
Multi-Formalism Modeling using DEVS and Linear Programming
Gary Godding, Intel Corporation, CAMPAM 06

This research is focused on finding an efficient approach to enable the
use of the most computationally efficient algorithms available to model
large supply chain planning execution problems. Specifically, how to
model systems consisting of complex abstract planning algorithms
controlling stochastic physical manufacturing processes.

In the supply network domain, several benefits are achieved by
partitioning. First, the problem can be separated in a way that
matches real world partitioning. Companies typically consist of
physical manufacturing and logistics entities being controlled by some
type of planning organization. Second, the models become more
tractable in terms of size and performance by being specialized to the
problem that they have bee developed for.

Rule based heuristic or optimization modeling approaches are
commonly used for planning problems, whereas simulation modeling has
been shown to work well for stochastic physical processes. Planning
algorithms generally use search algorithms whereas simulation
algorithms reproduce how state variables evolve over periods of time.
Different modeling languages and supporting algorithms have evolved
that support one or the other but not both. Using different modeling
formalisms provide a good way to enable the use of the best suited
modeling language / algorithm for each part of the problem.

A multi-modeling approach has been developed to enable the
correct execution of models written in different formalisms that also
use different execution algorithms at runtime. This has been
accomplished by introducing an integration model between the others.
This is to build upon approach of using a Knowledge Interchange Broker
(KIB) for formalism composability.

To maintain the correct semantics across the different models the
following capabilities must be provided by the integration models:

1. Abstraction level matching
2. Unit conversion matching
3. I/O variables mapping
4. Specification of model synchronization

The KIB underneath must be able to support the specific data
structures and synchronization protocols provided by the execution
algorithms and modeling languages of the underlying formalisms. For
example, a mathematical optimization algorithm usually involves the
following sequence: 1)populate initial data into vectors or arrays
2)initiate solve (setting maximum parameter on how long to search) and
3)read results from the vectors or arrays. Whereas a simulation
algorithm needs: 1) initial state 2) start command 3) synchronized
reading / writing of events. A KIB would enable mapping of arrays to
events, and also the synchronization of running solver algorithms with
simulation engines.

How the integration models are combined with the KIB model can
become a function of domain. If kept simple, a domain specific KIB
implementation can result in an implementation supporting a large
family of problems. For example, the currently implemented KIB we have
developed for supply network problems supports a well defined set of
aggregation/disaggregation algorithms along with well defined
synchronization schemes. It has enabled a large set of problems to be
modeled.

