
Statechart modelling of interactive
gesture-based applications

Romuald Deshayes
Institut d’Informatique

University of Mons
Place du Parc 20, 7000 Mons

Belgium
romuald.deshayes@umons.ac.be

Tom Mens
Institut d’Informatique

University of Mons
Place du Parc 20, 7000 Mons

Belgium
tom.mens@umons.ac.be

ABSTRACT
Developing intuitive interactive applications that are easy to
maintain by developers is quite challenging, due to the com-
plexity and the many technical aspects involved in such ap-
plications. In this article, we tackle the problem in two com-
plementary ways. First, we propose a gestural interface to
improve the user experience when interacting with applica-
tions that require the manipulation of 3D graphical scenes.
Second, we reduce the complexity of developing such appli-
cations by modeling their executable behaviour using stat-
echarts. We validate our approach by creating a modular
and extensible Java framework for the development of in-
teractive gesture-based applications. We developed a proof-
of-concept application using this framework, that allows the
user to construct and manipulate 3D scenes in OpenGL by
using hand gestures only. These hand gestures are captured
by the Kinect sensor, and translated into events and actions
that are interpreted and executed by communicating state-
charts that model the main behaviour of the interactive ap-
plication.

Author Keywords
software modeling, human-machine interaction, natural in-
terface, gestural interaction, statechart, 3D, Kinect, OpenGL

INTRODUCTION
Developing interactive systems can be quite complex, due to
the non-trivial behaviour involved in such applications, their
need to instantly react to user events, and the rising popu-
larity of novel natural interfaces such as haptic, tactile and
gestural interfaces [12, 13, 16]. The technical mechanisms
underlying these systems evolve very rapidly. Hence, there
is an urgent need to provide application frameworks to al-
low developing such applications in a modular and extensi-
ble way, by hiding the accidental technical complexity [4].

Model-driven engineering [17] is advocated as a discipline

Proceedings of the First International Workshop on Combining Design and
Engineering of Interactive Systems through Models and Tools (ComDeis-
Moto), organized at INTERACT 2011 – 13th IFIP TC13 Conference on
Human-Computer Interaction, Lisbon, Portugal, September 6, 2011.

Copyright c© 2011 for the individual papers by the papers’ authors. Copy-
ing permitted for private and academic purposes. Re-publication of ma-
terial from this volume requires permission by the copyright owners. This
volume is published by its editors.

that allows to raise the level of abstraction of complex ap-
plications, by specifying the executable behaviour through
visual models. One of the most frequently used models en-
abling the visual specification of executable reactive beha-
viour is statecharts [9]. Different statecharts can communi-
cate asynchronously by sending and receiving events. Within
each statechart, state changes and specific actions are re-
alised by responding to received events. Kienzle et al. [11]
illustrate how to use statecharts to model and implement the
behaviour of game characters in computer games. Dubé
et al. [7] explain how to use statecharts to model com-
plex (scoped) user interfaces, focusing on their reactive be-
haviour.

For certain types of highly interactive applications, such as
those involving 3D manipulation, traditional input devices
(such as mouse, keyboard or touch screen) are suboptimal,
and need to be replaced by more advanced ways to cap-
ture user input. Gesture-based input (such as hand and head
movements) is likely to improve user interaction with appli-
cations requiring the manipulation of 3D graphical scenes.
Typical examples of this are computer-aided design tools
such as interior design software, that allow professionals and
end-users to create interior home design plans by manipulat-
ing 3D objects. Using gesture-based interfaces would there-
fore provide a more intuitive and improved user experience.

Summing all up, the contribution of this article will be man-
ifold. We will present a modular and extensible framework
that we have developed to create highly interactive and reac-
tive applications. The framework enables the use of novel in-
put devices for natural interfaces. The interactive executable
behaviour is specified at a high level of abstraction, using
statechart models. We validated our framework by develop-
ing a proof-of-concept application to create and manipulate
3D objects. It uses a gestural interface to control objects
using hand movements only, using the Kinect controller as
input device.

PROOF-OF-CONCEPT APPLICATION
The application that we have chosen to develop as a proof-
of-concept is a simple 3D drawing tool that enables the cre-
ation and manipulation of 3D objects using the OpenGL
graphical library. Rather than using a keyboard, mouse, re-
mote control or other traditional input device, the application
is controlled by hand gestures.



Figure 1. Screenshot of an interactive application to manipulate 3D
objects using hand gestures.

