

Vasco Amaral Universidade Nova de Lisboa (UNL)

vasco.amaral@di.fct.unl.pt

Overview

Overview
 Overview

Who am I?

PHEASANT

Pheasant

BATICc³s

Position

Overview

- Who am I?
- Projects involved
 - PHEASANT BATIC³S
- What do I expect from CAMPaM?

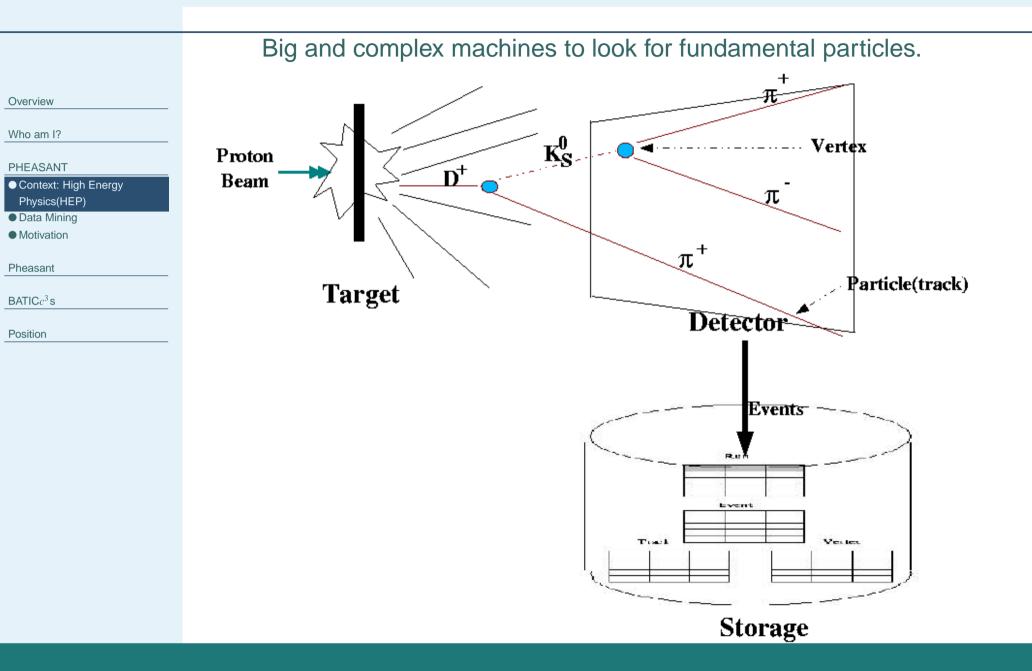
Who am I?

Overview	
Who am I?	
● Who am I?	

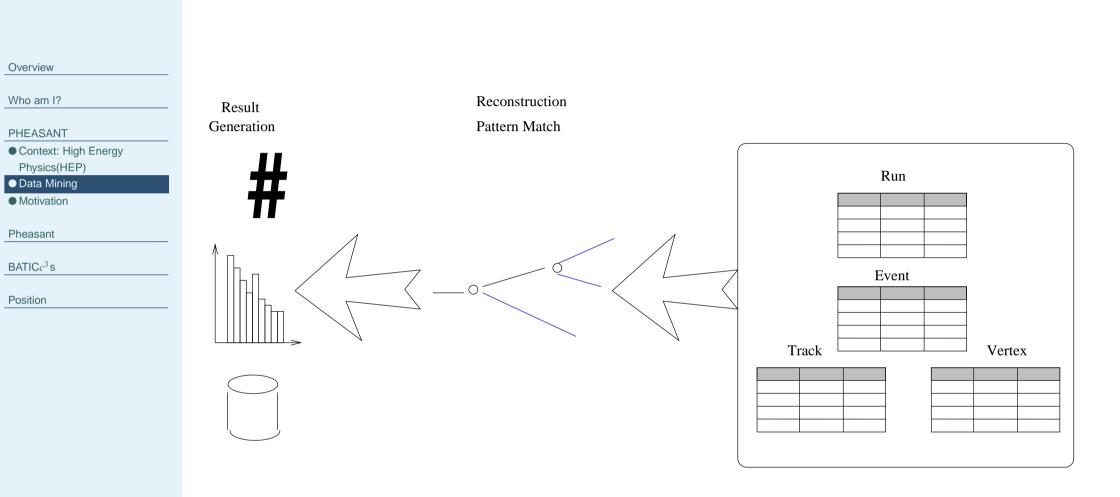
PHEASANT

Pheasant

 $BATICc^3s$


Position

Who am I?


