
Multi-View Modelling
(Languages in bits and
pieces)

Escuela Politécnica Superior
Ingeniería Informática
Universidad Autónoma, Madrid (Spain)

Escuela Politécnica Superior
Ingeniería Informática
Universidad Carlos III, Madrid (Spain)

Juan de Lara

Esther Guerra

Motivation
Multi-View Visual Languages, made of a set of
notations.

Needed in order to make the (visual) language
more appropriate for specifying in the large.

Smaller, more comprehensible models.

Multiple perspectives.

Examples: UML, SySML, Labyrinth, …

Questions/Goals
How to specify such languages? (and obtain a customized
modelling environment).

Support for different types of views:
System views.
Derived and Audience oriented views.
Semantic views.

Support for different behaviours.

Support for Consistency:
Syntactic.
Semantic.

Agenda

Defining Multi-view visual languages.
Background: Triple Graph Grammars
Syntactic consistency. Behavioural patterns.

Derived and Audience-oriented views.

Semantic views.

Example.

Conclusions and Future work.

Multi-View (Visual) Languages

Multi-view (visual) languages

A family of (visual) notations, which can be used
in combination to describe different aspects of a
system.

They are usually related through a common
specification (the meta-model).

Different diagram types (viewpoints) as
restrictions of the global meta-model.

Multi-view languages.
Formalization.

Each square is a
pullback.

This also holds at the
model level.

Pullback objects give
information about what
elements should be
updated in other views
due to a change.

Inclusions vs. other
functions for the f’s.

Mappings implemented
as triple graph
grammars.

Multi-view languages.
Formalization.

Multi-view languages.
Consistency.
Syntactic consistency: rules are automatically derived from
the whole meta- model. Similar to Model- View- Controller
architecture.

Additional, domain- specific rules can be added by the VL
designer.

Semantic consistency: transformations from the repository
(Semantic views)

The user decides when to perform these checks.

System
-view 1

Repository

System
-view 2

System
-view 3

System
-view 4

changes

1

2

Execute rules to
update the repository

If the repository changes
3

4
Execute rules in
the other direction

Viewpoint 1 Viewpoint 1 Viewpoint 2 Viewpoint 3

Multi-view languages.
Syntactic consistency

Two kinds of grammars:
To update the repository from a change in a view.
To update a view from a change in the repository.

Agenda
Defining Multi-view visual languages.

Background: Triple Graph Grammars
Syntactic consistency. Behavioural patterns.

Derived and Audience-oriented views.

Semantic views.

Example.

Conclusions and Future work.

Multi-view languages.
Graph Grammars in the DPO approach

Category theory. Theory valid for any (weak) adhesive HLR category
(graphs, attributed graphs, Petri nets, triple graphs, etc.)

production:

K contains the preserved elements. Morphisms l and r are injective.

Direct derivation as 2 pushouts.

D=G-m(L-l(K))

H=D+m*(R-r(K))
(“gluing” at d(K))

Multi-view languages.
Triple Graphs

By Andy Schürr.

Rewriting of triple graphs.

G = (G1 LINK G2)

Morphisms g1 and g2 represent
m to n relationships between
nodes in G1 and G2. We take
them partial.

g1 g2

Object

Name=ObjectName
REP

LINK CorrespondenceObject

CObject
Class=ClassName
Name=CObjectName

VIEW1

Multi-view languages.
Triple Graph Grammars

1

2

3

4

5

1

2

3

4

5

1 6

2

3

4

5

7

8

9

L K R

1 6

2

3

4

5

7

8

9

l

1

2

3

4

5

1

2

3

4

5

10

r

10

G D H

m d m*

l* r*

Multi-view languages.
Formalization: Triple Graphs

Built on the notion of E-graphs (graphs with node and
edge attribution).

TriE-Graph

TriA-Graph (Attributed Triple Graphs)
Tri-Egraphs are provided with an algebra in
order to structure the attribute set into sorts and
provide appropriate operations for attribute
computation.

Data signature DSIG=(SD, OPD), with sorts for
attribution S’D ⊆ SD.