Figure 1 shows a screenshot of our tool. A video of the ap-
plication in action can be found on YouTube1. The user con-
trols the application using his hands only. A closed right
hand is shown on the right of the screen. An opened left
hand is positioned on the left side of the screen, triggering
the selection of the top menu button (displayed in red). In
the middle of the screen, a 3D model is displayed which has
been reconstructed from a real book [6]. Alternatively, the
user can draw 3D models from scratch using hand gestures.
Any 3D model can be rotated, enlarged and moved using
hand movements.

To realise the application, we have used Microsoft’s Kinect2
as input device. This controller can detect the shape and 3D
position of a person in front of the device through the use of
an infrared projector, and infrared camera and a colour cam-
era. Once the system is calibrated and a person is detected,
the 3D position and movement of the hands can be tracked
in real time.

In the remainder of this paper we will explain how we have
realised this application by customising a generic framework
we have developed for creating interactive applications that
use novel natural interfaces. An important part of the frame-
work is the ability to model the executable behaviour of the
user interaction at a high level of abstraction.

MODELING GESTURE-BASED BEHAVIOUR
To specify the complex behaviour of reactive event-driven
systems, of which human-computer interaction (HCI) ap-
plications are a particular instance, we wish to use visual
models at a sufficiently high level of abstraction, while still
maintaining the ability to execute the models. Two types of
models appear to be suitable for this purpose: Petri nets [15]
and statecharts [9]. Both have been suggested by other re-
searchers for the purpose of modeling user interface behaviour
[3] [7]. We have opted for statecharts for several reasons.
First, Petri nets are intrinsically nondeterministic in nature,
1www.youtube.com/watch?v=lVcqzWTnpMY
2www.xbox.com/kinect

giving rise to additional problems. Second, existing tool sup-
port for executable statechart modeling appears to be more
advanced. Third, the statechart notation offers many mech-
anisms to reduce redundancy and complexity (such as com-
posite states, concurrent states, history states). Although
similar extensions of the Petri net formalism have been pro-
posed (e.g., hierarchical Petri nets), they do not appear to
have gained widespread use.

Therefore, we believe that statecharts provide the most ap-
propriate formalism, at the right level of abstraction, to rep-
resent event-driven, gesture-based behaviour. We are not
aware of any other visual modeling approach that has been
used to represent the executable behaviour of gesture-based
interactive applications. Of course, many other user inter-
face modeling approaches exist, such as ConcurTaskTrees,
storyboards, UsiXML [10]. These approaches appear to be
complementary to ours, as they are typically more process
or task-oriented, and much less focused on the executable
interactive behaviour.

THE FRAMEWORK
We have created a generic multi-threaded object-oriented ap-
plication framework in Java that allows for the development
of interactive applications in a modular and extensible way.
Its module structure is represented in Figure 2. Figure 3
shows the UML class diagram of the framework, illustrat-
ing the main classes used, as well as their composition and
inheritance relations.

Figure 2. Module structure of the application framework.

The framework relies on an external DeviceClient module
that transfers in a continuous fashion the data received from
the input device in a simple text-based format to the frame-
work. We implemented a client-server protocol to achieve
a high degree of decoupling, in order to be able to accom-
modate a wide variety of input devices for natural interfaces.
The framework provides a Server class (see Figure 3) that
receives data from the device client over an UDP socket on
a local port.

Any input device can be supported, as long as the device
client respects the conventions and the format imposed by
the framework. For our particular gesture-based application,
the input device will be a Kinect sensor. We have imple-
mented a device client in C++ to record at regular time inter-
vals the data sent by NITE, a C++ development framework
that has been provided by PrimeSense3, the company that
developed the Kinect sensor. The NITE framework facili-
3www.primesense.com

www.youtube.com/watch?v=lVcqzWTnpMY
www.xbox.com/kinect
www.primesense.com


Figure 3. Class diagram of the application framework.

tates the development of interactive applications based on
this sensor, by providing advanced functionality to track the
user’s shape in real time.

To represent graphical widgets on the screen, the framework
provides an abstract class Component (see Figure 3). The
OpenGLWidgets module contains subclasses of Component
to represent graphical widgets (such as menus and buttons)
using the OpenGL graphical library4. The framework also
provides an abstract class BodyAdapter representing a par-
ticular body part that listens to events corresponding to this
body part. The BodyAdapters module provides concrete
classes that specialise BodyAdapter with the different body
parts that can be used to interact with the application. Cur-
rently, we only provide hand gestures (implemented by the
concrete subclass Hand), but head and leg movements (for
example) could be added in a straightforward way.

