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Abstract. This paper reports on the findings of the first Workshop on
Multi-Paradigm Modeling: Concepts and Tools. It contains an overview
of the presented papers and of the results of three working groups which
addressed multiple views, abstraction, and evolution. Besides this, a def-
inition of the problem space, the main concepts, and an appropriate ter-
minology for multi-paradigm modeling as presented and discussed during
the workshop are provided.
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1 Introduction

Complex software-based systems today often integrate different beforehand iso-
lated subsystems. Thus, for their model-driven development multiple formalism
at different levels of abstraction from possibly different domains have to be in-
tegrated. This is especially true when besides general purpose languages such
as the UML also domain specific languages are employed. In this first workshop
on Multi-Paradigm Modeling (MPM) at the MoDELS conference, a forum for
researchers and practitioners to discuss the resulting problems and challenges
has been set up.

An initial invited talk was given by Hans Vangheluwe in order to provide
some generally agreed upon definitions of multi-paradigm modeling.



The paper continues with a definition of the problem space, main concepts,
and terminology for multi-paradigm modeling in Section 2. Then, the presented
papers are located within the introduced problem space in Section 3 before we
summarized the findings of the working groups which have been set up within
the workshop in Section 4. Finally, a list of the program committee follows in
Section 5.

2 Multi-Paradigm Modeling

In this section, the foundations of Multi-Paradigm Modeling (MPM) are pre-
sented. In particular, we introduce meta-modeling and model transformation as
enablers for Multi-Paradigm Modeling. MPM encompasses both multi-formalism
and multi-abstraction modeling of complex systems. To provide a framework for
the above, the notion of a modeling language is first dissected. This leads quite
naturally to the concept of meta-modeling as well as to the explicit modeling
of model transformations. The notion of abstraction is explored in the working
group results section 4.2.

Models are an abstraction of reality. The structure and behavior of systems
that we wish to analyze or design can be represented by models. These mod-
els, at various levels of abstraction, are always described in some formalism or
modeling language. To “model” modeling languages and ultimately synthesize
visual modeling environments for those languages, we will break down a mod-
eling language into its basic constituents [1]. The two main aspects of a model
are its syntax (how it is represented) on the one hand and its semantics (what
it means) on the other hand.

The syntax of modeling languages is traditionally partitioned into concrete
syntax and abstract syntaz. In textual languages for example, the concrete syntax
is made up of sequences of characters taken from an alphabet. These characters
are typically grouped into words or tokens. Certain sequences of words or sen-
tences are considered valid (i.e., belong to the language). The (possibly infinite)
set of all valid sentences is said to make up the language. Costagliola et. al. [2]
present a framework of visual language classes in which the analogy between
textual and visual characters, words, and sentences becomes apparent. Visual
languages are those languages whose concrete syntax is visual (graphical, geo-
metrical, topological, ...) as opposed to textual.

For practical reasons, models are often stripped of irrelevant concrete syntax
information during syntax checking. This results in an “abstract” representation
which captures the “essence” of the model. This is called the abstract syntaz.
Obviously, a single abstract syntax may be represented using multiple concrete
syntaxes. In programming language compilers, abstract syntax of models (due
to the nature of programs) is typically represented in Abstract Syntax Trees
(ASTs). In the context of general modeling, where models are often graph-like,
this representation can be generalized to Abstract Syntax Graphs (ASGs).

Once the syntactic correctness of a model has been established, its meaning
must be specified. This meaning must be unique and precise. Meaning can be



expressed by specifying a semantic mapping function which maps every model in
a language onto an element in a semantic domain. For example, the meaning of a
Causal Block Diagram can be specified by mapping onto an Ordinary Differential
Equation. For practical reasons, semantic mapping is usually applied to the
abstract rather than to the concrete syntax of a model. Note that the semantic
domain is a modeling language in its own right which needs to be properly
modeled (and so on, recursively). In practice, the semantic mapping function
maps abstract syntax onto abstract syntax.

To continue the introduction of meta-modeling and model transformation
concepts, languages will explictly be represented as (possibly infinite) sets as
shown in Figure 1. In the figure, insideness denotes the sub-set relationship. The
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Fig. 1. Modeling Languages as Sets

dots represent model which are elements of the encompassing set(s).