- 1998 Graduated in Computer Science at IST/UTL (Technical University of Lisbon)
- 1999 Worked as software engineer at CERN Geneva (Switzerland) for the ATLAS experiment.
- 2000-2003 Worked at DESY Hamburg(Germany)
- 2005 Defended Phd. at the University of Mannheim (Germany)
- Presently Assistant Professor at FCT/UNL (New University of Lisbon)

Recent interests: MDA, DSL/DSM , Model Transformation

Context: High Energy Physics(HEP)

Data Mining

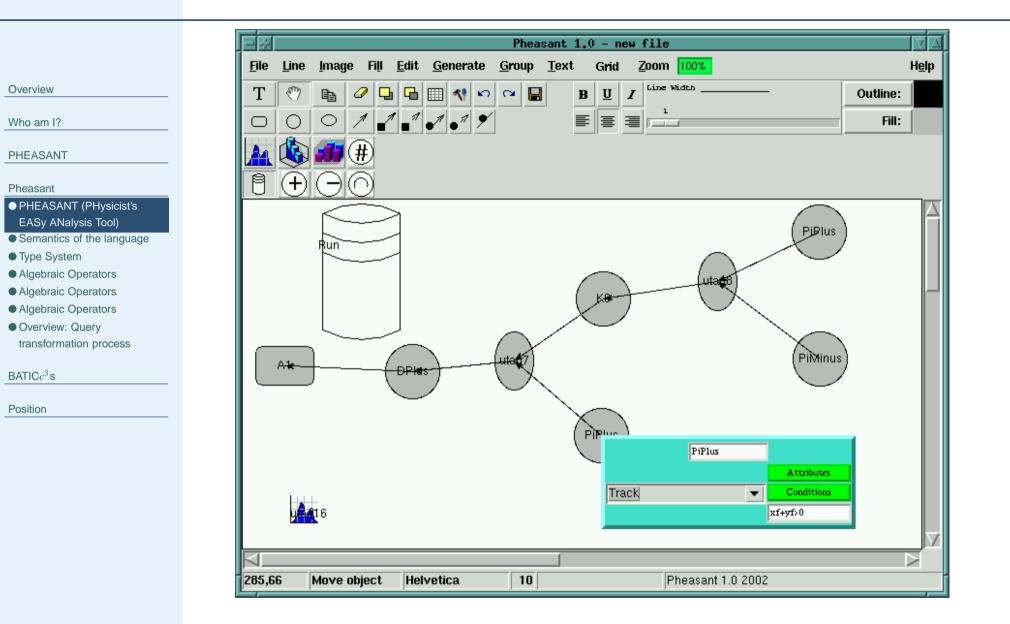
Motivation

Overview

Who am I?

- PHEASANT
- Context: High Energy Physics(HEP)
- Data Mining
- Motivation
 Pheasant

BATICc³s


Position

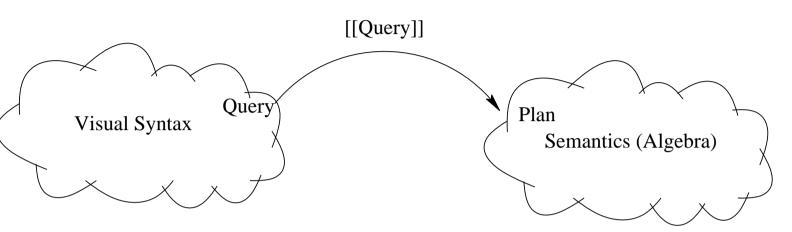
- Problem:
 - Coding with a GPL
 - Twists the way the user thinks about his data. Error prone (excessive work debbuging)
 - Steep learning curve for beginners (2/3): Demands good programming skills. knowing data physical/logical layout. Mastering the utility libraries (typically legacy systems).

