
The Model Role Level – A Vision

Rick Salay1 and John Mylopoulos
1
,

1 Department of Computer Science, University of Toronto

Toronto, ON M5S 3G4, Canada.

{rsalay, jm}@cs.toronto.edu

Abstract. Models are used widely within software engineering and have been

studied from many perspectives. A perspective that has received little attention

is the characterization of the role each model plays within a modeling project.

We refer to this as model intent, and the collection of roles for all models as the

role level within a project. Knowing the intent of a model supports model

comprehension by providing the correct context for interpretation and enhances

model quality by clearly defining what information it must contain.

Furthermore, formal expression of this intent enables automated support for

model analysis. Despite the value that knowledge of model intent can provide,

there are no adequate means in the current state of modeling practice for

expressing this information, apart from informal documentation. The focus of

this paper is to provide a framework for understanding model intent, distinguish

it from related modeling concepts and discuss its uses.

Keywords: Model intent, Model quality, Modeling, Roles.

1 Introduction

Modeling is (at last!) a core activity in software engineering, largely due to a series of

standards established by the Object Management Group (OMG). Not surprisingly, the

topic is being studied from many perspectives, including metamodeling [e.g., 13],

formal model semantics [e.g., 4], horizontal and vertical consistency (refinement)

[e.g., 8], model transformations [e.g., 3] and model management [1]. However, a

perspective that has received little attention is the role that model intent plays in

modeling and this is the focus of this paper.

When modelers create a collection of models for a particular software engineering

project, they do so with an idea of what role each model plays in the collection – i.e.,

what information it should contain and how this information is related to the

information in other models. The specification of these roles is what we refer to as

the expression of model intent. Elsewhere we have described how to express model

intent formally [16, 17] and how this can support model comprehension, quality,

automation and evolution. In this paper, we explore the foundations behind model

intent and offer a vision of how this new kind of information can be used in modeling

practice. A key contribution of this paper is the identification of the “role level” as

being an important, but typically unarticulated, aspect of modeling activity alongside

the “model level” at which the content of models is created.

We begin in Section 2 by giving an illustration of what we mean by model intent.

Then in Section 3 we analyze the concept of model intent to distinguish it from other

related concepts and to reveal its unique characteristics. In Section 4, we discuss the

implications of treating the role level as a first class notion within modeling practice.

Finally, we discuss related work and draw some conclusions.

2 An Illustration

Throughout this paper we will draw on a hypothetical transportation system

development project as source of illustrative examples. The transportation system

concerns itself with different modes of transport (e.g., trains, cars, etc.) and has

subsystems and software dealing with different aspects of their management (e.g.,

traffic control, tolls, etc.). Fig. 1 shows a class diagram DTollPrice for that project.

This diagram is syntactically well-formed and according to the usual semantics of

class diagrams we can interpret it as being equivalent to the following set of

statements:

• Class Vehicle has subclasses Car, SUV and Truck.

• Class TollTicket has subclasses SingleTripTicket and MonthlyTicket.

• Class Vehicle has attributes weight and numPassengers of type int.

• Class Truck has an attribute cargo of type Ctype.

• Class TollTicket has an authorizes association to class Vehicle and an attribute

purchasePrice of type real.

• Class MonthlyTicket has an attribute discount of type real.

Fig.1.Transportation system diagram dealing with toll price.

DTollPrice:CD

Car SUV
cargo : Ctype

SingleTripTicket Monthly Ticket

Vehicle

weight : int

numPassengers : int

authorizes TollTicket

purchasePrice: real

discount: real

Truck

Now consider how this interpretation is affected as we disclose different aspects of

the intent regarding this model with the following series of statements.

• (I1) DTollPrice is a (proper) submodel of the design model TransSysDesign --

We now know that this is not a complete model by itself but is part of a larger

one and so we expect there to be other submodels showing other parts of the

design. Furthermore, we know that there may be other classes not shown here

that may be related to these classes. We also know that this model is described at

the “design level” of detail (vs. implementation level, for example).