As one can always, at some level of abstraction, represent a model as a graph
structure, all models are shown as elements of the set of all graphs Graph. Though
this restriction is not necessary, it is commonly used as it allows for the design,
implementation and bootstrapping of (meta-)modeling environments. As such,
any modeling language becomes a (possibly infinite) set of graphs. In the bottom
centre of Figure 1 is the abstract syntax set A. It is a set of models stripped of
their concrete syntax.



Meta-modeling is a heavily over-used term. Here, we will use it to denote
the explicit description (in the form of a finite model in an appropriate meta-
modeling language) of the Abstract Syntax set. Often, meta-modeling also covers
a model of the concrete syntax. Semantics is, however, not covered. In the figure,
the Abstract Syntax set is described by means of its meta-model. On the one hand,
a meta-model can be used to check whether a general model (a graph) belongs
to the Abstract Syntax set. On the other hand, one could, at least in principle,
use a meta-model to generate all elements of the language. This explains why
the term meta-model and grammar are often used inter-changeably.

Several languages are suitable to describe meta-models in. Two approaches
are in common use:

1. A meta-model is a type-graph. Elements of the language described by the
meta-model are instance graphs. There must be a morphism between an
instance-graph (model) and a type-graph (meta-model) for the model to
be in the language. Commonly used meta-modeling languages are Entity
Relationship Diagrams (ERDs) and Class Diagrams (adding inheritance to
ERDs). The expressive power of this approach is often not sufficient and
a constraint language (such as the Object Constraint Language) specifying
constraints over instances is used to further constrain the set of valid models
in a language. This is the approach used by the OMG to specify the abstract
syntax of the Unified Modeling Language (UML).

2. A more general approach specifies a meta-model as a transformation (in an
appropriate formalism such as Graph Grammars) which, when applied to a
model, verifies its membership of a formalism by reduction. This is similar to
the syntax checking based on (context-free) grammars used in programming
language compiler compilers. Note how this approach can be used to model
type inferencing and other more sophisticated checks.

Both types of meta-models can be interpreted (for flexibility and dynamic
modification) or compiled (for performance).

Note that when meta-modeling is used to synthesize interactive, possibly vi-
sual modeling environments, we need to model when to check whether a model
belongs to a language. In free-hand modeling, checking is only done when explic-
itly requested. This means that it is possible to create, during modeling, syntac-
tically incorrect models. In syntaz-directed modeling, syntactic constraints are
enforced at all times during editing to prevent a user from creating syntactically
incorrect models. Note how the latter approach, though possibly more efficient,
due to its incremental nature —of construction and consequently of checking— may
render certain valid models in in the modeling language unreachable through in-
cremental construction. Typically, syntax-directed modeling environments will
be able to give suggestions to modelers whenever choices with a finite number
of options present themselves.

The advantages of meta-modeling are numerous. Firstly, an explicit model
of a modeling language can serve as documentation and as specification. Such
a specification can be the basis for the analysis of properties of models in the
language. From the meta-model, a modeling environment may be automatically



generated. The flexibility of the approach is tremendous: new languages can
be designed by simply modifying parts of a meta-model. As this modification
is explicitly applied to models, the relationship between different variants of a
modeling language is apparent. Above all, with an appropriate meta-modeling
tool, modifying a meta-model and subsequently generating a possibly visual
modeling tool is orders of magnitude faster than developing such a tool by hand.
The tool synthesis is repeatable and less error-prone than hand-crafting.

As a meta-model is a model in an appropriate modeling language in its
own right, one should be able to meta-model that language’s abstract syntax
too. Such a model of a meta-modeling language is called a meta-meta-model.
It is noted that the notion of “meta-” is relative. In principle, one could con-
tinue the meta- hierarchy ad infinitum. Luckily, some modeling languages can
be meta-modeled by means of a model in the language itself. This is called
meta-circularity and it allows modeling tool and language compiler builders to
bootstrap their systems.

