
Promises and Challenges of Model-Based Design

Hans Vangheluwe

17 April 2011

CAMPaM workshop, Bellairs Research Institute, Barbados

Dealing with Complexity

Dealing with Complexity

Model Everything . . . Explicitly

Dealing with Complexity

Model Everything . . . Explicitly
for design (Engineering) and analysis (Science)

Dealing with Complexity

Model Everything . . . Explicitly
for design (Engineering) and analysis (Science)

The spectrum of uses of models

Documentation

Dealing with Complexity

Model Everything . . . Explicitly
for design (Engineering) and analysis (Science)

The spectrum of uses of models

Documentation

Formal Verification of Properties
(all models, all behaviours)

Dealing with Complexity

Model Everything . . . Explicitly
for design (Engineering) and analysis (Science)

The spectrum of uses of models

Documentation

Formal Verification of Properties
(all models, all behaviours)

Model Checking of Properties
(one model, all behaviours)

Dealing with Complexity

Model Everything . . . Explicitly
for design (Engineering) and analysis (Science)

The spectrum of uses of models

Documentation

Formal Verification of Properties
(all models, all behaviours)

Model Checking of Properties
(one model, all behaviours)

Test Generation

Dealing with Complexity

Model Everything . . . Explicitly
for design (Engineering) and analysis (Science)

The spectrum of uses of models

Documentation

Formal Verification of Properties
(all models, all behaviours)

Model Checking of Properties
(one model, all behaviours)

Test Generation

Simulation (one model, one behaviour)
. . . calibration, optimization, . . .

Dealing with Complexity

Model Everything . . . Explicitly
for design (Engineering) and analysis (Science)

The spectrum of uses of models

Documentation

Formal Verification of Properties
(all models, all behaviours)

Model Checking of Properties
(one model, all behaviours)

Test Generation

Simulation (one model, one behaviour)
. . . calibration, optimization, . . .

Application Synthesis (mostly for models of software)

Requirements (“What?”)

Detached or Semi-detached

Style (classical, modern, . . .)

Number of Floors

Number of rooms of different types
(bedrooms, bathrooms, . . .)

Garage, Storage, . . .

Cellar

. . .

Requirements (“What?”)

Detached or Semi-detached

Style (classical, modern, . . .)

Number of Floors

Number of rooms of different types
(bedrooms, bathrooms, . . .)

Garage, Storage, . . .

Cellar

. . .

Design (“How?”)

Requirements (“What?”)

Detached or Semi-detached

Style (classical, modern, . . .)

Number of Floors

Number of rooms of different types
(bedrooms, bathrooms, . . .)

Garage, Storage, . . .

Cellar

. . .

Design (“How?”)

System Boundaries

System to be built/studied

Environment with which the system interacts

System vs. “Plant”

www.mathworks.com/products/demos/simulink/PowerWindow/html/PowerWindow1.html

Number of Components – hierarchical (de-)composition

Crowds: diversity, interaction

www.3dm3.com

Diversity of Components: Power Window

Non-compositional/Emergent Behaviour

Uncertainty

Often related to level of abstraction:
for example continuous vs. discrete

www.engr.utexas.edu/trafficSims/

Question: is the deviation from the trend periodic?

Answer: transform to make the solution obvious

Guiding principle (∼ physics: principle of minimal action)

minimize accidental complexity ,
only essential complexity remains

Fred P. Brooks. No Silver Bullet – Essence and Accident in Software Engineering.
Proceedings of the IFIP Tenth World Computing Conference, pp. 1069–1076, 1986.

http://www.lips.utexas.edu/ee382c-15005/Readings/Readings1/05-Broo87.pdf

Dealing with Complexity: some approaches

multiple abstraction levels

optimal formalism

multiple formalisms

multiple views

Multiple Abstraction Levels

Different Abstraction Levels – properties preserved

Multiple Abstraction Levels

Levels of Abstraction/Views: Morphism

detailed
(technical) level

abstract
(decision) level

abstraction

simulation

M_dM_t

trajectory

model

traj_t traj_d

Most Appropriate Formalism (Minimizing Accidental Complexity)

www.planeshift.it
Massively Multiplayer Online Role Playing games

need Non-Player Characters (NPCs)

TankWars: high level

Sensors

Analyzers

Memorizers

Strategical Deciders

Tactical Deciders

Executors

Coordinators

Actuators

Tank

Turret

Radar

FuelTank

WeaponDetectionSystem

InRangeDetector

EnemyTracker FuelStationMap ObstacleMapRepairStationMap

PilotStrategy

AttackPlanner RefuelPlanner RepairPlanner

ExplorePlannerEscapePlanner

Pathfinder

Steering

TurretTankMovementCoordinator

MotorControl TurretControl

TurretSteering

ObstacleDetector WaypointDetector

Strategic Deciders – High-level Goals

EnoughFuel

NormalOperation

PilotStrategy

Attacking Repairing

damageHigh

repaired

Fleeing

[repairTracker.