TriAG=(TriEG, D), with:
TriEG= (G1, G2, Gc, c1, c2)

D a DSIG- algebra with

Attributed
Type
Triple
Graph

• The associated
algebra is final.

• A part of the type graph
Also for the
correspondence
graph.

Attributed Typed Triple Graphs

Objects are tuples
(graph, typing):
TriTAG=(TriAG, t)

We showed that
it is an adhesive
HLR category.

Application Conditions

Negative Application Condition (NAC) if Yij is
empty.

Positive Application Condition (PAC) if Xi ≅ L and
Yij not empty.

Integration with meta-modelling

“Instances” of abstract classes are allowed to
appear in rules.

The rule is equivalent to a set of concrete rules,
resulting from the valid substitution of the abstract
elements by concrete ones.

If the abstract element appears in the RHS, then it
should also appear in the LHS (i.e. elements with
abstract typing cannot be created).

Integration with meta-modelling

action

receiver

sender
Action
(abstract)

MessageObject

SignalActionCreateActionCallAction

TG

RHS

2: Object1: Object

LHS

action

receiversender

1: Action

2: Object1: Object 1: Message

1:Action

Agenda
Defining Multi-view visual languages.

Background: Triple Graph Grammars
Syntactic consistency. Behavioural patterns.

Derived and Audience-oriented views.

Semantic views.

Example.

Conclusions and Future work.

Reminder…

System
-view 1

Repository

System
-view 2

System
-view 3

System
-view 4

changes

1

2

Execute rules to
update the repository

If the repository changes
3

4
Execute rules in
the other direction

Viewpoint 1 Viewpoint 1 Viewpoint 2 Viewpoint 3

Two kinds of grammars:
To update the repository from a change in a view.
To update a view from a change in the repository.

Multi-view languages.
Syntactic.

Rules are created for:
Creation of nodes.
Modification of node (edges) attributes (both directions).
Deletion of nodes.
Connection of nodes (creation of edges).
Disconnection of nodes (deletion of edges).

For each element type in each view.

Pullback objects indicate which rules should be
tried.

Example.
RBAC meta-model for web systems (simplified).

Multi-view
languages.
Example.

Repository update
Grammar.

Creation Rules

Multi-view
languages.
Example.

Repository update
Grammar.

Deletion and Edition
rules.

Multi-view
languages.
Example.

Change propagation
Grammar.

Multi-View Visual Languages.
Configurable behaviour patterns.
The previous rules define the behaviour for a view
management.

Different MVVLs need different ways of handling creation,
deletion and edition of elements in the different views.

Different behaviours, depending on the DSVL:
Cascading deletion, vs. Conservative Deletion.
Copying attributes on creation.
Changing the identifier of an object in a view.
…

Can be selected bu the MVVL designer.

Can be modelled with different rule sets.

Multi-View Visual Languages.
Configurable behaviour patterns.

Multi-View Visual Languages.
Configurable behaviour patterns.

Cascading deletion (ii)

Agenda

Defining Multi-view visual languages.

Derived and Audience-oriented views.

Semantic views.

Example.

Conclusions and Future work.

Multi-view languages.
Derived Views.
Extract information from the system.

The information does not need to be conformant to
any system view meta-model.

It can be extracted from the repository or any other
view.

Graphical approach: graph query patterns.

Multi-view languages.
Derived Views.
Extract nodes (and links) such that a) no role has
permissions on it and b) the node is source or target
of a link.

Multi-view languages.
Derived Views.

Graph query pattern:

Multi-view languages.
Derived Views.

From the patterns, triple graph grammars are
generated that build the derived view and keep a
mapping to the base model.

The grammars keep consistent the base model
and the derived view.

Similar to the previous rules, but with application
conditions derived from the patterns.

Multi-view languages.
Derived Views.

Multi-view languages.
Derived Views.

These two kind of rules
(for each node and
edge type) are able to
generate the derived
view.

Additional rule for
updating the derived
view in case something
should be deleted.

Multi-view languages.
Derived Views.

Multi-view languages.
Derived Views.

Multi-view languages.
Audience-Oriented Views.