A model in the Abstract Syntax set (see Figure 1) needs at least one concrete
syntax. This implies that a concrete syntax mapping function  is needed. k maps
an abstract syntax graph onto a concrete syntax model. Such a model could be
textual (e.g., an element of the set of all Strings), or visual (e.g., an element of
the set of all the 2D vector drawings). Note that the set of concrete models can be
modeled in its own right. Also, concrete syntax sets will typically be re-used for
different languages. Often, multiple concrete syntaxes will be defined for a single
abstract syntax, depending on the user. If exchange between modeling tools is
intended, an XML-based textual syntax is often used. If in such an exchange,
space and performance is an issue, an binary format may be used instead. When
the formalism is graph-like as in the case of a circuit diagram, a visual concrete
syntax is often used for human consumption. The concrete syntax of complex
languages is however rarely entirely visual. When, for example, equations need
to be represented, a textual concrete syntax is more appropriate.

Finally, a model m in the Abstract Syntax set (see Figure 1) needs a unique
and precise meaning. As previously discussed, this is achieved by providing a Se-
mantic Domain and a semantic mapping function M. This mapping can be given
informally in English, pragmatically with code or formally with model transfor-
mations. Natural languages are ambiguous and not very useful since they cannot
be executed. Code is executable, but it is often hard to understand, analyze and
maintain. It can be very hard to understand, manage and derive properties from
code. This is why formalisms such as Graph Grammars are often used to specify
semantic mapping functions in particular and model transformations in general.
Graph Grammars are a visual formalism for specifying transformations. Graph
Grammars are formally defined and at a higher level than code. Complex behav-
ior can be expressed very intuitively with a few graphical rules. Furthermore,
Graph Grammar models can be analyzed and executed. As efficient execution
may be an issue, Graph Grammars can often be seen as an executable specifi-
cation for manual coding. As such, they can be used to automatically generate
transformation unit tests.



Within the context of Multi-Paradigm Modeling, we have chosen to use the
following terminology.

— A language is the set of abstract syntax models. No meaning is given to these
models.

— A concrete language comprises both the abstract syntax and a concrete syn-
tax mapping function x. Obviously, a single language may have several con-
crete languages associated with it.

— A formalism consists of a language, a semantic domain and a semantic map-
ping function giving meaning to model in the language.

— A concrete formalism comprises a formalism together with a concrete syntax
mapping function.

This terminology will be used in the sequel.

3 Presented Papers

The paper [3] summarizes the main achievements with respect to Mechatronic
UML and relates it to Multi-Paradigm Modeling. The approach combines con-
trol engineering, electrical engineering, mechanical engineering, and software en-
gineering disciplines to describe and verify reconfigurable mechatronic systems.
The multidisciplinary nature of Mechatronic UML gives a good case study for
multiparadigm modeling: different parts of a mechatronic system are described
by different formalisms, such as differential equations or timed automata.

The paper [4] presents a tool named Computer Aided Method Engineering
(CAME). This approach uses hierarchical activity diagram to model an arbitrary
software development process. To these process steps, models can be attached.
The modeling languages are created with metamodeling techniques. The models
created for different paradigms are assembled manually.

The popularity of block diagrams motivates the work [5], which offers a
translational semantics for block diagrams by syntactically translating them into
Haskell. The declarative notion of Haskell facilitates more rigorous specification
as opposed to its imperative counterparts, such as C. The translation applies
syntactic Haskell extensions developed by the authors.

The paper [6] uses an approach underpinned by abstract algebraic and cat-
egorical constructs. The main idea is to formalize the semantics by specifying
the domains as lattices of coalgebras. Between the lattices, Galois connections
can be established. If this connection is maintained during the abstractions or
concretizations, the important properties are preserved. In order to check the
consistency of distinct domains, pullback constructs are provided to derive a
common specification. These results can be applied to formalize the composition
of multi-paradigm applications.

The paper [7] proposes a formalism for modeling language composition with
a low-level language. The low-level language referred to as L3 consists of three
aspects: structural, descriptive and behavioral. The multi-paradigm composition



technique is illustrated with two simplified UML diagrams, namely, the class and
activity diagrams enhanced with OCL constraints.

The paper [8], which can be found in this volume, discusses a conceptual
approach to define declarative model integration languages. The integration be-
havior is bound to the metamodel. Furthermore, the authors build a conceptual
framework which realizes the complex integration operations on the global level
to efficient and simple local operators.

