Validated Model Transformation

Abstract. Model-Driven Architecture (MDA) as a model-based approach to software development
facilitates the synthesis of application programs from models created using customized, domain-specific
model processors. MDA model compilers can be realized by graph rewriting-based model transformation.
In Visual Modeling and Transformation System (VMTS), metamodel-based transformation steps enable
assigning OCL constraints to model transformation steps. Based on this facility, we propose a validated
model transformation approach that can validate not only the individual transformation steps, but the whole
transformations as well.

1 Introduction

A Model-driven development approaches (e.g. Model-Integrated Computing (MIC) [1] and OMG’s Model-
Driven Architecture (MDA) [2] emphasize the use of models at all stages of system development. They
have placed model-based approaches to software development into focus. MIC advocates the use of
domain-specific concepts to represent the system design. Domain-specific models are then used to
synthesize executable systems, perform analysis or drive simulations. Using domain concepts to represent
the system design helps increase productivity, makes systems easier to maintain, and shortens the
development cycle.

The approach presented here uses graph rewriting-based visual model transformation. Models can be
considered special graphs, which contain nodes and edges between them. This formal background
facilitates to treat models as labeled graphs and to apply graph transformation algorithms to models using
graph rewriting. To define the transformation steps precisely and support the validated model
transformation beyond the structure of the visual models, additional constraints must be specified which
ensure the correctness of the attributes, or other properties can be enforced. Using Object Constraint
Language (OCL) [3] constraints provides a solution for these issues. The use of OCL as a constraint and
query language in modeling is found to be simple and powerful.

The main contribution of the current paper is the validated online model transformation. The rest of this
work is organized as follows: The motivation is presented on a real word case study (Section 2). Section 3
introduces the principles of the validated model transformation based on the relation between the pre- and
postconditions and OCL constraints propagated to model transformation steps. The approach presented
here makes possible to require single transformation steps as well as the whole transformations to validate,
preserve or guarantee certain properties during the transformation. Finally, conclusions are provided.

2 Motivation — A Case Study

To illustrate the motivations on a real word example a case study is provided. The case study is a variation
of the “class model to relational database management system (RDBMS) model” transformation (also
referred to as object-relational mapping). A database design is often referred to as a data model or schema.
The requirements stated against the transformation that it should guarantee the following properties:

— Classes that are marked as non-abstract in the source model should be transformed into a single table
of the same name in the target model. The resultant table should contain one added primary key
column, one or more columns for each attribute in the class, and one or more columns for
associations based on the next rule.



— In general, an association may, or may not, map to a table. It depends on the type and multiplicity of
the association.
®  Many-to-many (N:N) associations, should be mapped to distinct tables. The primary keys
for both related classes should become attributes of the association table (foreign keys).
Foreign keys do not allow NULL values, because a link between two objects requires
that both of them should be known.
= One-to-many (1:N) associations using one or more foreign key columns should be
merged into the table for the class on the “many” side.
= For one-to-one (1:1) associations, the foreign key should be buried optionally in one of
the affected tables.
— Parent class attributes should be mapped into tables created from inherited classes.
— An association class should be transformed based on the multiplicity of the association. For N:N
associations the attributes of the association class become columns of the distinct table. For a 1:N or
1:1 the attributes of the association class become columns of the table in which the foreign key is
buried.
The required rules jointly guarantee that the generated database is in third normal form [4].
At the implementation level, system validation can be achieved by testing. Various tools and
methodologies have been developed to assist in testing the implementation of a system (for example, unit
testing, mutation testing, and white/black box testing). However, in case of model transformation
environments, it is not enough to validate that the transformation engine itself works as it is expected. The
transformation specification should also be validated.
In the case of the case study the following issues should be guaranteed by the transformation: (i) Each table
has a primary key, (ii) each class attribute is part of a table, (iii) each parent class attribute is part of a table
created for its inherited class, (iv) each many-to-many association has a distinct table, (v) each one-to-many
and one-to-one association has merged into the appropriate tables, (vi) foreign keys do not allow NULL
value, and (vii) each association class attribute is buried into the appropriate table based on the
multiplicities of its association.
There is a need for a solution that can validate model transformation specifications: online validated model
transformation that guarantees if the transformation finishes successfully, the generated output (database
schema) is valid, and it is in accordance with the requirements above.

3 Contributions

Graph rewriting [5] is a powerful technique for graph transformation with a strong mathematical
background. The atoms of graph transformations are rewriting rules, each rule consists of a left-hand side
graph (LHS) and right-hand side graph (RHS). Applying a graph rewriting rule means finding an
isomorphic occurrence (match) of LHS in the graph the rule being applied to (host graph), and replacing
this subgraph with RHS.

The Object Constraint Language is a formal language for the analysis and design of software systems. It is
a subset of the UML standard [6], and OCL allows software developers to write constraints and queries
over object models.

