
Capturing Domain-Specific Knowledge
for Design of Hydraulic Systems

Chris Paredis

Systems Realization Laboratory

© 2009, Chris Paredis

Systems Realization Laboratory
Product and Systems Lifecycle Management Center
G.W. Woodruff School of Mechanical Engineering

Georgia Institute of Technology

www.srl.gatech.edu www.pslm.gatech.edu

Systems Engineering: A Decision-Based Perspective

Concept

Development
Design

Production

& Testing

Sales &

Distribution

Maintenance

& Support

Portfolio

Planning

Decisions

Modeling and Simulation Provides Information
in Support of Decisions

Systems Realization Laboratory© 2009, Chris Paredis2

Evaluate
Alternatives

Generate
Alternatives

Select
Alternative

KnowledgeInformation

Generic
Decision
Process

in Support of Decisions

Challenges in Systems Engineering

� Multiple integrated functions

� Multiple engineering disciplines

� Multiple stakeholders

� Globally distributed, heterogeneous design teams

Systems Realization Laboratory© 2009, Chris Paredis

� Complex, emergent system behavior

� Large quantities of design knowledge and information

� Need Formal, Model-Based Approach

Model-based Systems Engineering (MBSE)

� Effective and Efficient Analysis
of Alternatives
• Model from different

perspectives
• Model at different levels of

abstraction
• Variable-fidelity modeling
• Model reuse & modularity

Requirements &
Objectives

System Model

MBSE: Model formally all aspects of a
systems engineering problem

Systems Realization Laboratory© 2009, Chris Paredis

• Model reuse & modularity

� Effective Generation
of Alternatives
• Graph transformations for

generating plausible system
architectures

• Automated generation of system
models

4

Executable
Simulations

System Behavior
Models

Design
Optimization

System
Alternatives

Model
Libraries

MBSE Example Problem: Hydraulic Systems

Given:
• Primary components
• Decision objectives / preferences

Find:
• Best system topology
• Best component parameters

� Very large search
and optimization
problem
• Many competing

objectives

Systems Realization Laboratory© 2009, Chris Paredis

objectives
• Many topologies
• Many component

types/sizes
• Many control

strategies
Excavator

pump_vdisp

cylinder

accum

How to size and connect these?

engine

v_3way

5
How do we best capture and use the system design knowledge?

Approach: Most Knowledge Can Be Represented
as Graphs or Graph Transformations

Requirements &
Objectives

SysML

Topology Generation using Graph Transf

Model Composition using Graph Transf

System
Alternatives

MAsCoMs SysML

 Hydraulic_Subsystem Schematic[Block] ibd []

valve : 4port3wayServoValve

cylA : FlowPort

cylB : FlowPort

portP : FlowPort

portT : FlowPort

pump : FDpump

discharge : FlowPort

suction : FlowPort

housing : FlowPort

inputShaft : FlowPort

tank-to-pump : Line

a : FlowPort

b : FlowPort

pump-to-valve : Line

a : FlowPort

b : FlowPort

valve-to-cylP1 : Line

a : FlowPort

b : FlowPort

valve-to-cylP2 : Line
a : FlowPort

valve-to-filter : Line

a : FlowPort

b : FlowPort

filter-to-tank : Line

a : FlowPort

b : FlowPort

tank : Tank

return : FlowPort

sump : FlowPort

system
alternative

Systems Realization Laboratory© 2009, Chris Paredis

Executable
Simulations

Dymola

System Behavior
Models SysML

Model Translation using Graph Transf

Design
Optimization ModelCenter

Simulation Configuration using Graph Transf

actuator : Double-ActingCylinder

a : FlowPort

b : FlowPorthousing : FlowPort

rod : FlowPort

b : FlowPortfilter : Filter

in : FlowPort

out : FlowPort

hydraulics

world

x

y

Dig
Cycle

Arm

Boom

Sw ing

Bucket
Traj

behavior
model

simulation
configuration

1. A Language for describing Fluid-Power circuits
• Language is described by a meta-model
• Valid circuits are represented as graphs

2. A Model Library with static knowledge
• What are the available components?
• What are their characteristics and behaviors?

Capturing Knowledge about Fluid-Power Circuits

Systems Realization Laboratory© 2009, Chris Paredis

• What are their characteristics and behaviors?