• (I1.1) The classes in DTollPrice are aggregated within the class

TransportationSystem not shown in this diagram -- This elaborates (I1) and we

can now infer the statement “classes Vehicle and TollTicket have aggregation

relationships to class TransportationSystem”

• (I2) Diagram DTollPrice shows the parts of a transportation system dealing with

toll payment -- This gives us some sense of the purpose of the model and basis

for assessing the relevance of the current content to this purpose.

• (I2.1) All and only the attributes of vehicles that affect toll price are shown --

This elaborates (I2) and we can now infer the statement that “weight,

numPassengers and cargo are the only vehicle attributes that affect toll price”

• (I2.2) All types of toll tickets are shown -- This elaborates (I2) and we can now

infer the statement that “SingleTripTicket and MonthlyTicket are the only types of

TollTicket”

From a model user perspective, I1 helps us to understand the broader context of the

model and its relationship to other model artifacts, I2 helps us to understand the

purpose of the model and hence the rationale for its content, and I1.1, I2.1 and I2.2

allow us to infer additional statements that augment the standard semantics of the

model. From a modeler perspective, asserting these statements helps to clarify what

information to include or exclude from DTollPrice. For example, I2.1 forces the

modeler to think about whether there are any other attributes of vehicles that may

affect toll price. As the transportation system design evolves and other modelers

modify DTollPrice, these statements provide guidance to help them remain

conformant to the original intentions – or perhaps, to challenge and change the

intention if that is appropriate. Finally, if some of these statements can be formalized,

then conformance checks and repairs can be performed in an automated way by

modeling tools. We now turn to an in-depth analysis of the concept of model intent.

3 Analyzing Model Intent

Model intent is a kind of information about models. As such it exists in the

development world [13] that consists of artifacts such as models, activities such as

modeling and actors such as modelers. We assume that a modeler works in the

context of a particular modeling project that consists of an evolving set of interrelated

models. Note that the modeling project can be part of a larger effort such as a

software development project, documentation project, etc. Furthermore, if a

development methodology is being followed, we think of the modeling project as

being part of an instance of this methodology. We begin by identifying some key

stakeholder roles relative to a model in the context of a modeling project:

• Modeler

o Definer: The model definer is a modeler who decides that the model

must exist and defines what information it should contain.

o Producer: The producer is a modeler who creates the content of the

model in accordance with the requirements of the definer.

• Consumer: The consumer uses the model to satisfy their goals.

The modeler role is subdivided into the definer and producer roles to reflect the

fact that a modeling project may involve many modelers and that the modeler who

decides that a given model must exist may not be the same one that creates the model.

For example, a senior designer on a software project may play the definer role for a

certain model that a junior designer must create as producer. The junior designer may

then play the definer role with respect to how they wish to subdivide the model into

various submodels and then play the producer role in creating them. We assume that

the model intent emerges from the activities of the definer role and that any

expression of model intent is created by a definer. Both the producer and consumer

may use these expressions of model intent to support their activities.

Now consider the framework in Fig. 2 showing the different kinds of model intent

that can arise within a modeling context. The entry point into the framework is

through the need arising for a model due to the information requirements of some

stakeholders such as software developers, testers, users, business decision makers, etc.

For example, assume that the modeler is responding to the need of a group of

software developers for the UML model TransSysDesign representing the detailed

design of a transportation control system that the developers must build. This

generates an initial existential intent on the part of the modeler that identifies that the

model TransSysDesign must be created within the project. At this point, as the

modeler considers the purpose of the model, they recognize that TransSysDesign is

related to other models in well defined ways (arrow R). For example, TransSysDesign

must satisfy the requirements model TransSysReq, it must refine the architecture

model TransSysArch, etc. All of these are intended relationships that the model must

conform to.

