
Visual Modeling and Transformation System

Budapest University of Technology and Economics

László Lengyel

http://vmts.aut.bme.hu

vmts@aut.bme.hu



Research /1: Validated Model Transformation

� Motivation
� At the implementation level, system validation can be achieved by testing. 

There is no real possibility that the testing covers all the possible cases.

� In case of model transformation environments, it is not enough to validate that 
the transformation engine itself works as it is expected. The transformation 
specification should also be validated.specification should also be validated.

� A precondition assigned to a transformation rule is a boolean expression 
that must be true at the moment when the transformation rule is fired. A 
postcondition assigned to a transformation rule is a boolean expression that 
must be true after the completion of a transformation rule.

� A n OCL expression in LHS is a precondition to the transformation rule, 
and an OCL expression in RHS is a postcondition to the transformation 
rule.

� Successful execution of the rule guarantees that the output model fulfills the 
conditions required by high-level constructs.



Research /2: Aspect-Oriented Constraint Management

� Motivation

� Transformation consists of several rules, many times not only a transformation rule but a 
whole transformation is required to validate, preserve or guarantee a certain property.

� The same constraint appears numerous times in the transformation → crosscuts the 
transformation.

� Aspect-oriented constraint management� Aspect-oriented constraint management

� Aspect-oriented constraints

� Constraint aspects

� Weaver algorithms

� Results

� Consistent constraint management

� Reusable constraints and transformation rules

� Weaving algorithms facilitates to require from not only individual rules, but from whole 
transformations to validate, preserve or guaranty certain properties.



Research /3

� Animation and Simulation in VMTS
� DSLs

� Transformation debugging

� UI Programmability / Layout Animation

� Supporting Domain-Specific Design Patterns
� The goal is to make model transformation-based development easier, more efficient and 

rapid. 

� In graph rewriting-based model transformation, there are several recurring problems that 
should be solved again and again in the context of different transformations or different 
environments → Design Patterns.

� A pattern is a reusable entity, which describes a frequent design or implementation 
problem, and gives a general but customizable solution to it. 

� Supporting Round-trip Engineering
� Model – Source code and Source code – Model Synchronization

� Traceability

� Sophisticated diff mechanisms



Research /4: Applying Multi-Paradigm Modeling 
to Multi-Platform Mobile Development 

� Static UI
� Different enough to be different paradigm

� Related enough to synchronize them

� MPM is the best solution: must be split into paradigms instead of one huge model

� Behavior

� Data services and data binding

� Communication: another domain

� Multi-Paradigm Modeling
� Within the UI, data, behavior

� Extensible with the other services



Topic selection/specific problems

� Analysis and design of complex systems (MPM)

� Modeling of transformations (transformations as first-class 
models)

� Model testing

� Metamodeling and model transformation
� Metamodel and model evolution 

� Testing model transformations

� Debugging model transformations



Criteria for success (from my point of view)

� Connections

� CAMPaM related references

� Ideas how to analyze, design and build complex systems

� Real model-based development� Real model-based development

� Model transformation-based round-trip engineering

� To understand how others on the same are do research



Questions?

http://vmts.aut.bme.hu
vmts@aut.bme.hu



Thank you for your attention!

http://vmts.aut.bme.hu
vmts@aut.bme.hu


