

Model-Based Systems Engineering

Chris Paredis

Systems Realization Laboratory

Systems Realization Laboratory Product and Systems Lifecycle Management Center G.W. Woodruff School of Mechanical Engineering Georgia Institute of Technology

www.srl.gatech.edu www.pslm.gatech.edu

© 2009, Chris Paredis

Research Scope and Focus

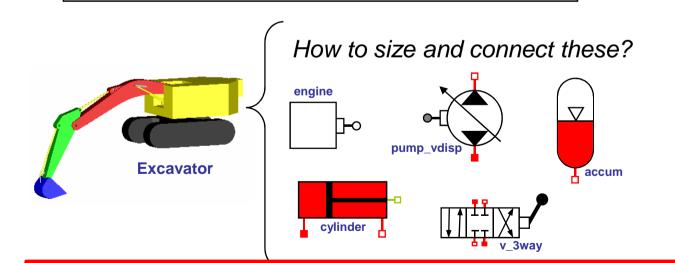
- Research Area
 - Modeling and Simulation in Design
- Application Focus: Systems engineering
 - Fluid power systems
 - Mechatronic systems
- Research Focus
 - Decision theory
 - Modeling and Simulation
 - Model Management

Create Value

- Increase Benefit
 - By using models more effectively to support decision-making

Decrease Cost

- By managing models more effectively
 - Reuse
 - Modularity
 - Composition

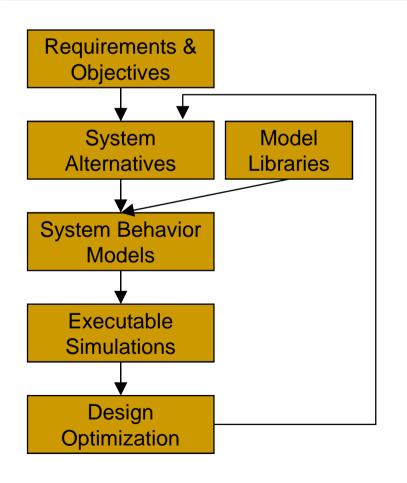

MBSE Example Problem: Hydraulic Systems

Given:

- Primary components
- Decision objectives / preferences

Find:

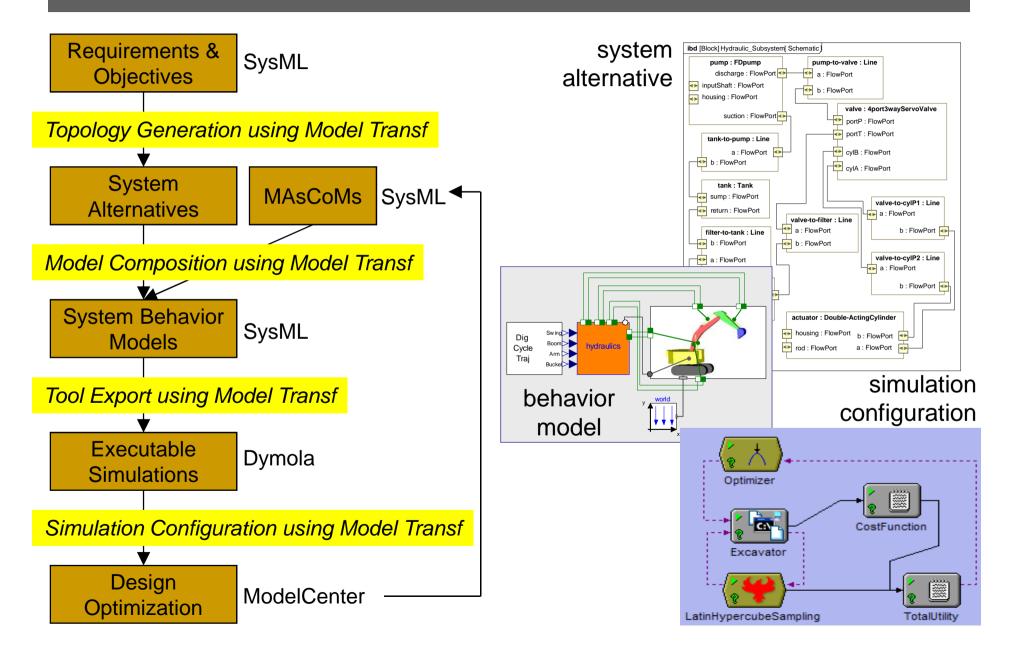
- Best system topology
- Best component parameters


Very large search and optimization problem

- Many competing objectives
- Many topologies
- Many component types/sizes
- Many control strategies

How do we best capture and use the system design knowledge?

Model-based Systems Engineering (MBSE)


MBSE: Model formally all aspects of a systems engineering problem

- Effective and Efficient Analysis of Alternatives
 - Model from different
 perspectives
 - Model at different levels of abstraction
 - Multiple formalisms
 - Variable-fidelity modeling
 - Model reuse & modularity
- Effective Generation of Alternatives
 - Graph transformations for generating plausible system architectures
 - Automated generation of system models

Approach: Modeling and Model Transformations

Other Model-Related Activities

• OMG \rightarrow SysML

- SE DSIG Systems Engineering Domain Special Interest Group
- Lead a working group on Modelica-SysML integration

Conferences

- Workshop on Model-Based Systems Engineering at ASME IDETC/CIE in San Diego (Sept 09)
- EOOLT'09 Workshop at MODELS'09 in Denver (Oct 09)
- Modelica'09 in Como, Italy (Sept 09)

Discussion Topics of Interest

- Formalization of systems engineering problems in terms of models and transformations
 - Models for the problem, the solution space, the analysis models, etc.
- Synthesis knowledge generating plausible solutions
 - Generative grammars: how to encode/enforce constraints?
 - How is expert knowledge most easily encoded?
 - Generating all and only relevant solutions
- Meta-information about models
 - Applicability and validity model context
 - Fidelity, abstraction, accuracy
- Maintaining consistency between models / model views
 - Not all the information is stored in a single model