A precondition assigned to a transformation step is a Boolean expression that must be true at the moment
when the transformation step is fired. Similarly, a postcondition assigned to a transformation step is a
Boolean expression that must be true after the completion of a transformation step. If a precondition of a
transformation step is not true then the transformation step fails without being fired. If a postcondition of a
transformation step is not true after the execution of the transformation step then the transformation step
fails. A direct corollary of this is that an OCL expression in LHS is a precondition to the transformation



step, and an OCL expression in RHS is a postcondition to the transformation step. A transformation step
can be fired if and only if all conditions enlisted in LHS are true. Also, if a transformation step finished
successfully then all conditions enlisted in RHS must be true [7].

There are three properties: validation, preservation, and guarantee [5], these properties are checked during
the rewriting process. A transformation step S validates a property P if the following condition always
holds: if a property P was true before the step S it remains true after the execution of the step S, and if P is
false, the step S fails. A step S preserves a property P, when the following condition always holds: if a
property P was false (true) before the step S it remains false (true) after the execution of the step S. A
transformation step S guarantees a property P, when the following condition always holds: if a property P
was true before the step S it remains true after the execution of the step S, and if P is false, the step S
changes property P to true.

property P before the step S property P after the step S
Validation true true
false step S fails
Preservation true true
false false
Guarantee true true
false true

Table 1: Truth table of the validation, preservation and guarantee properties

Metamodel Instantiation,| poqers [ Matohing,f ppatches
Transformation St Use metalelements Instantiation
Input Metamodal ransiomation sieps Qutput Metamodel y L
instantiation Control Flow (VCFL) / |ins1amiam" Transformation Steps Transformation | Firing
N\ \ 1,/ with OCL constraints results N Transformation Step
v v
Input Model VMTS Model Output Moag +
Transformation | I
OCL Compiler | —| Validation Gode / Validation
Binary

Figure 1: Principles of VMTS metamodel-based validated model transformation

The principles of metamodel-based validated model transformation in VMTS are depicted in Fig. 1. The
figure describes that the transformation is specified by the VCFL control flow model that defines the exact
execution order of the transformation steps. The input model is described by the input metamodel, and the
output model by the output metamodel. Both input and output metamodels have an effect on the
transformation.

Recall that LHS and RHS of a transformation step are built from the metamodel elements. It is possible that
LHS and RHS use different metamodels, but, for the sake of simplicity, they have a common metamodel in
the block diagram (Fig. 1). The transformation step contains OCL constraints. The transformation uses
matches found by the matching process and the compiled binary to validate the constraints on the matched
parts of the input model. If and only if a match satisfies the constraints (preconditions), then the
transformation generates the transformation result, and if and only if the transformation result satisfies the
postconditions, then the step was successful. In Fig. 1, the transformation result is also an instance model of
the metamodel, because LHS and RHS use the same metamodel.

The constraints assigned to the transformation steps guarantee the requirements expected from the
transformation steps, e.g. the requirements from Section 2. As it was discussed, after a successful step
execution the conditions hold, and the output is valid. This cannot be achieved without constraints.



4 Further Issues

The relationship between the pre- and postconditions and OCL constraints have been shown. The main
result of the paper is illustrating online validated model transformation that applying OCL constraints
propagated to transformation steps facilitates to require the transformations to validate, preserve or
guarantee certain model properties.

A more efficient solution is if the constraints that require the presented properties are propagated
automatically to the transformation steps. This can be achieved applying aspect-oriented constraint
management [8]. Further open questions are the following: (i) the traceability of the whole transformation,
e.g. with trace objects created during the transformation, (ii) bidirectional transformations in order to
support round-trip engineering, and (iii) supporting the model evolution with model transformation-based
methods.

References

[1]J. Sztipanovits, and G. Karsai, Model-Integrated Computing, IEEE Computer, Apr. 1997, pp. 110-112.

[2] OMG MDA Guide Version 1.0.1, OMG, doc. number: omg/2003-06-01, 12th June 2003,
http://www.omg.org/docs/omg/03-06-01.pdf

[3] OMG Object Constraint Language Spec. (OCL), www.omg.org

[4] Michael R Blaha, and William Premerlani, Object-Oriented Modeling and Design for Database Applications,
Prentice Hall, 1998.

[5] G. Rozenberg (ed.), Handbook on Graph Grammars and Computing by Graph Transformation: Foundations, Vol.1
World Scientific, Singapore, 1997.

[6] OMG UML 2.0 Specifications, http://www.omg.org/uml/

[7]1 L. Lengyel, T. Levendovszky, H. Charaf, Implementing an OCL Compiler for .NET, In Proceedings of the 3rd
International Conference on .NET Technologies, Pilsen, Czech Republic, May-June 2005, pp. 121-130.

[8] L. Lengyel, T. Levendovszky, G. Mezei, B. Forstner, H. Charaf, Metamodel-Based Model Transformation with
Aspect-Oriented Constraints, International Workshop on Graph and Model Transformation, GraMoT, ENTCS Vol.
152, Tallinn, Estonia, September 28, 2005, pp. 111-123.



	Validated Model Transformation
	1   Introduction
	2   Motivation – A Case Study
	3   Contributions
	4   Further Issues
	References


