
2007 Bellairs CAMPaM Workshop

24 April 2006

Aspects of CAMPaM

Hans Vangheluwe

Modelling, Simulation and Design Lab (MSDL)

School of Computer Science, McGill University, Montréal, Canada

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 1

Overview

1. Multi-Paradigm Modelling, by example

2. Domain-Specific Modelling

3. Dissecting (and modelling) Modelling Languages

4. Building CAMPaM tools effectively

5. Challenges

6. Conclusions

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 2

Multi-Paradigm Modelling . . .

• Intuitive notion (relative): OO paradigm, dataflow paradigm, . . .

• Thomas Kuhn, The Structure of Scientific Revolutions, 1962.

• Need to define more precisely . . .

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 3

Multi-Paradigm Modelling . . .

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 4

Modelling Variety of Complex Systems . . .

Need to be modelled

• at most appropriate level of abstraction

• in most appropriate formalism(s)

• with transformations as first-class models

Pieter J. Mosterman and Hans Vangheluwe. Computer Automated Multi-Paradigm Modeling: An Introduction. Simulation:

Transactions of the Society for Modeling and Simulation International, 80(9):433-450, September 2004. Special Issue on Grand

Challenges for Modeling and Simulation.

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 5

Multi-Paradigm Dimensions

(note: dimensions are not totally ordered)

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 6

Available Information, Questions to be Answered, . . .

⇒ choice of Abstraction Level/Formalism

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 7

Choice of Abstraction Level/Formalism
Order Processing

order
1

received_order
0

filling_order
0

payment
0

process_payment
0

payment_accepted
0

close_order
0

shipping_order
0

receive

accept_order reject_order

end_filling

sending_invoice
0

receive_invoice

send_payment

accept_payment reject_payment

shippedNpaid

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 8

Need Multiple Formalisms: Power Window

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 9

The Model Couples different Formalisms

www.mathworks.com/products/demos/simulink/PowerWindow/html/PowerWindow1.html

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 10

Semantics of Coupled Models

• Super-formalism subsumes all formalisms

• Co-simulation (coupling resolved at trajectory level)

• Transform to common formalism

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 11

Multi-formalism coupled model:
co-simulation

Msub_1
Msub_2

CoupledModel

CouplingGraph

Msub_3

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 12

Co-simulation of multi-formalism coupled
models

• Sub-models simulated with formalism-specific simulators.

• Interaction due to coupling is resolved at trajectory level.

→ Loss of information.

→ Questions can only be answered at trajectory level.

→ Speed and numerical accuracy problems

for continuous formalisms.

→ Meaningful for discrete-event formalisms (beware of legitimacy !).

Basis of the DoD High Level Architecture (HLA)

for simulator interoperability.

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 13

Multi-formalism coupled model:
multi-formalism modelling

Msub_1
Msub_2

CoupledModel

CouplingGraph

Msub_3

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 14

Formalism Transformation Graph

DEVS

Process Interaction
Discrete Event

state trajectory data (observation frame)

Petri Nets
Statecharts

scheduling-hybrid-DAE

Bond Graph a-causal

Bond Graph causal

DAE non-causal set

DAE causal set

PDE

Transfer Function

Difference Equations

System Dynamics

KTG Cellular Automata

Event Scheduling
Discrete Event

3 Phase Approach
Discrete Event

DAE causal sequence (sorted)

DEVS&DESS

Activity Scanning
Discrete Event

Timed Automata

Causal Block Diagram

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 15

Multi-formalism modelling 6= co-simulation

1. Start from a coupled multi-formalism model. Check consistency of

this model (e.g., whether causalites and types of connected ports

match).

2. Cluster all formalisms described in the same formalism.

3. For each cluster, implement closure under coupling.

4. Look for the best common formalism in the Formalism

Transformation Graph all the remaining different formalisms can

be transformed to. Worst case: trajectory level (fallback to

co-simulation).