repairPosKnown]

[not repairTracker.

repairPosKnown]

[repairTracker.

repairPosKnown]

Exploring

fuelLow Refueling fuelFull

H*

[in enemyTracker.enemyPosKnown &&

not fuelTank.lowFuel]

BBBBBBBBBBBBBBBBBBBBBBB[not fuelTracker.fuelPosKnown]

[fuelTracker.fuelPosKnown]

Jörg Kienzle, Alexandre Denault, Hans Vangheluwe. Model-Based Design of Computer-Controlled Game Character
Behavior. MoDELS 2007: 650-665

Strategic Deciders – High-level Goals

EnoughFuel

NormalOperation

PilotStrategy

Attacking Repairing

damageHigh

repaired

Fleeing

[repairTracker.

repairPosKnown]

[not repairTracker.

repairPosKnown]

[repairTracker.

repairPosKnown]

Exploring

fuelLow Refueling fuelFull

H*

[in enemyTracker.enemyPosKnown &&

not fuelTank.lowFuel]

BBBBBBBBBBBBBBBBBBBBBBB[not fuelTracker.fuelPosKnown]

[fuelTracker.fuelPosKnown]

Jörg Kienzle, Alexandre Denault, Hans Vangheluwe. Model-Based Design of Computer-Controlled Game Character
Behavior. MoDELS 2007: 650-665

Could have used production rules instead of Statecharts
Eugene Syriani, Hans Vangheluwe: Programmed Graph Rewriting with DEVS. AGTIVE 2007: 136-151

“Management Flight Simulator”
using Forrester System Dynamics model

Causal Block Diagram model of Harmonic Oscillator

x0

0.0

y0

1.0

IC
x

IC
y

− I OUT

K

1.0

0.0

PLOT

Petri Net model of Producer – Consumer

P.Calculating
1

Wait4Cons
0

Buffer
0

Buffer−p
1

Wait4Prod
1

C.Calculating
0

Produce

Put in Buffer

Rem.from buffer

Consume

GPSS model of Telephone Exchange

FN112

0

2V2

V1 PH1

LR PH1

V1 H2

P2NEP1

S PH1

LNKS

R PH1

1

LR PH2 R PH1

LNKS

1

S PH2

FN1120

Function: 1
LNKS
10

Multi-Formalism

Multiple Formalisms: Power Window

Multi-Formalism

Components in Different Formalisms

www.mathworks.com/products/demos/simulink/PowerWindow/html/PowerWindow1.html

Multi-Formalism

Controller, using Statechart(StateFlow) formalism

Multi-Formalism

Mechanics subsystem

Multiple Views/Concerns/Aspects

Multiple (consistent !) Views (in 6= Formalisms)

Multiple Views/Concerns/Aspects

View: Events Diagram

Multiple Views/Concerns/Aspects

View: Protocol Statechart

Multiple Views/Concerns/Aspects

No Free Lunch!

Solutions often introduce
their own accidental complexity

multiple abstraction levels (need morphism)

optimal formalism (need precise meaning)

multiple formalisms (need relationship)

multiple views (need consistency)

Multi-Paradigm Modelling
(model everything, minimize accidental complexity)

at the most appropriate level of abstraction

using the most appropriate formalism(s)
Class Diagrams, Differential Algebraic Equations, Petri
Nets, Bond Graphs, Statecharts, CSP, Queueing
Networks, Sequence Diagrams, Lustre/Esterel, . . .

with transformations as first-class models

Pieter J. Mosterman and Hans Vangheluwe.

Computer Automated Multi-Paradigm Modeling: An Introduction. Simulation 80(9):433–450, September 2004.

Special Issue: Grand Challenges for Modeling and Simulation.

