My Background

Adam Cataldo

April 20, 2006

I am an electrical engineering graduate student at U.C. Berkeley in my fifth year of study. I received my B.S.E.E. cum laude from Washington University in St. Louis in 2001 and my M.S.E.E. from U.C. Berkeley in 2003.

For my Master's work, I designed control algorithms to prevent aircraft from flying into restricted airspace, in a 9/11 inspired security project. This had been joint work under Prof. Edward Lee and Prof. Shankar Sastry. In working on these algorithms, I had my first exposure to multi-paradigm programming in using Ptolemy II and Simulink to experiment with system design via hybrid system modeling.

As a student in Prof. Lee's group, I eventually caught the software bug. The topology I learned working on this control problem prepared me to work on a particular semantics problems in timed systems. In this regard, I generalized Banach's fixed point theorem to show a more general class of systems than the standard *delta causal* systems have well-defined non-Zeno behavior [1]. On this project, I worked closely with Xiaojun Liu, Eleftherios Matsikoudis, and Haiyang Zheng.

Most recently, I have been trying to make it easier to describe huge networks of interconnected components by developing a *composition langauge*. In this language, we want programmers to be able to describe huge configurations, or hierarchical networks of interconnected components, with small amounts of code, via higher-order parameters. This complements work on multi-paradigm systems and metamodeling, which help manage semantic complexity, by managing the syntactic complexity inherent in large systems. I will describe this work in more detail in my position statement. I've been working closely with Thomas Feng and Elaine Cheong on this project.

References

 X. L. E. D. M. James Adam Cataldo, Edward A. Lee and H. Zheng. A constructive fixed-point theorem and the feedback semantics of timed systems. (accepted wodes 2006.). Technical Report UCB/EECS-2006-4, EECS Department, University of California, Berkeley, January 24 2006.