5. Transform all the sub-models to the common formalism.

6. Implement closure under coupling of the common formalism.

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 16

Multiple (consistent !) Views
(possibly in 6= Formalisms)

(work by Esther Guerra and Juan de Lara using projections of a “repository”)

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 17

View: Runtime Diagram

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 18

View: Events Diagram

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 19

View: Protocol Statechart

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 20

The need for (modelled) Transformations
Model/Analyze/Simulate Traffic Networks

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 21

An un-timed Traffic model

0
bot_W2E

0
turn1

0
to_N_or_W

0
turn2

0
bot_N2S

2
cars

1
bot_CAP 1

turn1_CAP

1
top_CAP

1
turn2_CAP

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 22

Modelling Traffic’s Semantics

• choices: timed, un-timed, . . . (level of abstraction)

• denotational: map onto known formalism (TTPN, PN)

. . . good for analysis purposes

• operational: procedure to execute/simulate model

. . . may act as a reference implementation

• note: need to prove consistency between denotational and

operational semantics if both are given !

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 23

Modelling Traffic’s (un-timed) semantics
in terms of Petri Nets

• need a (meta-)model of Traffic

• need a (meta-)model of Petri Nets

• need a model of the mapping: Traffic ⇒ Petri Net

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 24

Input to semantic mapping transformation

0
bot_W2E

0
turn1

0
to_N_or_W

0
turn2

0
bot_N2S

2
cars

1
bot_CAP 1

turn1_CAP

1
top_CAP

1
turn2_CAP

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 25

The Petri Net describing its behaviour
obtained by automatic transformation

bot_W2E
0

turn1
0

to_N_or_W
0

turn2
0

bot_N2S
0

cars
2

bot_W2E_dep

top_S2W_dep

bot_N2S_dep

top_arr
bot_N2S_arr

bot_W2E_arr

top_S2N_dep

bot_CAP
1

turn1_CAP
1

top_CAP
1

turn2_CAP
1

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 26

Static Analysis of the Transformation Model

The transformation (specified by a Graph Grammar) model must

satisfy the following requirements (of semantic mapping):

• Termination:

the transformation process is finite

• Convergence/Uniqueness:

the transformation results in a single target model

• Syntactic Consistency:

the target model must be exclusively in the target formalism

These properties can often (but not always)

be statically checked/proved.

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 27

More transformations:
Liveness Analysis on Coverability Graph

[turn1_CAP, cars(2), bot_CAP, top_CAP, turn2_CAP]

[turn1_CAP, cars, bot_W2E, top_CAP, turn2_CAP]

bot_W2E_arr

[cars, turn1, bot_CAP, top_CAP, turn2_CAP]

bot_W2E_dep

[turn1_CAP, cars, bot_CAP, turn2_CAP, to_N_or_W]

top_arr

[turn1_CAP, turn2, cars, bot_CAP, top_CAP]

top_S2W_dep

[turn1_CAP, cars, top_CAP, turn2_CAP, bot_N2S]

bot_N2S_arr
bot_N2S_dep

[turn1_CAP, turn2, bot_W2E, top_CAP]

bot_W2E_arr

[turn2, turn1, bot_CAP, top_CAP]

bot_W2E_dep

[turn1_CAP, turn2, bot_CAP, to_N_or_W]

top_arr

[turn1_CAP, turn2_CAP, bot_N2S, to_N_or_W]

bot_N2S_arr

[turn1_CAP, turn2, top_CAP, bot_N2S]

top_S2W_dep

bot_N2S_dep

bot_N2S_dep

top_S2N_dep

top_S2N_dep

[turn1, top_CAP, turn2_CAP, bot_N2S]

bot_N2S_arr
bot_N2S_dep

top_arr

[turn1_CAP, bot_W2E, turn2_CAP, to_N_or_W]

bot_W2E_arr

[turn1, bot_CAP, turn2_CAP, to_N_or_W]

bot_W2E_dep

top_S2W_dep

top_S2N_dep

top_S2W_dep

top_S2N_dep

top_S2N_dep

[turn1, bot_W2E, top_CAP, turn2_CAP]

bot_W2E_arr

top_arr

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 28

Conservation Analysis

1.0 x[turn1_CAP] + 1.0 x[turn1] = 1.0

1.0 x[cars] + 1.0 x[bot_W2E] + 1.0 x[turn1] +

1.0 x[to_N_or_W] + 1.0 x[turn2] + 1.0 x[bot_N2S] = 2.0

1.0 x[top_CAP] + 1.0 x[to_N_or_W] = 1.0

1.0 x[turn2_CAP] + 1.0 x[turn2] = 1.0

1.0 x[bot_CAP] + 1.0 x[bot_W2E] + 1.0 x[bot_N2S] = 1.0

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 29

The Big Picture: Transform Everything!