We want to increase the user productivity:

- Getting a less steep learning curve.
- Reduce the error rate.
- Reduce the time spent on query generation.

PHEASANT (PHysicist's EASy ANalysis Tool)

Semantics of the language


PHEASANT

Pheasant

- PHEASANT (PHysicist's EASy ANalysis Tool)
- Semantics of the language
- Type System
- Algebraic Operators
- Algebraic Operators
- Algebraic Operators
- Overview: Query transformation process

 $BATICc^3s$

Position

Visual language defined:

Translational semantics into algebra. Advantage of reusing optimization techniques from the Database Management Systems area.

Extended NF2 Algebra defined with denotational semantics.

Type System

Overview

Who am I?

PHEASANT

Pheasant

- PHEASANT (PHysicist's EASy ANalysis Tool)
- Semantics of the language
- Type System
- Algebraic Operators
- Algebraic Operators
- Algebraic Operators
- Overview: Query transformation process

 $\mathsf{BATIC} c^3 \mathsf{s}$

Position

```
Basic types: Float, Bool, Integer, String
```

- Bulk type: $\{\tau\}$
- **Tuple:** $[a_1 : \tau_1, ..., a_2 : \tau_2]$
- Sub-Typing: $\tau \leq \tau' \Rightarrow \{\tau\} \leq \{\tau'\}, [a_1:\tau_1,...,a_n:\tau_n] \leq [a_1:\tau'_1,...,a_k:\tau'_k]$ Example:

```
Event =
```

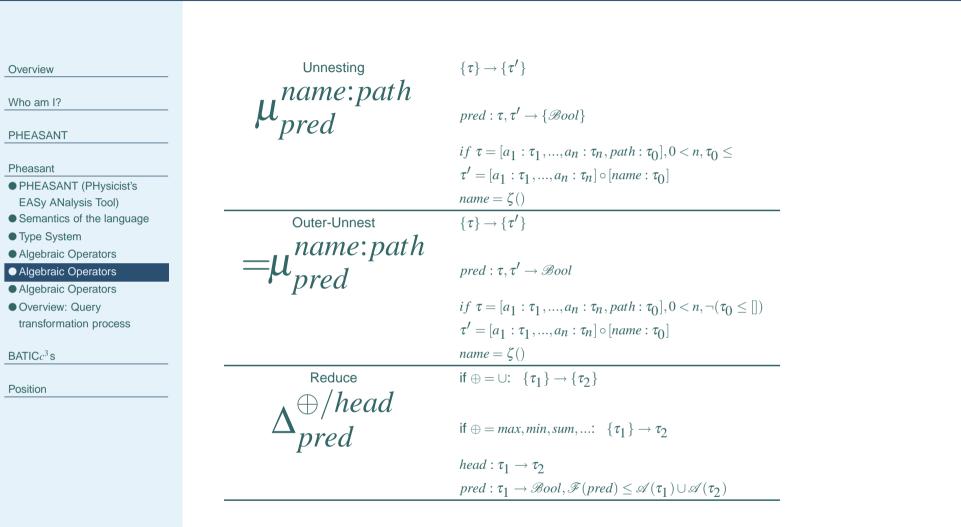
```
[id : Integer,
```

```
particle : {Particle},
```