Before the modeler actually creates TransSysDesign, they must decide what

information should be in it based on what information they think would satisfy the

needs of the developers (arrow C). This gives rise to an intention about what the

content of TransSysDesign should be and we refer to a characterization of this as

content criteria. The modeler may then recognize that this information should not be

created as a single monolithic model but must instead be decomposed into multiple

related “partial” models (arrow D). Doing this involves both the identification of new

models (arrow I) and the expression of the decompositional structure of the set of

partial models (arrow E) that we call decomposition criteria.

We now examine each of these kinds of model intent more closely.

3.1 Expressing Existential Intent – Model Roles

An important distinction that is not often made clear in research on modeling and is

central to the concerns of this paper is that of model roles vs. the models that play

those roles. We define a model role within a modeling project as a reification of the

need for a model that satisfies a particular purpose while a model is an artifact that

can play (or realize1) one of these roles. Thus, we assume that every model must have

a purpose. Furthermore, a model role is not merely an attribute of a model – it has its

own existence independently of the models that play it. The acknowledged existence

of a model role within a project represents an existential intent on the part of the

modeler (as definer): an expectation that a model playing this role should exist within

the project.

In practice, when actors in a modeling project talk about models, they are usually

talking about model roles rather than the actual artifacts that play those roles. For

example, consider the following typical sentences:

1. “Where is the error handling model?”

2. “Who will create the structural model of the traffic light controller?”

3. “Here is the latest version of the toll ticket purchase flowchart.”

In these sentences, the phrases “error handling model”, “structural model of the traffic

light controller” and “the toll ticket purchase flowchart” all refer to model roles rather

than models themselves. Only in sentence (3) is an actual model referred to as the

referent of the word “Here”. The lifetime of a model role is longer than that of the

models playing the role and can exist even if no model plays the role. Furthermore,

different models can play a given role at different times although only one can play

1 We will use the terms play and realize interchangeably. Thus a model is a realization of a

role.

Fig. 2. A framework for model intent.

Identified Model

(existential intent) (intent about how models
are related)

Content Criteria

(intent about what a
model contains)

Decomposition
Criteria

(intent about how a
model is decomposed)

Modeler determines
content requirements
from purpose

Modeler designs
basis for model
decomposition

Modeler determines
relationship requirements
from purpose

Modeler identifies new
models in the
decomposition

External need for
a model arises

Modeler expresses
decompositional
structure

Intent about what
models exist

Intent about how models
are related

Intent about what
information a

model contains
(content criteria)

Intent about how a
model is decomposed
(decomposition criteria)

Modeler determines
content requirements
from purpose

Modeler designs
basis for model
decomposition

Modeler determines
relationship requirements
from purpose

Modeler identifies new
models in the
decomposition

Modeler expresses
decompositional
structure

R

C

D

E
I

the role at a time. For example, in sentence (2) it is clear that no structural model

exists yet so the model role precedes the existence of a model playing the role. In

sentence (3) the referent of “Here” is the model that is playing the role at the time that

the sentence was uttered.

The Model Level vs. the Role Level. In the current state of practice, most explicit

modeling activity takes place at the model level rather than at the role level. That is,

modelers spend most of their time expressing the content of particular models rather

than their intentions about the models. The role level is a level of abstraction on the

model level since model roles identify and say something about models without

giving their content.

Abstraction is a powerful mechanism for managing complexity by supporting top-

down understanding but in order for a level of abstraction to be useful it must provide

some form of summarization of the details that are omitted [12]. We will assume that

a model summary is any property that abstracts from the content of the model. Thus,

the model intent at the role level is one such summary and we argue that this

summary in particular is a key one for supporting a stakeholder’s comprehension of a

collection of interrelated models.