neglect tim
e

Traffic (un-timed)

Place-Transition Petri Nets

Coverability Graph

describe semantics
by mapping onto

compute all
possible behaviours

simulate

simulate

analyze:
reachability,
coverability, ...

describ
e semantics

by mapping onto

simulate

DEVS

map onto

map onto Timed Transition Petri Nets

de
sc

rib
e

se
m

an
tic

s

by
 m

ap
pi

ng
 o

nt
o

simulate
analyze

describe semantics
by mapping onto

TINA

simulate
analyze

pythonDEVS

simulate

DEVSJava

simulate

TimedTraffic

simulate

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 30

Software Development Process:
Transformations (refinement vs. translation)

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 31

Domain-Specific (Visual) Modelling

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 32

DS(V)M Example: smart phones,
the application

MetaEdit+ (www.metacase.com)

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 33

DS(V)M Example: smart phones,
the Domain-Specific model

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 34

Why DS(V)M ?
(as opposed to General Purpose modelling)

• match the user’s mental model of the problem domain

• maximally constrain the user (to the problem at hand)

⇒ easier to learn

⇒ avoid errors

• separate domain-expert’s work

from analysis/transformation expert’s work

Anecdotal evidence of 5 to 10 times speedup

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 35

Model-Based Development:
Modify the Model

model

model’ app’

apptransformation

transformation

small modification

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 36

Model-Based Development:
Modify the Transformation (model)

model

model app’

apptransformation

small modification

transformation’

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 37

Transformation may be multi-step

• divide-and-conquer, modularity, re-use, . . . ;

• re-use existing transformations;

• potential for optimization at every level;

• multi-formalism modelling by transforming

onto a common formalism;

• in case of Domain-Specific formalisms: usually small

transformation onto known (syntax & semantics) formalism.

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 38

Building DS(V)M Tools Effectively . . .

• development cost of DS(V)M Tools may be prohibitive !

• we want to effectively (rapidly, correctly, re-usably, . . .)

1. Specify DS(V)L syntax:

– abstract ⇒ meta-modelling

– concrete (textual/visual)

2. Specify DS(V)L semantics:

transformation

3. Model (and analyze and execute) model transformations:

⇒ graph rewriting

⇒ model everything

(in the most appropriate formalism,

at the appropriate level of abstraction)

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 39

Dissecting a Modelling Language
(tool builder’s view)

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 40

Deciding on terminology

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 41

What’s in a name ? Language

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 42

What’s in a name ? Formalism

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 43

What’s in a name ? Base Formalism

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 44

What’s in a name ? Concrete Language

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 45

What’s in a name ? Concrete Formalism

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 46

Modelling a Modelling Language/Formalism

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 47

Modelling a Modelling Language/Formalism

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 48

Example: the PacMan Formalism

0Your score

(thanks to Reiko Heckel)

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 49

From now on: use AToM3

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 50

Modelling Abstract Syntax (meta-model)

Cardinalities:
 - To gridBottomV3: 0 to N
 - From gridBottomV3: 0 to N
 - From pacLinkV3: 0 to N
 - From foodLinkV3: 0 to N
 - From scoreLinkV3: 0 to N
 - To gridLeftV3: 0 to N
 - From gridLeftV3: 0 to N
 - To gridRightV3: 0 to N
 - From gridRightV3: 0 to N
 - To gridTopV3: 0 to N
 - From gridTopV3: 0 to N
 - From ghostLinkV3: 0 to N

gridNodeCenter

Cardinalities:
 - To pacLinkV3: 0 to N

pacmanV3

Cardinalities:
 - To foodLinkV3: 0 to N

pacFoodV3

Attributes:
 - score :: Integer
Actions:
 > create
Cardinalities:
 - To scoreLinkV3: 0 to N

ScoreBoard

Cardinalities:
 - To ghostLinkV3: 0 to N

ghostV3

gridLeftV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

gridTopV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

gridBottomV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

gridRightV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

ghostLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From ghostV3: 0 to N

scoreLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From ScoreBoard: 0 to N

pacLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From pacmanV3: 0 to N

foodLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From pacFoodV3: 0 to N

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 51

Modelling the Scoreboard Entity

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 52

Synthesis of Code from this Design model
class ScoreBoard(ASGNode, ATOM3Type):

def __init__(self, parent = None):