3. A set of Model Transformations
• Knowledge on how to combine components into circuit
• Knowledge on how to generate analysis models from circuit descriptions

4. Language Mappings to/from other domains
• Allows results to be viewed and edited (e.g. in SysML)
• Allows circuits to be analyzed (e.g. in Dymola/Modelica)

7

Language for Fluid-Power Circuits

Systems Realization Laboratory© 2009, Chris Paredis8

+ Constraints

Note: ultimately the
resulting circuits need to be

represented in SysML

� Extend SysML using a Profile

Concrete Syntax – Extending SysML

[Profile] pkg MSD MSD[]

-isEncapsulated : Boolean

<<stereotype>>
Block
[Class]

Systems Realization Laboratory© 2009, Chris Paredis

<<stereotype>>
system
[Class]

<<stereotype>>
mass
[Class]

<<stereotype>>
spring
[Class]

<<stereotype>>
damper
[Class]

<<stereotype>>
component

[Class]

9

Specify Knowledge in Domain-Specific Model

SysML
Model in

SysML tool

Domain Specific
ModelMapping

T
ransform

ation

Use MOFLON to
define meta modelUse MOFLON to define

graph transformations to

Systems Realization Laboratory© 2009, Chris Paredis10

Transformed Domain
Specific Model

T
ransform

ation

New SysML
Model in

SysML tool
or

Model in
other tool

Mapping

graph transformations to
perform these actions

� Language to express the Problem
• Should cover a set of problems that is relevant to the user
• The broader the set, the more complex the solution space and the

more difficult the process of solving the problem could become
• Includes objectives, requirements, etc. � very broad
• How to anticipate all the aspects a designer may care about?

Challenges

Systems Realization Laboratory© 2009, Chris Paredis

� Language to express fluid-power circuits
• Should include each fluid-power circuit that is optimal for some

problem instance
• Ideally, should not include any other circuits � in practice: many more
• Is it possible to constrain the language based on problem

characteristics?

11

Generating System Alternatives

Systems Realization Laboratory

© 2009, Chris Paredis 12

Generative Grammar
for Design Synthesis

� Graph Transformation
rules to generate
systems

� Generate random
system alternatives by

Systems Realization Laboratory© 2009, Chris Paredis

system alternatives by
applying rules in
randomized order

� Improve system
alternatives through
evolutionary search
algorithms

13

� Capture
connectivity
information in graph
transformation rules

� Capture available
components in

General Synthesis Approach

Select random
library

component of
appropriate

Match
appropriate

unconnected
componentSelect next

decision tree
node

Systems Realization Laboratory© 2009, Chris Paredis

components in
model library

� Control the order in
which rules are
applied using
decision tree

14

appropriate
type

Add
component to

circuit and
connect it to

matched
component

Execute
corresponding

rule
consists of

Decision Tree of Generation Process
Decision Tree Decision Tree[Activity] act []

Add Cylinder

Add Directional
Valve

 [success]

 [failure]

 [success]

{probability = ".7" }

 [success]

 [failure]

Systems Realization Laboratory© 2009, Chris Paredis15

Add Pump

Add Tank

Valve

{probability = ".3" }

 [success]

{probability = ".7" }

 [success]

{probability = ".3" }
 [success]

 [failure]

Putting it all together
[Block] Circuit Circuitibd []

 : HighPressure
 : ControlPressure

<<pump>>
 : VariableDisplacementPump

 : ControlPressure

 : LowPressure

Rotational : Flange : HighPressure

<<block>>
 : Engine

powerOut : Flange
[Block] Circuit Circuitibd []

<<block>>
 : Engine

 : Flange

Systems Realization Laboratory© 2009, Chris Paredis

<<directionalValve>>
 : 6Way3PosClosedCenter

 : FlowPort
 : LowPressure : FlowPort

<<tank>>
 : Tank

 : LowPressure : LowPressure

<<cylinder>>
 : Cylinder

 : Flange

 : FlowPort : FlowPort

<<block>>
 : Load

 : Flange<<block>>
 : Load

 : Flange

16

� Selecting
components at
random:

• Instead of simply
matching one instance,
need to match one
instance at random

Some Challenges

Systems Realization Laboratory© 2009, Chris Paredis

instance at random

� Rule set
• Should cover the entire

space of circuits
• Randomness should be

“uniform” across space

17

� How to impose constraints in a generative grammar?
• We have only explored graph transformations…
• Could we accomplish the same using constraint-based meta-model

defined in Alloy (or similar tool)?
• Which approach is most intuitive/convenient for domain experts?
• Which approach is best suited for automated (randomized) synthesis

and incremental modification (as in optimization/search)?