To see this, consider the following different possible summaries of diagram

DTollPrice in Fig. 1:

1. DTollPrice contains seven classes

2. DTollPrice contains some details for classes Vehicle and TollTicket

3. DTollPrice contains all information related to toll ticket pricing

4. DTollPrice contains classes Vehicle and its three subclasses and class

TollTicket and its two subclasses

These are all valid summaries of DTollPrice and give different amounts of

information about it. However, of these, (3) is distinguished because it defines the

role intended to be played by the model and expresses the model intent. In general,

the choice of summary used should correspond to the task for which the abstraction

will be used. For example, if the goal is to efficiently decide which model has more

than nine elements, then a summary like (1) is most appropriate. What we suggest is

that the summary that is most appropriate for supporting the task of model

comprehension is the one that is drawn from the purpose of the model because this

explains why it contains the information it contains. Explicitly modeling the role level

as part of normal modeling activity benefits all stakeholders by providing this useful

level of abstraction on the collection of models in a project.

Within a project, the model level says things about the application domain while

the role level says things about the model level. For example, DTollPrice says things

that must hold in the transportation system while the intent that DTollPrice show the

information related to toll ticket pricing says something about this model, not the

transportation system. In general, we expect the intent about a model to define the

kinds of information that the model should express and this should not bias the

information to be true or false about the application. Although this seems like a

straightforward stratification of information, the clean separation of levels is not

always possible. For example, simply asserting that there exists a model DTollPrice

with the intent described above already assumes that the transportation system has a

type of entity called a “toll ticket”. If it didn’t then the existence of DTollPrice would

not make sense. Thus, the model intent can also be dependent on particular facts

about the application and this causes a “tangling” between the model level and role

level. We give other examples of this tangling in subsequent sections of this paper.

Model Roles vs. Model Types. The type of a model is defined by its modeling

language and this is typically characterized by a metamodel, has a notation and has

associated tools such as editors. A model role is a use of a modeling language in a

particular context. Thus, model roles and model types are related but distinct

concepts.

A given model type can be used for many roles and a given role could be modeled

using potentially many types; however, the combinations are not arbitrary. For

example, a Statechart may be used to play the roles “behaviour of class Car”,

“process for purchasing a toll ticket” or “behaviour of the traffic network” but it could

not be used to play the role “organizational structure of toll operators” because

Statecharts do not provide the appropriate concepts required for this modeling task.

On the other hand, the role “process for purchasing a toll ticket” could be modeled

using a Statechart, Flowchart, UML Activity Diagram or UML Sequence Diagram but

not using a Class Diagram.

3.2 Expressing Intent about Content – Role Constraints

We assume that no model is created without a purpose and this purpose is the key

driver of model intent. Within a software development context, Lange [6] has

classified some of the possible purposes a model may have such as to support testing,

analysis, communication, etc. If the context is broadened to include entire

organizations that produce software, then the possible purposes of models can include

such things as support for persuasion (sales & marketing), training (human resources)

and decision making (marketing & management). 2

Although the possible purposes of a model seem quite diverse, the only thing a

model can actually provide is a set of information. Thus, we may reduce the question

of the model’s purpose to that of what information it should provide and by what

means – i.e., what the requirements for the model are. With software artifacts we can

have both functional and quality (or, non-functional) requirements. Similarly, with

models we can state its content requirements (what information it should provide) and

its quality requirements (how it provides the information).

The content requirements of a model define what information belongs in the model

and what does not. The quality requirements of a model specify more generic

properties that the information must satisfy and these can be captured by model

quality metrics such as complexity, balance, conciseness, precision, flexibility, etc.

Model quality metrics have received significant research attention [e.g., 6, 11]. While

both types of requirements can be expressed at the model role level, our focus in this

2 Of course, one may come up with “unorthodox” purposes for a model, e.g. to impress my

boss, to decorate my wall, etc. however we do not consider these types of purposes in this

paper.

paper is on content requirements. The modeler (as definer) interprets the content

requirements as a set of constraints that the information in the model must satisfy –

i.e., as a specification for the model content. We call this specification the content

criteria of the model.

