

CAMPAM 2008

Fourth International ERCIM Workshop on Software Evolution (EVOL 2008)

- 15-16 September 2008
- L'Aquila, Italy
- Co-located with ASE 2008
- Organised by ERCIM Working Group on Software Evolution
- Papers and tool demonstrations solicited
 - on all aspects of software evolution
 - submission deadline:16 June 2008

Website

http://evol08.inria.fr/

MODELS 2008 workshop on Challenges in Model-Driven Software Engineering

Toulouse, France

Co-located with MODELS 2008

Objective: discuss future challenges in MDE

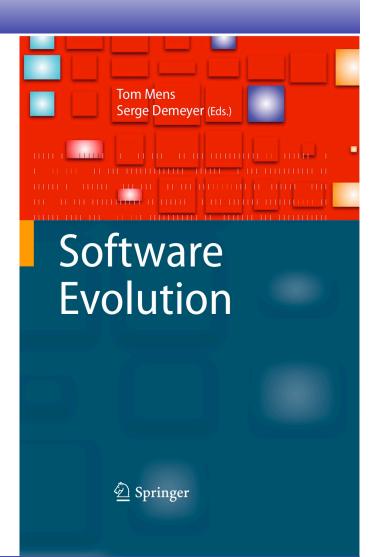
- What are the current problems and obstacles in MDE ?
- Where should MDE go to in the long term?
- Identify "grand challenges", "revolutionary" new ideas

Commercial break

Dates

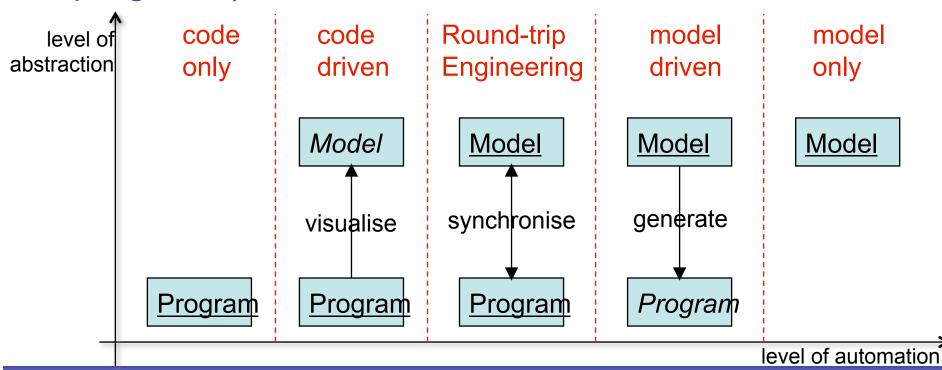
- Submission deadline4 August 2008
- Workshop date20, 29 or 30 September 2008

Website


http://ssel.vub.ac.be/ChaMDE08/

Book « Software Evolution »

- Springer, February 2008
 - ISBN 978-3-540-76439-7
- Covers current state-of-the-art in software evolution
- With contributions by
 Capiluppi, Demeyer, Gall,
 Hainaut, Heckel, Koschke,
 Lanza, Mens, Moonen, Ramil,
 Wermelinger, van Deursen,
 Zimmermann, Zeller, ...



Model-Driven Software Engineering

 An approach to software development where the principal artifacts are models (as opposed to programs)

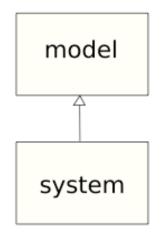
Model-Driven Software Engineering

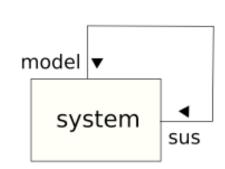
Everything is a model!

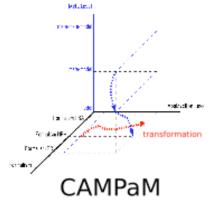
Jean-Marie Favre

Nothing is a model!

Hans Vangheluwe




Model everything!


Tom Mens

Transform everything!

Challenge: Model-driven evolution

Observation

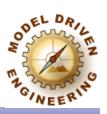
- Contemporary modeling tools do not adequately address software evolution problems
- Need better support (tools, formalisms) for
 - model inconsistency management
 - model refactoring
 - model merging
 - •
- Goal of my research
 - Use formalisms to gain better understanding of, and improve tool support for, these activities of model inconsistency management

My Research in a Nutshell

- Using description logics
 - To manage UML model inconsistencies (2003-2004)
 - with R. Van Der Straeten, VUB, Belgium
- Using graph transformation
 - To deal with refactoring (2004-2007)
 - with G. Taentzer, Germany
 - To resolve model inconsistencies (2006-2007)
 - with R. Van Der Straeten, Brussels
 - To support ontology evolution (2007)
 - with P. De Leenheer, Brussels

My Research in a Nutshell

- Using logic programming
 - To deal with structural and temporal model inconsistencies (2008)
 - with X. Blanc, Paris
- Empirical studies of software evolution
 - Eclipse case study
 - with J. Fernandez-Ramil, UMH, Belgium


Main challenges

- Formally reason about model evolution
 - By using a model transformation mechanism that is
 - Generic, higher-order
 - Applicable to "any" kind of model
 - expressive
 - Suitable mechanisms for control flow, constraints, application conditions, ...
 - scalable and efficient
 - reusable and modular
 - That allows for formal reasoning of
 - The models being transformed
 - The model transformations themselves
 - That can be applied at any level (models, metamodels, ...)

Main challenges

- Need to represent models and transformations in a uniform way
- Two possible alternatives:
 - Represent transformations as first-class models
 - Represent models as first-class transformations (ICSE 2008 paper)


Conclusion

Useful references

About model transformation

T. Mens, P. Van Gorp. A taxonomy of model transformation. Proc. GRAMOT 2005, ENTCS 152, Elsevier, 2006

About model inconsistency

- X. Blanc, I. Mounier, A. Mougenot, T. Mens. Detecting model inconsistency through operation-based model construction. Proc. ICSE 2008
- T. Mens, R. Van Der Straeten. *Incremental resolution of model inconsistencies*. Proc. WADT 2006, LNCS 4409: 111-127
- T. Mens, R. Van Der Straeten, M. D'Hondt. Detecting and resolving model inconsistencies using transformation dependency analysis. Proc. MoDELS 2006, LNCS 4199: 200-214
- R. Van Der Straeten, T. Mens et al. Using description logics to maintain consistency between UML models. Proc. UML 2003, LNCS 2863:326-340

Useful references

About model refactoring

- T. Mens, G. Taentzer, D. Müller. *Model-driven software refactoring*. Book chapter in: Model-driven software development: Integrating Quality Assurance, IDEA Publishing, 2008
- T. Mens, G. Taentzer, O. Runge. Analyzing refactoring dependencies using graph transformation. SoSyM Journal, September 2007
- R. Van Der Straeten, T. Mens, V. Jonckers. A formal approach to model refactoring and model refinement. SoSyM Journal, June 2007
- T. Mens. On the use of graph transformations for model refactoring. Proc. GGTSE 2005, LNCS 4143: 219-257
- R. Van Der Straeten, V. Jonckers, T. Mens. Supporting model refactorings through behaviour inheritance consistencies. Proc. UML 2004, LNCS 3273: 305-319