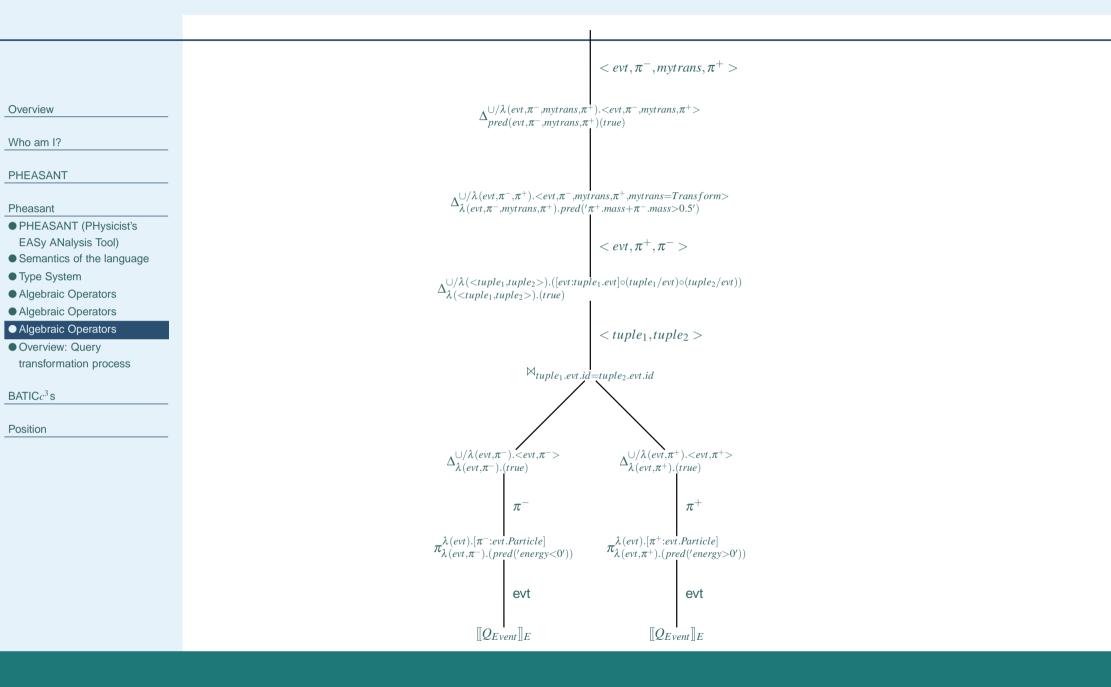
```
vertex : {Vertex}]
```

```
Particle : [id : Integer,
```

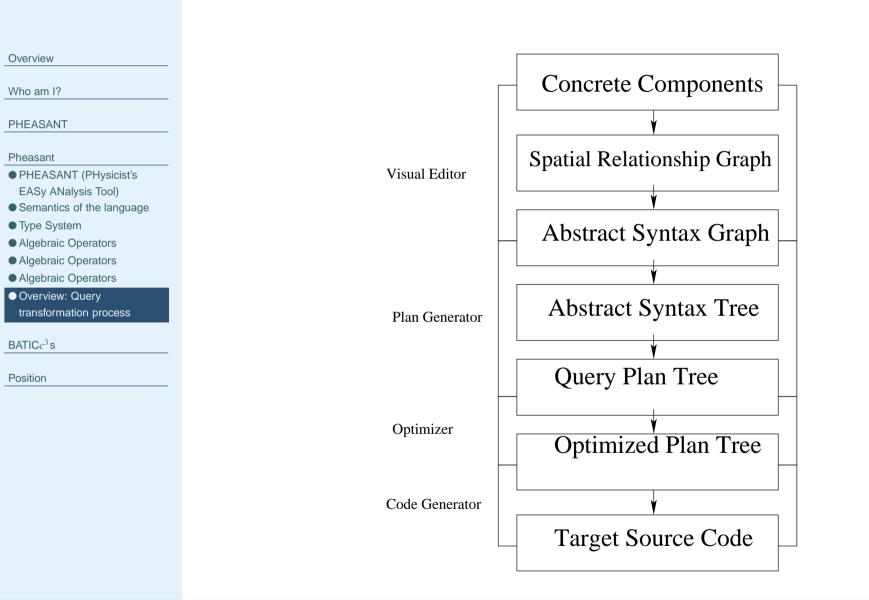
```
mass, x, y, z : Float,
```


```
Energy : Float]
```