Based on an observer design pattern (using the Java EventLis-
tener interface), the Hand body adapter (see Figure 3) listens
to the events received from the Server to compute the rela-
tive positions of both hands of a person relative to his head,
as well as the hand movements (based on previous positions)
and speed, and the hand’s status (open or closed). Since
we have opted for an event-based solution, this information
is transformed into specific events that correspond to hand
movements: handMovedX, handMovedY, handMovedZ, han-

4www.opengl.org

dOpened and handClosed. Each of these events takes a boolean
parameter to enable the distinction between the left and right
hand, so that both hands can be used separately to control the
application. Nontrivial behaviour can be implemented by
triggering specific actions in response to the above events.

Since we wish to model the executable behaviour of user in-
teraction with statecharts, our framework uses SwingStates5,
an efficient open source library that extends the Java Swing
user interface toolkit with support for state machines [1, 2]
to specify the behavior of interactive systems. While the li-
brary originally uses standard input devices (such as mouse
and keyboard), its hierarchical design supports arbitrary in-
put devices such as the Kinect to implement novel natural
interaction techniques. The overall complexity of model-
ing the interactive behaviour is reduced by decoupling the
behaviour of interconnected classes: each class provides a
different statechart specifying its behaviour. These state-
charts communicate asynchronously by sending and receiv-
ing events.

An interactive application based on natural interfaces can be
realised by using the framework and its modules, and by spe-
cialising some of its abstract classes (such as Component,
BodyAdapter, Model and Scene).

STATECHART MODELS

5swingstates.sourceforge.net

www.opengl.org
swingstates.sourceforge.net


In this section we present the statecharts that represent the
dynamic behaviour of our interactive gesture-based applica-
tion. Each of these statecharts is associated to one of the
framework classes or a subclass thereof.

Figure 4 shows the statechart of the Hand class, the body
adapter representing the behaviour corresponding to hand
movements. It is composed of two orthogonal statecharts,
one detecting the opening or closing of a hand, the other de-
tecting the vertical position of the hand. Since two instances
left and right of class Hand are associated to the Controller
class of the framework, the behaviour of each hand can be
controlled independently. Opening, closing, raising or low-
ering a hand will trigger a state change and send an event,
that can be exploited to change the behaviour of the applica-
tion.

Figure 4. Statechart representing the behaviour of a hand.

Figure 5 shows the statechart that represents the behaviour of
the Controller class. It detects, among others, which hand is
closed or opened. It listens to the events triggered by the stat-
echarts associated to the left and right hand (see Figure 4).
Each event passes along a parameter BodyEvent that carries
the information about the position of the hand, its speed and
status, and the transition that was followed.

Figure 5. Controller statechart listening to both hands (left and right)
to respond to movement with no, one or both hands opened.

The statechart of Figure 6 specifies the behaviour of the ab-
stract class Component from which all graphical components
(such as buttons and menus) that constitute our interactive
application inherit. Each graphical component listens to events
sent by the Controller statechart of Figure 5. The actions
triggered upon the receipt of a particular event can be dif-

ferent for each type of component. When a hand is moved
over the component, its state becomes FlownOver. When the
hand stays in this position for more than two seconds, a time-
outAction will be triggered. If the hand closes when being
on top of a component, the state changes to Pressed, and the
pressedAction is triggered. When the hand is opened again,
the releasedAction is triggered and the component passes to
the FlownOver state again. This type of behaviour is for ex-
ample very useful to implement drag and drop functionality
to move objects around, or resize functionality.

Figure 6. Statechart representing the behaviour of a graphical compo-
nent (e.g., a button or a menu).

The statechart of Figure 7 represents the behaviour of the
application-specific class MainScene that inherits from the
abstract framework class Scene. It represents a graphical
scene consisting of one or more models (such as the 3D book
model of Figure 1).

Figure 7. Statechart representing the behaviour of a graphical scene.