4 Working Group Results

4.1 Multiple Views

The first working group addressed the topic of multi-view modelling. Multi-view
modelling is concerned with the common practice of modelling a single system
by means of a collection of view models. Each of these view models can possibly
be represented in a different concrete formalisms. As discussed in Section 2,
differences between concrete formalisms may be at the level of concrete syntax,
abstract syntax, or even semantics. Together, the multiple views allow a modeller
to express all relevant knowledge about a system under study. Allowing multiple
views in multiple concrete formalisms allows the modeller to express different
aspects of his knowledge in the most appropriate fashion, thereby minimizing
accidental complexity.

Multi-view modelling does come at a price though. The different views should
be consistent. In particular, if one view is modified, other views describing the
same aspect of the system may need to be updated. Note that updating may be
trivial if the views only differ in concrete syntax. In the worst case however, the
semantics of the different formalisms in which the views are expressed may differ.
In this case, formalism transformation may be required. It is noted that updating
(in a Model-View-Controller fashion) is in principle always possible if update
mappings are available between all views. For efficiency reasons, the quadratic
(in the number of views) number of required mappings and the quadratic (in the
number of view models) number of updates can be reduced to a linear number
if it is possible to describe a single repository model of which all views are
projections.

Also, one often needs to know whether a collection of views completely de-
scribes a system (given some notion of completeness). The issues mentioned
above are exacerbated if different views describe the system at different levels of
abstraction. The working group discussed abstraction at length and came to sim-
ilar conclusions as those of the second working group (though not formalized).
Hence, we refer to the next section for a treatment of this subject.

Jean-Marie Favre pointed out the existence of a mega-model of multi-view
modelling in the reverse engineering community. This mega-model relates views
which need to conform to viewpoints. Those in turn are used to cover concerns.
Each of these may be described in an appropriate formalism.



4.2 Abstraction

The second working group worked on the topic of abstraction and how models
of the same and different type (formalism) are related to each other during
the model-driven development using abstraction and its opposite refinement in
different forms.

As foundation for the notion of abstraction, the group started with defining
the information contained in a model M as the different questions (properties)
P = I(M) which can be asked concerning the model (|P| and p,p’ € P:p # ')
and either result in true or false (M | p or M [~ p).

For a model, it holds in general that only a restricted set of questions (prop-
erties) are correctly addressed by the model w.r.t. the original matter. Thus, for
example, questions concerning the color of a diagram or the layout of a text do
not matter. These relevant questions (properties) and the related notion of a bit,
then served also to define abstraction as well as several related relations.

A relation between two models M; and M, can have the character of an
abstraction, refinement, or equivalence relative to a non empty set of questions
(properties) P.

— In case of an equivalence, we require that for all p € P holds: M Ep <
My |= p. We write My =p Mo.

— If M; is an abstraction of Mo with respect to P it holds for all p € P holds:
M, Ep= My | p. We write M7 Jp Mo.

— We further say that M is a refinement of Mo iff M, is an abstraction of Ms.
We write M7 Cp Ms.

We also have a second case of abstraction and refinement when only compar-
ing the scope given by the set of questions (properties) considered in two models
M i and MQI

— We have an equivalent scope if 1(My) = I(Ms). We write My =; Ms.

— We have a more abstract scope if I(My) C I(Mz). We write My J; Ms.

— We further say that M; has a refined scope of My iff M7 has an abstracted
scope of Ms. We write My C1 Mo.

The group then employed this definition to describe the role of abstraction
and refinement for some general development steps:

In case of a analysis model, a more abstract model M, is derived from the
concrete model M in order to prove or disprove that a certain set of properties
P holds. If the abstract model provides all required information concerning P
(I(M,) 2 P) we can distinguish the case that (1) both models are equivalent
(M, =p M) or M, is an abstraction of M (M, Jdp M):

(1) VpeP:M,Ep < MEp (2) VpeP:M,Ep=MI[=p.

These facts can be used to transfer the fulfilment of p from M, to M. Note that
usually the verification or analysis of p is only feasible for M,. The equivalence
or abstraction between the models is then used to propagate the result for p.



While in case of equivalence the full result can be propagated, for abstraction
the check M, |= p is only sufficient to conclude M |= p. The propagation is not
valid for —p as there is M, = —p is not necessary for M | —p.