Algebraic Operators



Selection	$\{ au\} ightarrow \{ au\}$
σ_{pred}	$pred: \tau \rightarrow \mathscr{B}ool, \mathscr{F}(pred) \leq \mathscr{A}(\tau)$
	$ au \leq []$
N Join	$\{\tau_1\} \times \{\tau_2\} \rightarrow \{[tuple_1:\tau_1,tuple_2:\tau_2]\}$
$\bowtie_{pred}^{\text{Join}}$	$\textit{pred}: \tau_1, \tau_2 \to \mathscr{Bool}, \mathscr{F}(\textit{pred}) \leq \mathscr{A}(\tau_1) \cup \mathscr{A}(\tau_2)$
—	$ au_i \leq []$
Outer-Join	$\{\tau_1\} \times \{\tau_2\} \rightarrow \{[tuple_1:\tau_1,tuple_2:\tau_2]\}$
pred	$\mathit{pred}:\tau_1,\tau_2 \to \mathscr{B}\!\mathit{ool}, \mathscr{F}(\mathit{pred}) \leq \mathscr{A}(\tau_1) \cup \mathscr{A}(\tau_2)$
_	$ au_i \leq []$
Union	
\bigcup	$\{ au\} imes \{ au\} o \{ au\}$
Intersection	
\bigcap	$\{ au\} imes \{ au\} o \{ au\}$
Difference	
	$\{ au\} imes \{ au\} o \{ au\}$


Algebraic Operators

Algebraic Operators

Overview: Query transformation process

BATIC c^3 **s**

Ove	rview

Who am I?

PHEASANT

Pheasant

 $BATICc^3s$

• BATIC c^3 s • Why?

• Goal

Model Languages

Base Modelig formalism

Position

- Collaboration with the SMV group (Geneva University), CMS experiment at CERN as Use Case.
- Build a methodology, specific to the domain of complex control systems, for specifying, building and testing 3D GUIs efficiently.

Why?

Overview

Who am I?

PHEASANT

Pheasant

BATICc³s

BATICc³s
Why?

• Goal

Model Languages

Base Modelig formalism

Position

Why?

Costly

Difficult

Error prone

We observe High complexity coming from :

- Number of components
- Hierarchical interaction between them
- Large number of parameters to be controled at the same time

Goal

Goal

Over	view

Who am I?

PHEASANT

Pheasant

BATICc³s

• BATIC c^3 s

• Why?

● Goal

Model LanguagesBase Modelig formalism

Position

 Specify system without the need of understand programming logic: Structure and behaviour of the system and its GUI; User profiles and task models;

Translate this specification to a model:

- Executable;
- Verifiable;

Derive tests for it;

Automatically generate a prototype.

Model Languages

Overview	Model Languages
Who am I?	Domain model (structure and behaviour between system)
PHEASANT	components)
Pheasant	Behaviour model (component relationship with method
BATICc ³ s	calls and events)
● BATICc ³ s	
• Why?	Tasks model (sequences of operations to achieve a goal)
• Goal	- Tasks model (sequences of operations to achieve a goal)
 Model Languages 	Ileare model (diferent upor profiles might imply different
 Base Modelig formalism 	Users model (diferent user profiles might imply different
Position	tasks)
	3D geometry model

Presentation model (means of interaction of GUI objects)

Dialog model (associates presentation model with Users model)

Base Modelig formalism

Overview	Base modeling formalism Modeling formalism - CO-OPN
Who am I?	based on Petri nets and algebraic data types:
PHEASANT	System level, which models the system behaviour and
Pheasant	structure;
BATIC c^3 s • BATIC c^3 s • Why? • Goal	 GUI logic level, which models the semantics of operation of the GUI;
 Goal Model Languages Base Modelig formalism 	GUI visual level, which models the presentation of the GUI.
Position	

Overview Who am I?	Adequate techniques/Formalisms for specifying DSM/DSL semantics.
PHEASANT	Learn state of the art approaches.
Pheasant	DS(V)L generators and Meta-Modeling tools.
BATICc ³ s	Model transformation techniques and frameworks.
Position	Multi-formalism modeling (rel. multi-view).