Challenges

Systems Realization Laboratory© 2009, Chris Paredis

and incremental modification (as in optimization/search)?

� Larger problems:
• Which knowledge is captured in synthesis model and which is left for

analysis?
• How to work at different levels of abstraction?

� E.g.: topology, sizing, control,…

• Is there a systematic process for capturing synthesis knowledge?

18

Generating System-Level
Analysis Models

Systems Realization Laboratory

© 2009, Chris Paredis

Analysis Models

19

Systems Development: A Decision-Based Perspective

Concept

Development
Design

Production

& Testing

Sales &

Distribution

Maintenance

& Support

Portfolio

Planning

Decisions

Modeling and Simulation Provides Information
in Support of Decisions

Systems Realization Laboratory© 2009, Chris Paredis20

Evaluate
Alternatives

Generate
Alternatives

Select
Alternative

KnowledgeInformation

Generic
Decision
Process

in Support of Decisions

� Many different perspectives, levels of abstraction,
formalisms

� Hypothesis:
• One can improve the efficiency of design optimization methods by

considering multiple levels of abstraction and accuracy

Challenges

Systems Realization Laboratory© 2009, Chris Paredis21

x1

Obj

Objective Function and its Accuracy Bounds

� # models = O(#system topologies) *
O(#attributes) *
O(#abstraction levels) *
O(#fidelities)

� How do we manage all these models?
� Use model transformations to generate

Model Management Problem

Systems Realization Laboratory© 2009, Chris Paredis

� Use model transformations to generate
the models as needed

1. Create specific transformation rules to generate
analysis models

2. Create general rules for composition based on model
correspondence templates in library

22

� Vocabulary of the
synthesis grammar

Library of Fluid Power Components

ComponentTaxonomyComponent[Package] bdd []

<<block>>
Hydraulic

Systems Realization Laboratory© 2009, Chris Paredis

PressureMargin

<<block>>

VariableDisplacementPump <<block>>

6Way3PosOpenCenter

<<block>>
6Way3PosOCParallel

<<block>>

DoubleActingCylinder

<<block>>
6Way3PosOCSeries

<<block>>

CheckValve

Displacement

<<block>>

Pump
<<block>>

Cylinder
<<block>>

Valve Volume

<<block>>

Tank

23

Model Library of Fluid Power Components

� Library of Fluid Power
components

• Defined as MAsCoMs
(Multi-Aspect Component Models)

� Components are the reusable
elements of design

Systems Realization Laboratory© 2009, Chris Paredis24

elements of design

� Multi-Aspect Component Models
(MAsCoMs):

• Group all models related to
single fluid power component

• Multiple disciplines and levels
of abstraction

• Modular
• Formal & unambiguous

How to use MAsCoMs?

ISO 1219

Log Splitter Design Example

Systems Realization Laboratory© 2009, Chris Paredis25

Design Concept Schematics
-Hydraulic System

ISO 1219
Fluid Power Graphics

Composition of Correspondence Templates

Power
Subsystem

Systems Realization Laboratory© 2009, Chris Paredis26

Subsystem

� Principle: Separation of Viewpoints
• Separate model for each analysis perspective
• Don’t mix analysis and structure models

� Approach: Composition
• Compose component models into system-level model

Generating System-Level Analyses

Systems Realization Laboratory© 2009, Chris Paredis

• Compose component models into system-level model
• Encode the composition rules as model transformations
• Organize the composition patterns in a model library
• Different types of models require different composition rules

27

� How to select the “right” component-level models?
• Perspective, compatibility, accuracy,…
• Cost-benefit trade-off requires meta-information about models

� Cost, accuracy, applicability,…

� What are the different composition transformations?