How to deal with Complexity? The Need for Transformations

Waste Water Treatment Plants (WWTPs)

NATO’s Sarajevo WWTP
www.nato.int/sfor/cimic/env-pro/waterpla.htm

How to deal with Complexity? The Need for Transformations

What does this WWTP model mean?
influent

mixer
aeration_tank

settler effluent

f_influent f_mixed f_processed f_out

f_bacteria

How to deal with Complexity? The Need for Transformations

Transformation from WWTP to . . .
influent

f_influent

f_influent

C_influent

0.0

OUT

mixer

f_influent

f_bacteria

f_mixed

f_bacteria

f_influent f_mixed

I OUT

C_aeration

0.9

aeration_tank

f_mixed

aeration_fraction

f_processed

f_processedf_mixed

T
R

A
N

S
F

O
R

M

T
R

A
N

S
F

O
R

M

T
R

A
N

S
F

O
R

M

How to deal with Complexity? The Need for Transformations

. . . its meaning (steady-state abstraction):
Causal Block Diagram (CBD)

C_influent

10.0 OUT

C_settling

0.6

I OUT

I OUT

−

1.0

OUT

effluent
I OUT

f_influent

f_bacteria

f_mixed

settling_fraction

one

negated dump_fractionf_out

C_aeration

0.9

aeration_fraction

f_processed

How to deal with Complexity? The Need for Transformations

Meaning of the CBD

C_influent

10.0 OUT

C_bacteria

1.0

C_settling

0.6

I OUT

I OUT

−

1.0

OUT

effluent

dump

I OUT

f_influent

f_bacteria

f_mixed

settling_fraction

one

negated

dump_fraction

f_dump

f_out

C_aeration

0.9

aeration_fraction

f_processed

=

f _influent = C_influent
f _bacteria = C_bacteria

f _mixed = f _influent + f _bacteria
aeration_fraction = C_aeration

f _processed = aeration_fraction ∗ f _mixed
settling_fraction = C_settling

negated = −settling_fraction
one = 1

dump_fraction = one + negated
f _dump = f _processed ∗ dump_fraction

f _out = settling_fraction ∗ f _processed

WWTP Domain-Specific Modelling Environment

www.hemmis.com/products/west/

Henk Vanhooren, Jurgen Meirlaen, Youri Amerlinck, Filip Claeys, Hans Vangheluwe, and Peter A. Vanrolleghem.

WEST: Modelling biological wastewater treatment. Journal of Hydroinformatics, 5(1):27-50, 2003.

Multi-formalism coupled model: multi-formalism modelling

Msub_1
Msub_2

CoupledModel

CouplingGraph

Msub_3

Formalism Transformation Graph

DEVS

Process Interaction
Discrete Event

state trajectory data (observation frame)

Petri Nets
Statecharts

scheduling-hybrid-DAE

Bond Graph a-causal

Bond Graph causal

DAE non-causal set

DAE causal set

PDE

Transfer Function

Difference Equations

System Dynamics

KTG Cellular Automata

Event Scheduling
Discrete Event

3 Phase Approach
Discrete Event

DAE causal sequence (sorted)

DEVS&DESS

Activity Scanning
Discrete Event

Timed Automata

Causal Block Diagram

DS(V)M example application,
the PhoneApps Domain-Specific model

DS(V)M example application:
conference registration (Google Android)

Transformation: extract behaviour (Statechart)

Transformation: extract presentation

Only transform . . .
ConferenceRegistrationApps

StateCharts AndroidAppScreens

AndroidAppFiles

Actual fi les (AndroidManifest.xml, PhoneApp.java, PhoneAppStateChart.java, screen_*.xml)

PhoneApps

1

2 3

4 5

6

Raphael Mannadiar and Hans Vangheluwe. Modular synthesis of mobile device applications from domain-specific
models. Proceedings of the seventh International Workshop on Model-Based Methodologies for Pervasive and
Embedded Software (MoMPES). 2010.

Why DS(V)M ?
(as opposed to General Purpose modelling)

match the user’s mental model of the problem domain

maximally constrain the user (to the problem at hand)
⇒ easier to learn
⇒ avoid errors

separate domain-expert’s work
from analysis/transformation expert’s work

re-use transformation knowledge
(such as in variations of a Domain-Specific formalism)

Anecdotal evidence of 5 to 10 times speedup

Steven Kelly and Juha-Pekka Tolvanen.

Domain-Specific Modeling: Enabling Full Code Generation. Wiley 2008.

Model-Based Development: Modify the Model

model

model’ app’

apptransformation

transformation

small modification

Model-Based Development: Modify the Transformation

model

model app’

apptransformation

small modification

transformation’

Modelling Language Engineering

A Production System Model

Modelling Language Engineering

Modelling Languages as Sets of Models

Modelling Modelling Languages

Meta-Modelling . . . and more

Modelling Modelling Languages

Modelling Abstract Syntax: Meta-Model

not shown: attributes, local and global contraints

Modelling Modelling Languages

Modelling Concrete Syntax (and UI Behaviour)

Modelling Modelling Languages

Meta-Modelling Challenges

scalability of (meta-)models

model differencing and meaningful model version control
Antonio Cicchetti, Davide Di Ruscio, Alfonso Pierantonio. A Metamodel Independent Approach to Difference