Kinds of Model Constraints. At this point we need to consider more carefully the

term “constraint” used in the above exposition. The concept of constraint is a very

general one and different kinds of constraints have different functions within

modeling. To help characterize these kinds, consider the taxonomy of constraints

shown in Fig. 3. Type constraints are due to the rules for correct usage of the

modeling language used by a model independently of the particular purpose for which

the model is used. These include semantic constraints that ensure that the content is

semantically interpretable and consistent and syntactic constraints that ensure that the

model is renderable using a particular notation.

Role constraints are due to the intended purpose of the model and thus are usage

context dependent. From a linguistic point of view, these carry information about

pragmatics and determine how the same model could be interpreted differently in

different usage contexts. Role constraints can be further subdivided as follows.

Method-level constraints are role constraints due to the development methodology

being followed to create the content. These include constraints that require the

existence of models playing particular roles, constraints on the sequence of modeling

activities, constraints on content due to modeling conventions, etc. Project-level

constraints are role constraints due to the modeler’s design decisions and

interpretations of stakeholder needs within a particular project (i.e., an instance of a

development method). These include constraints that require the existence of models

playing particular roles, constraints that define what content is required by the

purpose and constraints that govern the decomposition of a model. For example,

consider the different kinds of constraints on the content of DTollPrice shown in

Table 1. We give a suggestive formalization of each constraint using logic3.

Constraint (C3) is an example where the model level is tangled with the role level

since the existence of state machine models in the project is dependent on the

3 TC means transitive closure. Readers interested in the details of our formalization approach,

please see [16, 17].

Fig. 3. A taxonomy of constraints that apply to models.

Model Constraints

Type Constraints Role Constraints

Method-level
Constraints

Project-level
Constraints

occurrence of classes within a particular model. Most of the research on model

constraints within software engineering has focused on type constraints and

associated notions like consistency [e.g., 8].

A key difference between project-level role constraints and the other two kinds is

the level of generality of the constraint. Type constraints are common to all models of

the same type (i.e., same language) and are typically defined as part of the metamodel

for the model type. Method-level role constraints are common to all models playing

the same type of role. If these are expressed, they are found as part of the method

definition. In contrast to both of these, project-level role constraints are specific to a

particular model role within a particular project. This means that we view these role

constraints to be part of the modeling project rather than outside or above it. Thus, a

violation of such a constraint could be addressed either by changing the model content

or by changing the constraint itself to reflect a change in the intent about the content.

For example, if constraint (C4) is violated by DTollPrice because it contains the toll

ticket attribute ticketFormat that is unrelated to toll ticket pricing, then a valid

response on the part of the definer is to recognize that the intent of DTollPrice has

evolved (e.g., to expressing all toll ticket details) and it now should allow this

attribute.

A software method typically identifies the abstract input and output roles for

development activities (e.g., requirements gathering, design, etc.) as well as the

constraints between these roles. Since these are defined at the method level scope that

spans multiple projects we could consider them to be expressing the intent of the

development organization rather than the intent of modelers. As such, the method

level can only be used to express a limited amount detail regarding these roles. For

example, the Rational Unified Process (RUP) [5] identifies the existence of an

“elaboration phase architecture model” but in a particular project this would typically

consist of multiple partial models (or diagrams) to address different concerns,

different stakeholder views, different modeling languages, different decompositions,

etc. Each of these models in the elaboration phase has a distinct role, and thus, a

distinct model intent associated with it and this cannot be expressed at the method

level.

Table 1. Examples of different kinds of model constraints.

Kind of
constraint

Constraint involving DTollPrice

Type (C1) DTollPrice (as a class diagram) can’t contain a class that is a subclass
of itself.

∀m:CD ∀c:m.Class · ¬TC(subclassOf(c, c))

Role
(method-level)

(C2) DTollPrice (as a Design model) cannot use multiple inheritance.

∀m:Design ∀c:m.Class · ¬∃c1, c2:DTollPrice.Class ·

 subclassOf(c, c1) ∧ subclassOf(c, c2)

Role
(project-level)

(C3) Every class of DTollPrice requires a corresponding Statemachine
Diagram to show its behaviour.