Challenges

Systems Realization Laboratory© 2009, Chris Paredis

� What are the different composition transformations?
• Transformation depends on formalism

� What happens if the composition transformation
requires additional information?
• E.g., synthesize structural description � convert to behavior

� not all physical behavior parameters are available

28

Model Mapping

Systems Realization Laboratory

© 2009, Chris Paredis 29

Automatic Translation from SysML to Modelica

Formal Graph
Transformations Modelica

SysML

Systems Realization Laboratory© 2009, Chris Paredis30

Mapping between SysML and Other Languages
(based on work by Andy Schürr)

1. Define meta-models
• May require reverse-engineering meta-model

2. Create JMI adapter for tools
3. Define a model transformation

• Create graphs of correspondence between meta-models
• Triple Graph Grammar (TGG)

Systems Realization Laboratory© 2009, Chris Paredis

• Triple Graph Grammar (TGG)
4. Compile rules (MOFLON) and load as plug-in

31

Source Metamodel

Source Model

Target Metamodel

Target Model

conforms to conforms to

Transformation Specification

Transformation Engine
reads writes

refers to refers to

executes

(Czarnecki, K., & Hellen, S., 2006)

Partial Modelica
Metamodel

Systems Realization Laboratory© 2009, Chris Paredis32

Partial SysML Metamodel in MOFLON

Systems Realization Laboratory© 2009, Chris Paredis

Transformation
Rules

� Could be
automatically
generated
through
Triple Graph

Systems Realization Laboratory© 2009, Chris Paredis

Triple Graph
Grammar
mechanism

34

TGG Mapping Mechanism in MOFLON

Tool

JMI Adapter

Tool

JMI Adapter

TGG

MOFLON compilation
Tool Meta-Model Tool Meta-Model

Systems Realization Laboratory© 2009, Chris Paredis35

JMI Adapter

Tool API

Handwritten Code

Generated Stubs

JMI Adapter

Tool API

Handwritten Code

Generated StubsGraph
Transformation

Engine

(Note: My interpretation of work by Andy Schürr)

Simulation
in Dymola

ModelicaModelica
Lexical RepresentationLexical Representation

(auto(auto--generated from SysML)generated from SysML)

SimulationSimulation
ResultsResults

Systems Realization Laboratory© 2009, Chris Paredis36

[Johnson, 2008 [Johnson, 2008 -- Masters Thesis]Masters Thesis]

SysML Tool-Integration:
INCOSE MBSE Challenge Project

SysML Tools

TraditionalTraditional

No Magic / SysML

Excavator

System Model

Operational

Scenario

RSA/E+ / SysML
Excavator

Executable

Scenario

Interface & Transformation Tools

(VIATRA, XaiTools, ...)

RSA/E+ / SysML

Factory

Model

(MOFLON,

Systems Realization Laboratory© 2009, Chris Paredis37

Traditional

Simulation & Analysis Tools

ModelCenter

Traditional

Descriptive Tools

NX / MCAD Tool

Excavator

Boom Model

FactoryCAD

Factory

Layout Model

Excel

Production

Ramps

Ansys

FEA Model

Mathematica

Reliability

Model

Excel

Cost Model

eM-Plant

Factory

Simulation

Dymola

Dig Cycle

Model

2008-02-25a

Optimization

Model

� How general is the TGG approach?
• Is there a point at which it breaks down?
• Limitations of bidirectional mappings?

� Is there a universal way to interface with disciplinary
tools?

Challenges

Systems Realization Laboratory© 2009, Chris Paredis

tools?
• Is a JMI adapter the best way?

� And here I ran out of time… ☺☺☺☺
… time to summarize

38

1. A Language for describing Fluid-Power circuits
• Language is described by a meta-model
• Valid circuits are represented as graphs

2. A Model Library with static knowledge
• What are the available components?
• What are their characteristics and behaviors?

Summary of Approach

Systems Realization Laboratory© 2009, Chris Paredis

• What are their characteristics and behaviors?

3. A set of Model Transformations
• Knowledge on how to combine components into circuit
• Knowledge on how to generate analysis models from circuit descriptions

4. Language Mappings to/from other domains
• Allows results to be viewed and edited (e.g. in SysML)
• Allows circuits to be analyzed (e.g. in Dymola/Modelica)

39

Acknowledgements

� Sponsors
• National Science Foundation:

Center for Compact and
Efficient Fluid Power

• Deere & Co
• Lockheed Martin

� Students
• Jonathan Bankston
• Jonathan Jobe

(graduated)
• Tommy Johnson

(graduated)

Systems Realization Laboratory© 2008, Chris Paredis

� Collaborators
• Roger Burkhart
• Sandy Friedenthal
• Leon McGinnis
• Russell Peak
• Dirk Schaefer

(graduated)
• Alek Kerzhner
• Aditya Shah

Questions?

40

