System-Level Design for Heterogeneous Embedded Systems

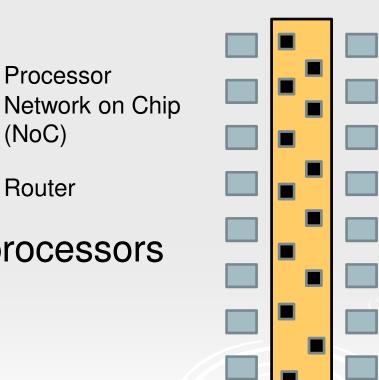
Gabriela Nicolescu

Ecole Polytechnique de Montréal

Tel: (514) 340 4711 ext 5434

Fax: (514) 340 3240

Email: gabriela.nicolescu@polymtl.ca

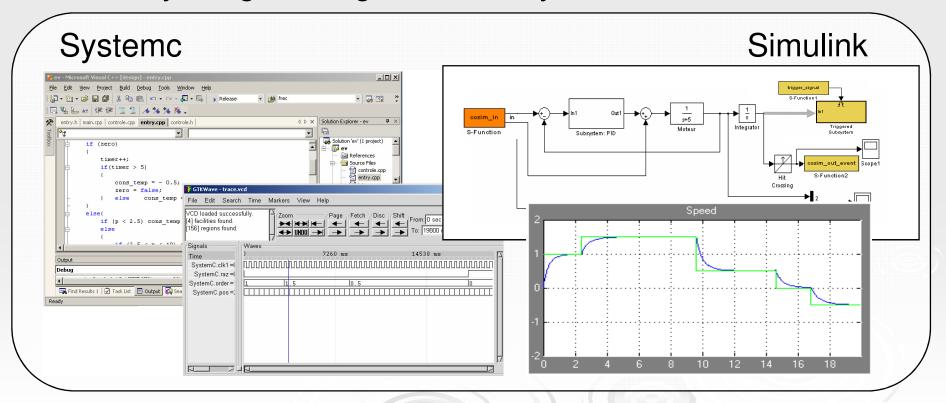


G. Nicolescu

- Associate professor at Ecole Polytechnique de Montreal, Canada (since August 2003)
 - Currently in sabbatical at STMicroelectronics Canada
- Research interest
 - Embedded systems
 - System-level design
 - Heterogeneous models, integration & refinement
 - (Co-)Simulation global validation
 - Abstractions

Heterogeneous Embedded Systems

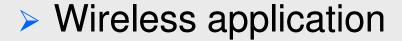
- > Systems including Multi-Domains components
 - > Electronic
 - Hardware
 - Analog
 - Discrete
 - Software
 - Heterogeneous processors
 - Optic
 - Mechanic


Global Simulation

- Continuous/Discrete Interfacing
- Synchronization models
 - Formalized using timed-automata and DEVS
 - Formally verified using UPPAAL
 - Implemented for Simulink and SystemC Models

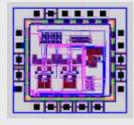
Continuous/Discrete Simulation

- SystemC/Simulink accurate simulation
 - Easy integration, generic library elements



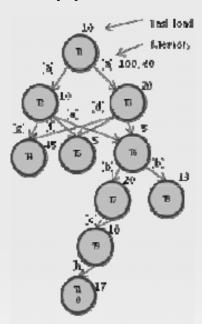
Applications

Glycemia regulator

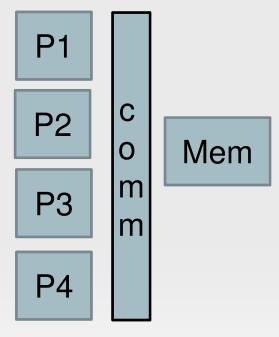


- Mixed signal application
 - Σ/Δ Converter

- Radar syste
- Control applications
 - Robot arm manipulator, Bottle filling



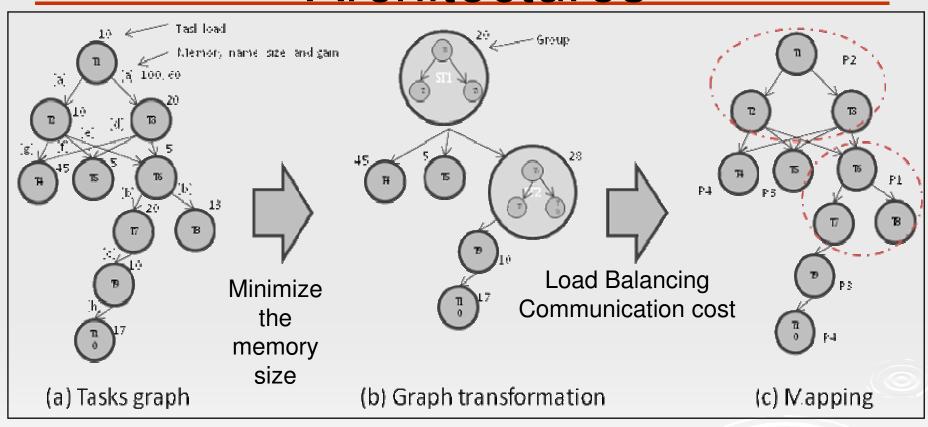
Mapping Application on Architectures


Application

Load Balancing Minimize Comm. Cost Minimize Memory Size

Architecture

Graph Annotations


- -For nods load of processor
- -For edges data size

G. Nicolescu

High-Level Specification

- No and type of processors
- Communication and storage ressources

Mapping Application on Architectures

Mapping Application on Architectures

Code Transformation - example -

```
L_1: do i = 0, 7
                                           doi = 0, 7
      do j = 0, 7
                                               do j = 0, 7
          S_1:A(i,j) = F(In);
                                                  S_1: A(i,j) = F(In);
                                                  S_2: B(i,j) = A(i,j) + A(i-1, j-1);
      end
    end
                                               end
                                           end
L_2: do i = 0, 7
      do j = 0, 7
          S_2:B(i,j) = A(i,j) + A(i-1, j-1);
      end
    end
(a) Initial Code
                                          (b) Loop Fusion
```

Applications and results

- Multimedia applications
 - MPEG4
 - Demosaik
 - Cavity detection
- Wireless applications
 - WIMAX 802.16
- Automatically Model Transformation
 - 60% gain in memory size
- Integration with STMicroelectronics platforms
 G. Nicolescu

Expectations

- Combining foundations and applications
- Models vs. Applications
- Models vs. Tools
- Models vs. Domains
- Collaborations