Pre-defined queries by the VL designer.

Oriented to a certain kind of users.

Agenda

Defining Multi-view visual languages.

Derived and Audience-oriented views.

Semantic views.

Example.

Conclusions and Future work.

Multi-view languages.
Semantic Views.

Result of the translation into a semantic domain.

Usually with the purposes of analysis or
simulation.

With triple graph grammars, to keep a mapping
to the original model.

Back-annotation when the analysis is performed.

Multi-view languages.
Coloured Petri Nets Semantic View

Multi-view languages.
Coloured Petri Nets Semantic View

Multi-view languages.
Coloured Petri Nets Semantic View

Multi-view languages.
Coloured Petri Nets Semantic View

Multi-view languages.
Coloured Petri Nets Semantic View

Multi-view languages.
Coloured Petri Nets Semantic View

Multi-view languages.
Coloured Petri Nets Semantic View

Multi-view languages.
Coloured Petri Nets Semantic View

Agenda

Defining Multi-view visual languages.

Derived and Audience-oriented views.

Semantic views.

Example.

Conclusions and Future work.

AToM3 example

Single view meta-model

AToM3 example

Generated environment

AToM3 example

Multi-View meta-model

AToM3 example

Generated multi-view environment

Agenda

Defining Multi-view visual languages.

Derived and Audience-oriented views.

Semantic views.

Example.

Conclusions and Future work.

Conclusions
Handling of Multi-view visual languages.

Based on meta-modelling and triple graph
grammars.

Different kinds of views:
System views.
Derived and audience oriented views.
Semantic views.

Support for consistency.

Future work
Implement graph query patterns in AToM3.

Improve expressivity of graph query patterns.

Improve efficiency (rule loading).

Back- annotation mechanisms.

Generalization to multi- formalism modelling?

Viepoints which are not restrictions of the complete MVVL
meta- model.

	Multi-View Modelling(Languages in bits and pieces)
	Motivation
	Questions/Goals
	Agenda
	Multi-View (Visual) Languages
	Multi-view (visual) languages
	Multi-view languages. Formalization.
	Multi-view languages. Formalization.
	Multi-view languages. Consistency.
	Multi-view languages. Syntactic consistency
	Agenda
	Multi-view languages. Graph Grammars in the DPO approach
	Multi-view languages. Triple Graphs
	Multi-view languages. Triple Graph Grammars
	Multi-view languages. Formalization: Triple Graphs
	TriE-Graph
	TriA-Graph (Attributed Triple Graphs)
	Attributed Type Triple Graph
	Attributed Typed Triple Graphs
	Agenda
	Reminder…
	Multi-view languages. Syntactic.
	Example.RBAC meta-model for web systems (simplified).
	Multi-view languages. Example.
	Multi-view languages. Example.
	Multi-view languages. Example.
	Multi-View Visual Languages.Configurable behaviour patterns.
	Multi-View Visual Languages.Configurable behaviour patterns.
	Multi-View Visual Languages.Configurable behaviour patterns.
	Agenda
	Multi-view languages. Derived Views.
	Multi-view languages. Derived Views.
	Multi-view languages. Derived Views.
	Multi-view languages. Derived Views.
	Multi-view languages. Derived Views.
	Multi-view languages. Derived Views.
	Multi-view languages. Derived Views.
	Multi-view languages. Derived Views.
	Multi-view languages. Audience-Oriented Views.
	Agenda
	Multi-view languages. Semantic Views.
	Multi-view languages. Coloured Petri Nets Semantic View
	Multi-view languages. Coloured Petri Nets Semantic View
	Multi-view languages. Coloured Petri Nets Semantic View
	Multi-view languages. Coloured Petri Nets Semantic View
	Multi-view languages. Coloured Petri Nets Semantic View
	Multi-view languages. Coloured Petri Nets Semantic View
	Multi-view languages. Coloured Petri Nets Semantic View
	Multi-view languages. Coloured Petri Nets Semantic View
	Agenda
	AToM3 example
	AToM3 example
	AToM3 example
	AToM3 example
	Agenda
	Conclusions
	Future work