A graphical scene is initially in the state Visualizing, where
the currently selected model can be zoomed or rotated with
the hands. The user can select a button to carry out more
specific model editing behaviour in one of the substates of
the composite state Editing. In the Drawing substate, closed
hand gestures are directly interpreted to draw shapes on the
screen just as if the user would hold a pencil. In the Resiz-
ing substate, the model can be resized when both hands are
closed. In the Moving substate, the user can move models
around when keeping the left hand closed. By raising the
right hand in any of these substates, a menu is spawned from



which the user can choose between the actions of visual-
ising, drawing, resizing or moving models displayed on the
main scene. Alternatively, by closing the right hand only, we
arrive in the MakeGesture state in which the user can apply
predefined gestural patterns that will, when executed, trigger
one of these actions and their corresponding state changes.
For example, the gesture of drawing a cross using the closed
right hand will trigger a transition to the Resizing state. The
ability to specify and detect gestural patterns and to associate
them to specific actions is a feature supported by classifiers
implemented in the SwingStates library.

DISCUSSION AND FUTURE WORK
We customised our framework into a proof-of-concept appli-
cation for manipulating 3D objects using hand gestures only.
We found the application to be very intuitive in use, and we
did not encounter any performance problems. Nevertheless,
both the framework and the application can still be improved
in many ways. The framework needs to be ported to different
operating systems since currently it has only been developed
for a Linux OS. The client device that communicates with
the Kinect sensor suffers from a number of child deseases
that need to be overcome. For example, when the two hands
of the user are very close to one another, the application can-
not distinguish between both.

To validate and assess the usefulness of our framework, we
need to carry out different kinds of controlled experiments.
With end-users we can assess the improved user experience
of gesture-based interfaces as opposed to traditional ones.
With developers of HCI applications we can assess the ex-
tensibility and modularity of our framework. With maintain-
ers of HCI applications we can assess the difficulty of speci-
fying and evolving interactive behaviour that is specified by
communicating statechart models.

From the modeling point of view, the statecharts are cur-
rently hardcoded in the Java framework using the SwingStates
library. In fact, all statecharts presented in this article are
flattened into state machines. We did not observe a scala-
bility problem due to state explosion, thanks to the ability
to run multiple communicating state machines concurrently.
From the visualisation point of view, SwingStates only pro-
vides a simple state machine visualiser. It would be more
useful to allow the user to specify the state-based interactive
behaviour separately using some integrated visual modeling
tool. From this specification, it is relatively straightforward
to generate the corresponding Java code. A more advanced
possibility would be to develop an interactive gesture-based
application to modify the statechart behaviour at runtime.

We also need to compare, and possibly combine, our state-
chart models with other modeling approaches that have been
proposed for user interface modeling [10] and behavioural
modeling of interactive graphical applications (e.g., [18]).
Similarly, we need to compare our framework with other
frameworks that have been proposed for developing interac-
tive applications based on novel user interfaces such as the
(outdated) Amulet environment [14] and its successors.

In the future, we will continue to use our framework for other
HCI applications, such as the algorithmic reconstruction and
manipulation of 3D objects and scenes [6]. We will also
validate and extend our framework for other types of natu-
ral interfaces (such as haptic/tactile interfaces), other input
devices (e.g., multi-touch devices, electronic gloves), more
output devices (e.g. 3D virtual reality goggles), and other
body adapters (e.g., head and feet). This may lead to a sig-
nificantly more interactive and more immersive user experi-
ence. For example, the combination of headtracking func-
tionality [5, 8] (taking into account the position and the di-
rection of the head) and 3D goggles will give the user the
impression of looking into a 3D box of which he can ob-
serve and manipulate the contents from different angles.

CONCLUSION
In this article, we presented a modular and extensible object-
oriented Java application framework to facilitate the devel-
opment of interactive applications based on natural user in-
terfaces. The framework is decoupled from the input device
through the use of a client-server architecture. One of the
advantages of the framework is that it allows to improve the
user experience by enabling novel natural interfaces (such as
gestural interfaces), in particular for applications that require
the manipulation of 3D models and scenes.

A proof-of concept application was developed by using the
Kinect sensor as input device, and by translating its input
into a series of events corresponding to particular hand move-
ments. These events are exploited by statecharts that repre-
sent the executable behaviour of the interactive application.
Different communicated statecharts are associated to differ-
ent framework classes, making the behaviour of the classes
loosely coupled: they follow an observer design pattern and
their statecharts communicate asynchronously through the
sending and receiving of events.

We believe that the use of statechart models reduces the ac-
cidental complexity by raising the level of abstraction to the
appropriate level, facilitating the specification of complex
interactive behaviour in an intuitive visual way.

