matter of preference. Although the tools
we are concerned with certainly do automate many
aspects of modeling, they do not automate all as-
pects. Therefore, overall, I consider them to assist in
modeling through automation rather than automate
modeling.

So, what is computer-assisted modeling? It could
just mean the use of a computer to assist in the cre-
ation of something called a model. For our purposes,
though, let’s narrow it to the use of a computer to
assist in the creation and execution of someting called
a model. This would exclude use of a CAD drafting
tool or even a tool that helps create UML diagrams
but does not attempt to do something like generate
code from them.

This leads us to the question of what constitutes
executability. When a CAD drafting tool renders a
document to screen or printer, it is in some sense
“executing” the document, just as an interpreter for
a traditional computer language might execute a pro-
gram. In fact, to render to a printer, it is probably

*Denckla Consulting, 1607 S. Holt Ave., Los Angeles, CA
90035, USA. bdenckla@@alum.mit.edu

generating PostScript code, which will then be inter-
preted on the printer. So a CAD drafting tool is in
fact a code generator!

Yet, let’s not consider this the execution of a
model. Let’s use a more common-sense/domain-
specific notion of “execution.”

Usually, the CAD document is a model of some-
thing like a mechanical system. Therefore executing
this model would be doing something like simulat-
ing the application of forces to it and seeing how it
behaves over time. Printing it is not executing it.

Now, what is a model? A model is an abstract
representation of another thing. The representation
may be “lossy” or lossless, i.e. the abstraction may
lose information or not. A set of ODEs might be
a lossy model of a circuit. The regular expression
“ab*” is a lossless model of all strings consisting of
an ‘a’ followed by zero or more ‘b’ characters. In
some cases the loss of information is the result of a
tradeoff, e.g. “we ignored relativistic effects in this
model, making it less accurate but more tractable.”
In other cases the loss of information is a pure win,
e.g. “we ignored time in this model because for our
purposes it is irrelevant.”

Note that the execution of a model may be lossless
or lossy as well. For example, although a set of ODEs
may be a lossy model of a circuit, it is a lossless model
of the function that is its solution. Yet, the execution
of this set of ODEs with a numerical solver is lossy
with respect to the function that is its solution. In
constrast, the execution of this set of ODEs with a
symbolic solver is lossless with respect to the function
that is its solution.

When a model and/or its execution is lossy, we
often refer to its execution as simulation. When a



model and its execution are lossless, we usually don’t
refer to its execution as simulation. In this case the
behavior during execution is what is being modeled.
In this case the model may be referred to as a program
(often in a domain-specific language (DSL)). We'll
call this form of execution interpretation even though
it may consist of compilation followed by interpreta-
tion of machine- or byte-code. From this perspec-
tive, simulation transforms a model of x into another
model of z, whereas interpretation transforms of a
model of x into x.

Whether something should be called a model or
a DSL program, and whether its execution should
be called simulation or interpretation (or just “ex-
ecution”) is a matter of taste and context. In my
context, that of research and development of block
diagram languages, I tend to think of block diagrams
as programs, i.e. I think of their behavior during ex-
ecution as the final goal or product. In contrast, a
Simulink user might find it very strange to think of
a diagram as a program, especially a continuous di-
agram. Rather, they would think of it as a model
whose execution produces a simulation trace (another
model) of a physical system that is the final goal or
product.

2 Multi-paradigm modeling

Okay, now that we have some idea of what computer-
assisted modeling is, let’s discuss what multi-
paradigm modeling is. A modeling paradigm de-
scribes a style or family of modeling languages. For
instance, state transition diagrams are a modeling
paradigm that encompasses languages like StateM-
ate and StateFlow. Discrete block diagrams are a
modeling paradigm that encompasses languages like
discrete Simulink and Ptolemy SDF. Thus multi-
paradigm modeling is modeling in multiple styles
or sub-languages underneath one umbrella language.
For example the combination of Simulink and State-
flow forms a multi-paradigm modeling language.

A major challenge (perhaps the major challenge)
in multi-paradigm modeling is to define how the dif-
ferent paradigms interact. E.g., are all paradigms
available at once, i.e. can syntactic elements of all

paradigms be mixed freely, or is the use of a paradigm
restricted to a syntactically bounded sub-model?
Must a new a coordination language be invented to
bridge existing paradigms, or can one of the exist-
ing paradigms serve this function? What language
is used to define the underlying semantics (and the
overlying syntax) of all the paradigms?

Just behind the surface of these (daunting) chal-
lenges is a more basic challenge, which is that in or-
der to define how different paradigms interact, one
must first have good definitions of the individual
paradigms, which are rarely available. Many model-
ing languages are visual, so they are unable to benefit
directly from the mature techniques that have devel-
oped for the definition of textual languages. Graph
grammars have emerged as a promising technique for
the definition of visual languages. Although many
modeling languages like block diagrams have been
used for decades for human communication, it is chal-
lenging to move their semantics from the informal
level that humans require to the formal level that an
executable implementation requires. An even higher
level of semantic formality is needed if we want to
be able to reason logically (e.g. prove things) about
models.

Returning to the challenges of multi-paradigm
modeling, I will conclude by citing some research I
feel is relevant. As much as possible, modeling should
try to draw upon the rich, mature research that has
been done in traditional (textual) programming lan-
guages.

I cite [2] as an excellent example of a multi-
paradigm programming language in which syntactic
elements of all paradigms can be mixed freely, and
the underlying semantics are defined in terms of a
small kernel language with structured operational se-
mantics.

I cite [3] to show Haskell to be an excellent example
of a multi-paradigm (actually, dual-paradigm) pro-
gramming language in which one paradigm may be
used in syntactically bounded ways inside a dominant
paradigm. In this case the imperative paradigm can
be used boundedly inside the declarative (in particu-
lar, pure functional) paradigm. The syntactic bound-
ing happens via “do” syntax and restrictions imposed
by the type system. The semantics of the imperative



paradigm are defined by desugaring to the enclosing
(dominant) pure functional paradigm.

I cite [1] as an example of of a multi-paradigm mod-
eling language whose semantics are defined using an
underlying reference language. Unfortunately the se-
mantics of the reference language are not discussed
in this article.

References

[1] G. Frick and K. D. Miiller-Glaser. Semantic inte-
gration of modelling languages based on a refer-
ence language. In Proc. of the 4th IMACS Sym-
posium on Math. Modelling (MATHMOD), 2003.

[2] P. Van Roy and S. Haridi. Concepts, Techniques,
and Models of Computer Programming. MIT
Press, Cambridge, MA, USA, 2004.

[3] P. Wadler. How to declare an imperative. ACM
Comput. Surv., 29(3):240-263, 1997.