Representation. Journal of Object Technology 6(9): 165-185 (2007)

(meta-)model evolution
Bart Meyers and Hans Vangheluwe. A framework for evolution of modelling languages. Science of

Computer Programming, 2011. http://dx.doi.org/10.1016/j.scico.2011.01.002.

deal with concrete syntax
(mix textual/visual) in a unified manner
Francisco Pérez Andrés, Juan de Lara, Esther Guerra. Domain Specific Languages with Graphical and

Textual Views. AGTIVE 2007: 82-97

debugging
Raphael Mannadiar and Hans Vangheluwe. Debugging in Domain-Specific Modelling. In The third

International Conference on Software Language Engineering - SLE, volume 6563 of Lecture Notes in

Computer Science (LNCS), pages 276 - 285. Springer, 2011. Eindhoven, The Netherlands.

Model Transformation

Modelling Operational Semantics in the form of Rules

Note the use of concrete syntax !

Model Transformation

Denotational Semantics

Model Transformation

Modelling Denotational Semantics

Model Transformation

How: Transformation Triple-Rules (bi-directional!)

Juan de Lara, Hans Vangheluwe. Automating the transformation-based analysis of visual languages. Formal

Aspects of Compututing 22(3-4):297-326 (2010)

Model Transformation

Model Transformation Challenges

precise modelling of transformation languages (including
higher-order transformations)
Thomas Kühne, Gergely Mezei, Eugene Syriani, Hans Vangheluwe, and Manuel Wimmer. Systematic

transformation development. Electronic Communications of the EASST, 21: Multi-Paradigm Modeling, 2009.

http://eceasst.cs.tu-berlin.de/index.php/eceasst/issue/view/30.

families of transformation languages Eugene Syriani and Hans Vangheluwe.

De-/re-constructing model transformation languages. Electronic Communications of the EASST, 29: Graph

Transformation and Visual Modeling Techniques (GT-VMT), 2010.

http://eceasst.cs.tu-berlin.de/index.php/eceasst/issue/view/39.

standardization/interoperability

scalability (expressiveness and performance)

Model Transformation

Model Transformation Challenges ctd.

analysis of (properties of) model transformations
(and of properties of transformed models)
Levi Lucio, Bruno Barroca, Vasco Amaral. A Technique for Automatic Validation of Model Transformations.

MoDELS 2010: 136-150

automated testing of model transformations
(and of transformed models)

debugging
Raphael Mannadiar and Hans Vangheluwe. Debugging in Domain-Specific Modelling. In The third

International Conference on Software Language Engineering - SLE, volume 6563 of Lecture Notes in

Computer Science (LNCS), pages 276 - 285. Springer, 2011. Eindhoven, The Netherlands.

trace-ability (backward links)

from transformations to relationships (consistency)

Model Transformation

Eat Your Own Dogfood!

Model Transformation

Juan de Lara and Hans Vangheluwe. AToM3 : A tool for multi-formalism and meta-modelling.
FASE, LNCS 2306, pages 174 - 188. 2002.

Design-space Exploration

Design-space Exploration

Design-space Exploration

Sagar Sen and Hans Vangheluwe. Multi-domain physical system modeling and control based on meta-modeling

and graph rewriting. In Computer Aided Control Systems Design (CACSD), pages 69 - 75, Munich, Germany,

October 2006. IEEE.

Design-space Exploration

Exploring the Design Space

Deployment-space Exploration

Deployment Space: Platform-Based Design
(Alberto Sangiovanni-Vincentelli)

Deployment-space Exploration

Deployment-space Exploration

Joachim Denil, Hans Vangheluwe, Pieter Ramaekers, Paul De Meulenaere, Serge Demeyer. DEVS for AUTOSAR

platform modeling. Symposium On Theory of Modeling and Simulation. Boston, MA. 2011.

A disaster waiting to happen . . .

Co-evolution starting point

Bart Meyers and Hans Vangheluwe. A framework for evolution of modelling languages. Science of Computer
Programming. 2011. (in press)

A disaster waiting to happen . . .

Model (instance) evolution

A disaster waiting to happen . . .

Image evolution

A disaster waiting to happen . . .

Domain evolution

A disaster waiting to happen . . .

Transformation evolution

Conclusions

model everything !
⇒ ability to manipulate knowledge

Conclusions

model everything !
⇒ ability to manipulate knowledge

Causes of Complexity

Dealing with Complexity

Multi-Paradigm Modelling

Domain-Specific Modelling

Language Engineering

Language Evolution

Design-space Exploration

Deployment-space Exploration

Questions ?