ACKNOWLEDGMENTS
This work has been carried out in the context of the mas-
ters thesis of the first author. We express our gratitude to
the MINT team of University of Lille 1 for proposing this
research topic. The research is co-funded by the European
Regional Development Fund (ERDF), Wallonia (Belgium),
FRFC project 2.4515.09 financed by F.R.S.-FNRS, and ARC
project AUWB- 08/12-UMH, financed by the Ministère de la
Communauté française - Direction générale de l’Enseignement
non obligatoire et de la Recherche scientifique, Belgium.



REFERENCES
1. C. Appert and M. Beaudouin-Lafon. SMCanvas :

augmenter la boı̂te à outils Java Swing pour prototyper
des techniques d’interaction avancées. In Proc. 18ème
conférence francophone sur l’Interaction
Homme-Machine (IHM 2006), pages 99–106. ACM
Press, April 2006.

2. C. Appert and M. Beaudouin-Lafon. Swingstates:
Adding state machines to java and the swing toolkit.
Software Practice and Experience, 38(11):1149–1182,
September 2008.

3. R. Bastide and P. A. Palanque. Petri net objects for the
design, validation and prototyping of user-driven
interfaces. In D. Diaper, D. J. Gilmore, G. Cockton, and
B. Shackel, editors, INTERACT, pages 625–631.
North-Holland, 1990.

4. F. P. Brooks. The Mythical Man-Month: Essays on
Software Engineering. Addison-Wesley, 20th
anniversary edition, 1995.

5. R. Deshayes. Réalité virtuelle appliquée au
headtracking et au handtracking. Technical report,
Faculty of Science, University of Mons, Belgium, June
2010. Masters Project.

6. R. Deshayes. Reconstruction algorithmique d’objets
3D. Master’s thesis, Faculty of Science, University of
Mons, Belgium, June 2011.

7. D. Dubé, J. Beard, and H. Vangheluwe. Rapid
development of scoped user interfaces. In J. Jacko,
editor, Human Computer Interaction (HCI 2009),
volume 5610 of Lecture Notes in Computer Science,
pages 816–825. Springer, 2009.

8. Y. Fu and T. S. Huang. hmouse: Head tracking driven
virtual computer mouse. Applications of Computer
Vision, IEEE Workshop on, page 30, 2007.

9. D. Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming,
8:231–274, 1987.

10. H. Hussmann, G. Meixner, and D. Zuehlke.
Model-Driven Development of Advanced User
Interfaces. Springer, 2011.

11. J. Kienzle, A. Denault, and H. Vangheluwe.
Model-based design of computer-controlled game
character behavior. In G. Engels, B. Opdyke, D. C.
Schmidt, and F. Weil, editors, MoDELS, volume 4735
of Lecture Notes in Computer Science, pages 650–665.
Springer, 2007.

12. T. Miller and R. Zeleznik. The design of 3d haptic
widgets. In Proceedings of 1999 Symposium on
Interactive 3D Graphics. ACM Press, 1999.

13. T. Moeslund, M. Störring, and E. Granum. A natural
interface to a virtual environment through computer
vision-estimated pointing gestures. In I. Wachsmuth
and T. Sowa, editors, Gesture and Sign Language in

Human-Computer Interaction, volume 2298 of Lecture
Notes in Computer Science, pages 239–250. Springer,
2002.

14. B. A. Myers, R. G. McDaniel, R. C. Miller, A. S.
Ferrency, A. Faulring, B. D. Kyle, A. Mickish,
A. Klimovitski, and P. Doane. The amulet environment:
New models for effective user interface software
development. IEEE Transactions on Software
Engineering, 23(6):347–365, June 1997.

15. W. Reisig. Petri Nets: An Introduction, volume 4 of
EATCS Monographs on Theoretical Computer Science.
Springer, 1985.

16. P. Reuter, G. Riviere, N. Couture, S. Mahut, and
L. Espinasse. ArcheoTUI – driving virtual reassemblies
with tangible 3d interaction. J. Comput. Cult. Herit.,
3:1–13, October 2010.

17. T. Stahl and M. Völter. Model Driven Software
Development: Technology, Engineering, Management.
Wiley, 2006.

18. A. Vitzthum. SSIML/Behaviour: Designing behaviour
and animation of graphical objects in virtual reality and
multimedia applications. Int’l Symp. Multimedia, pages
159–167, 2005.


	Introduction
	Proof-of-concept application
	Modeling gesture-based behaviour
	The framework
	Statechart models
	Discussion and Future Work
	Conclusion
	Acknowledgments
	REFERENCES 