A typical development step in computer science is model refinement: A re-
fined model M, is derived from the abstract model M; by adding details to the
model. The considered set of properties P can be either fixed or extended in the
refinement step (I(Mz) 2 I(M;) = P). Due to the definition of refinement for
M Ep My holds: Vp e P: My = p= M Ep.

During the development the check M |= p is then used to determine that any
refinement step preserves this property. Thus, we can characterize the strategy as
a pessimistic risk elimination step which excludes solutions if it is not guaranteed
that for all its valid implementations (refinements) also p must hold.

While refinement is common in computer science, in engineering and related
disciplines the typical development step is approzimation which is rather differ-
ent. Approximation can be seen as refinement with respect to negated properties:
V—p € P: My |= —~p = My = —p.! This effectively means that approximation is
an optimistic approach which only eliminates impossible solutions. If a property
p has already been falsified for M; (N7 &= —p), we refuse all solution My which
cannot fulfill p.

4.3 Model Evolution

One of the main problems for a wide scale acceptance of model engineering prac-
tices in industry is the lack or the immaturity of methods and tools that allow
to confidently switch to a fully model driven software development process. In
conventional software development, for instance, source code versioning systems
are commonplace, whereas it is still largely unclear of how adequate versioning
should be applied in a model driven context.

Another pressing problem that was the topic of group discussion is the evo-
lution of metamodels representing the abstract syntax of modeling languages.
Such an evolution would alter the metamodel and therefore possibly render all
models conforming to the original metamodel obsolete.

Hence, support for migrating models from the original to the changed meta-
models ought to be provided. Ideally, this would come in the form of transfor-
mations that could migrate models towards newer versions of metamodels. Such
transformations could possibly be derived automatically.

It is still an open question how the actual evolution of metamodels could be
carried out. Perhaps it is feasible to find certain recurring “evolution patterns”
similar to refactoring operations, which would ease the derivation of migrating
transformations. A second possibility would be to allow “free-hand editing” of
metamodels, in which case tool support should allow to at least partially load
models into newer versions of metamodels and - for further manual editing -
provide a comprehensive list of model elements that do not match the new

! In practice, M is usually an idealization w,r,t. p where an approximation is only
extremely likely.
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metamodel. In both cases, it is advisable to store traceability information, for
instance to be able to provide backwards compatibility.

Apart from discussing these more technical challenges that call for tool sup-
port, the discussion elaborated on what kinds of metamodel evolution there are,
and what the needs for evolution might be.

We could identify two basic kinds of evolutions. The first would be a purely
syntactic evolution, which would result in adding “syntactic sugar” to the meta-
model, for purposes of making the modeling language more convenient to use and
comprehend. One example would be to introduce model elements, that repre-
sent structures built of more basic model elements. As an example, the Business
Process Execution Language (BPEL) offers convenient constructs such as Flow
or Sequence, which could alternatively be modeled by linking up activities ac-
cordingly on a fine-grained level. Models expressed in either way, however, have
the same semantics.

The second kind of evolution would be semantic evolution, where the seman-
tics of the model elements are changed or new elements are introduced whose
semantics have to be determined. This can take place through changing a meta-
model and according to that changing its semantic mapping towards a semantic
domain. An explicit mapping towards a semantic domain, however, does often
not exist, but a code generator or interpreter is employed to make models ex-
ecutable. Changes to the generator would represent a change in the semantics
of the language. Essentially this poses a challenge for appropriate configuration
management to bind metamodels, models and their respective generators.

The purpose of such syntactic evolution could be to enhance the learnability
or usability of a modeling language, whereas semantic evolution would go towards
enhancing the appropriateness and expressivity of a modeling language.

The discussion concluded with the understanding that metamodel evolution
should not simply be about providing means to arbitrarily alter metamodels,
but be a way to continuously maintain the quality of metamodels by ensuring
their fitness for task.

This would possibly require metrics for measuring the quality of metamodels
and the appropriateness of the expressivity or usability of the respective mod-
eling languages. Such metrics would indicate when a modeling language ought
to actually undergo evolution, to avoid “uncontrolled” modifications that may
introduce ambiguities or distort the understandability and hence the practical
applicability of a modeling language.
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