ASGNode.__init__(self)

ATOM3Type.__init__(self)

self.graphClass_ = graph_ScoreBoard

self.isGraphObjectVisual = True

self.parent = parent

self.score=ATOM3Integer(0)

self.generatedAttributes = {’score’: (’ATOM3Integer’) }

self.directEditing = [1]

def clone(self):

cloneObject = ScoreBoard(self.parent)

for atr in self.realOrder:

cloneObject.setAttrValue(atr, self.getAttrValue(atr).clone())

ASGNode.cloneActions(self, cloneObject)

return cloneObject

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 53

Meta-modelling: model-instance morphism

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 54

Meta-meta-. . . : Meta-circularity

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 55

Add Concrete Visual Syntax to Classes

Cardinalities:
 - To gridBottomV3: 0 to N
 - From gridBottomV3: 0 to N
 - From pacLinkV3: 0 to N
 - From foodLinkV3: 0 to N
 - From scoreLinkV3: 0 to N
 - To gridLeftV3: 0 to N
 - From gridLeftV3: 0 to N
 - To gridRightV3: 0 to N
 - From gridRightV3: 0 to N
 - To gridTopV3: 0 to N
 - From gridTopV3: 0 to N
 - From ghostLinkV3: 0 to N

gridNodeCenter

Cardinalities:
 - To pacLinkV3: 0 to N

pacmanV3

Cardinalities:
 - To foodLinkV3: 0 to N

pacFoodV3

Attributes:
 - score :: Integer
Actions:
 > create
Cardinalities:
 - To scoreLinkV3: 0 to N

ScoreBoard

Cardinalities:
 - To ghostLinkV3: 0 to N

ghostV3

gridLeftV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

gridTopV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

gridBottomV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

gridRightV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

ghostLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From ghostV3: 0 to N

scoreLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From ScoreBoard: 0 to N

pacLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From pacmanV3: 0 to N

foodLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From pacFoodV3: 0 to N

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 56

Modelling Ghost Concrete Visual Syntax

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 57

Add Concrete Visual Syntax to Associations

Cardinalities:
 - To gridBottomV3: 0 to N
 - From gridBottomV3: 0 to N
 - From pacLinkV3: 0 to N
 - From foodLinkV3: 0 to N
 - From scoreLinkV3: 0 to N
 - To gridLeftV3: 0 to N
 - From gridLeftV3: 0 to N
 - To gridRightV3: 0 to N
 - From gridRightV3: 0 to N
 - To gridTopV3: 0 to N
 - From gridTopV3: 0 to N
 - From ghostLinkV3: 0 to N

gridNodeCenter

Cardinalities:
 - To pacLinkV3: 0 to N

pacmanV3

Cardinalities:
 - To foodLinkV3: 0 to N

pacFoodV3

Attributes:
 - score :: Integer
Actions:
 > create
Cardinalities:
 - To scoreLinkV3: 0 to N

ScoreBoard

Cardinalities:
 - To ghostLinkV3: 0 to N

ghostV3

gridLeftV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

gridTopV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

gridBottomV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

gridRightV3

Cardinalities:
 - To gridNodeCenter: 0 to 1
 - From gridNodeCenter: 0 to 1

ghostLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From ghostV3: 0 to N

scoreLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From ScoreBoard: 0 to N

pacLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From pacmanV3: 0 to N

foodLinkV3

Cardinalities:
 - To gridNodeCenter: 0 to N
 - From pacFoodV3: 0 to N

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 58

GhostLink Concrete Visual Syntax

Get n1, n2 end-points of the link

n1 = self.in_connections_[0]

n2 = self.out_connections_[0]

g1 and g2 are the graphEntity visual objects

g0 = self.graphObject_ # the link

g1 = n1.graphObject_ # first end-point

g2 = n2.graphObject_ # second end-poing

Get the high level constraint helper and solver

from Qoca.atom3constraints.OffsetConstraints import OffsetConstraints

oc = OffsetConstraints(self.parent.qocaSolver)

The constraints

oc.CenterX((g1, g2, g0))

oc.CenterY((g1, g2, g0))

oc.resolve()

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 59

Synthesize + Customize Buttons model

New Edit New Help

New gridNodeCenter

New pacmanV3 New pacFoodV3 New ScoreBoardNew ghostV3

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 60

Default generated Buttons code for ghostV3

This method has as parameters:

- wherex : X Position in window coordinates where the user clicked.