∀c:DTollPrice.Class ∃m:TransSysProject.SMD · behaviourOf(m, c)

 (C4) DTollPrice contains all and only attributes related to toll ticket pricing.

∀a:DTollPrice.Attr · partOfComputation(a, tollTicketPrice)

3.3 Expressing Intent about Relationships

The purpose of a model may require that its content constrain the content of other

models or be constrained by the content of other models. We refer to a role constraint

that is intended to hold between particular roles as an intended model relationship.

Specifically, when such a constraint is intended to hold between certain roles then it

means that the possible combinations of models that can play these roles are restricted

because only certain combinations satisfy the constraint.

The model relationships that occur between models are often instances of typical

relationship types encountered in Software Engineering such as submodelOf,

refinementOf, aspectOf, refactoringOf, projectionOf, transformationOf,

realizationOf, etc. The use of relationship types allow sets of constraints that are

commonly expressed between roles to be packaged and reused. They also provide a

meaningful level of abstraction on the constraints expressed at the role level by

summarizing the intent. For example, if an instance of the relationship type

UMLrefines (specializing refinementOf) is intended to hold between two UML model

roles, then this carries a different meaning for the stakeholder than another

relationship type that says that one model is a submodelOf of the other. Thus,

relationship types are both a reuse mechanism and an abstraction mechanism that

simplify the expression of model intent.

3.4 Expressing Intent about Model Decomposition

Up to this point in our analysis, we have only considered model intent expressed as

role constraints on a model or between particular models. Another common scenario

at the role level is that the modeler intends that a required model (i.e., for which there

is a model role) be decomposed into a collection of interrelated models rather than

being created as a single model. There are many possible reasons to do this and the

reason defines the purpose of the decomposition. For example, in order to manage

complexity, the model may be decomposed into smaller parts and into different levels

of abstraction. A model may be decomposed because it is not renderable as-is and it

must be split into diagrams that have well defined notations. This is the case with the

UML – it has no single notation for the entire modeling language and so a UML

model must always be decomposed into diagrams in order to be rendered. Another

reason to decompose a model is to support some task – e.g., in order to assign the

parts to different development teams.

Note that the purpose of the decomposition may underdetermine it since there may

be many possible decompositions that can satisfy this purpose. However, we argue

that when a modeler decides to decompose a model, they do not break it up in an

arbitrary way but rather they have an intent about how this should be done – i.e., they

have some decomposition criterion. Furthermore, following this criterion does not

simply yield a set of partial models of the whole - it must also define the intent for

each of these models, since they, like all models, must each have a well defined

purpose.

Thus, the intent regarding a decomposition is driven partly by the purpose of the

decomposition and partly by the modeler’s design decisions on how to achieve this

purpose. For example, assume that we have the model role VehicleTypes in the

transportation system design and the purpose of this model is to show all the types of

vehicles that are used in the transportation system. Now, assume that the modeler (as

definer) decides that this model is too complex and must be decomposed. Consider

the following two possible decompositions:

• D1 = {LightVehicleTypes, MidrangeVehicleTypes, HeavyVehicleTypes}

• D2 = {PassengerVehicleTypes, CommercialVehicleTypes, ServiceVehicleTypes}

D1 represents a decomposition of VehicleTypes on the basis of vehicle weight

while D2 is a decomposition on the basis of vehicle function. Both satisfy the purpose

of managing complexity and both define the intent for each constituent model but

each has a different basis for the decomposition. Thus, the basis for the decomposition

is also part of the decomposition criteria. Note that the bases for both these

decompositions come from the application domain and so they are examples of

tangling between the model and role levels.

Since decomposition can be applied recursively it is natural to have hierarchical

decompositions. Note however that the decompositional structure is normally only a

role level phenomenon and is not evident at the model level. There are two reasons

for this. First, there is no approach in common usage for identifying collections of

models that decompose another model4. Second, when a decomposition occurs, often

only the constituent models actually exist as artifacts and the decomposed model is

“implicit.” For example, if the decomposition D1 is used for VehicleTypes, and we

have a set of three models that realize the roles in D1, then the model that realizes

VehicleTypes can be derived from these (by composing them). However, if the

decomposition is sufficient to satisfy the stakeholders information requirements then

this model does need to actually be materialized.