- wherey : Y Position in window coordinates where the user clicked.

newPlace = self.createNewghostV3 (self, wherex, wherey)\n’))

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 61

Can now do syntax-directed editing of
PacMan models ?

0Your score

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 62

Model the GUI’s Reactive Behaviour !
in the Statechart formalism

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 63

The GUI’s reactive behaviour in action

challenge: what is the optimal formalism to specify GUI reactive behaviour ?

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 64

Syntax Directed Editing (vs. Freehand)

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 65

Modellling PacMan Operational Semantics

note: for Denotational Semantics: map for example onto Petri Net

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 66

Specifying Model Transformations

What is the “optimal” formalism ?

Models are often graph-like ⇒ natural to express model transformation

by means of graph transformation models.

Ehrig, H., G. Engels, H.-J. Kreowski, and G. Rozenberg.

Handbook of graph grammars and computing by graph

transformation.

1999. World Scientific.

Tools:

GME/GReAT, PROGRES, AGG, AToM3, Fujaba, GROOVE, . . .

First two (and Fujaba) used in large industrial applications.

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 67

Model Operational Semantics using GG

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 68

PacMan Die rule

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 69

PacMan Die rule LHS

2

4

1

3

5

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 70

PacMan Die rule RHS

1

3

5

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 71

PacMan Eat rule LHS

2

5

1

3

4

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 72

PacMan Eat rule RHS

2

5

1

scoreBoard = None

scoreBoards = atom3i.ASGroot.listNodes[’ScoreBoard’]

if (not scoreBoards):

return

else:

scoreBoard = scoreBoards[0]

scoreVal = scoreBoard.score.getValue()

scoreBoard.score.setValue(scoreVal+1)

scoreBoard.graphObject_.ModifyAttribute(’score’,scoreVal+1)

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 73

PacMan Move rule LHS

7

8

6 9

10

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 74

PacMan Move rule RHS

7

1

6 9

10

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 75

Specifying/Executing Trsf. with GGs
(+) Models are often Graph-like

(+) Visual specification (documentation)

For insight/debugging: execution + visual display

For performance: execution on data structures in memory

(+) Little or no programming knowledge required (allows

understanding/modification by domain-experts)

(-) Does it scale up ?

Yes, need to use modular GGs (e.g., GReAT, PROGRES)

(-) Performance is bad ! (due to sub-graph matching)

But sometimes no alternative

– model transformation for graph-like models

– don’t want to code matching yourself

But give (domain-specific) hints to kernel (or compile)

But use as specification for manual implementation

– executable specification = reference implementation

– automatic generation of unit tests

(including expected correct result)

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 76

Modular Graph Rewriting:
GReAT Control Structures: Sequence

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 77

Modular Graph Rewriting:
GReAT Control Structures: Nesting

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 78

Model Based Development:
some Open Problems

1. deal with concrete syntax (textual, visual) in a unified manner

2. deal with legacy models (code)

3. trace-ability (backward links, use TGGs ?)

4. (meta-) model evolution

5. multi-formalism modelling

6. multi-abstraction modelling

7. multi-view modelling, (semantic) consistency

8. model refinement (cfr. GUI example)

9. automated testing (of models)

10. modularize transformations, mix trsf. formalisms, graft on existing

formalism

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 79

11. transformation models are first-class models ⇒

higher-order transformation

12. quantify “accidental complexity”, leads to choice of “most appropriate

formalism”

13. mega-modelling

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 80

Conclusions

1. Through anecdotal evidence, demonstrated the usefulness of

(Computer Automated) (Domain-Specific) Multi-Paradigm

Modelling.

2. Demonstrated feasibility of rapidly and re-usably building

Domain-Specific Visual Modelling, Analysis, Simulation tools

using meta-modelling and graph rewriting.

3. Many problems have been solved, but . . .

4. Still many open research problems

(good news for researchers, challenge for industry) !

model everything !

Hans Vangheluwe hv@cs.mcgill.ca Model Everything ! 81