4 Uses of Model Intent

In this section, we briefly5 consider the ways in which the role level and model intent

can be used to support modeling. Since the role level constrains (via role constraints)

the possible project configurations at the model level to those that conform to model

intent, this can be utilized to detect model defects by determining whether models

playing roles satisfy their role constraints. This includes the detection of existential

intent violations when a role exists that has no corresponding model in the project.

For models in the project that are found to be non-conformant, the role constraints can

also be utilized to help guide the repair process by restricting the allowable

modifications. When role constraints are formalized, these supports can be built into

modeling tools and automated.

The typical approach to modeling based on the model level is bottom-up: models

are created incrementally by adding content to them and new models are introduced

as needed. During bottom-up modeling, the act of expressing the intent of a model is

4 Of course, artifact grouping mechanisms such as folders, packages, etc. could be used

informally to indicate this.
5 For more detailed descriptions of how model intent can be used, please see [16, 17].

useful because it forces a modeler to clarify what the purpose of the model is and

provides a way to ensure that the content is consistent with this purpose.

The fact that a model role can precede the existence of a model playing the role

means that a definer can use role constraints as a way to direct modeling activities.

Thus, in addition to bottom-up modeling, the existence of the role level creates an

opportunity for top-down modeling by allowing the required models and their intent

to be specified before content is created. While bottom-up modeling is more organic,

top-down modeling is more designed since the “information architecture” of how

content is distributed across multiple models can be prescribed. Top-down modeling

also enables the management of a multi-person modeling process by allowing

different model roles to be assigned to different modelers.

5 Related Work

The concept of “role” has been used in many contexts within computer science. In

their work on social roles, Masolo et. al. [9] review these uses and identify some

common ontological features of roles. A role is a kind of property and so it can have

multiple players. This is clearly also the case with a model role, although it can only

have a single player at a time. A role is always linked to a context. In the case of a

model role this is a modeling project. A role has a relational nature and its definition

may depend on the existence of other properties. We see this with model roles

through the intended model relationships and the tangling with the model level.

Finally, roles are anti-rigid and thus they are necessarily non-essential properties of

the entities that play them. In this respect model roles differ from social roles since

models are specifically constructed to play a particular role within a project. Although

the model can still exist when it is not playing this role, its value as an “information

bearer” is tied to its role; hence we consider the model role to be a “quasi” essential

property of a model.

There is work relating to various types of “intention” within software engineering,

although the specific issue of expressing model intent has not been a focus of

academic research (as far as the authors can determine). For example, Yu defines the

i* language for describing stakeholder intentions in early requirements engineering

[19], while Ralyté and Rolland use the intention of a process step to support merging

method fragments in method engineering [15]. The work of Mens et. al. regarding

intentional source-code views to help with software maintenance [10] is more closely

related to our interests because here a view of software is defined in a declarative way

so that the “intent” of the view can be clearly understood. Despite this it is not

concerned with models.

If we consider specifically model-related research that could potentially be used for

expressing model intent, the early and influential ViewPoints framework [14] stands

out as the “best fit.” Here, a ViewPoint is similar to a model role in that it is an

“envelope” that carries metadata about a model including constraints with other

models. However, the ViewPoints framework uses this for managing decentralized

development rather than for characterizing model purpose. Furthermore, role

constraints are not clearly distinguished from type constraints and thus there is no

systematic approach to managing the differences between violations to these kinds of

constraints. Finally, there is no support for relationship types or for hierarchical

decompositions of models.

Other heterogeneous modeling frameworks that have emerged more recently, such

as the Generic Modeling Environment (GME) [7] and the Atlas Model Management

Architecture (AMMA)[2], focus entirely on models and do not make the distinction

with model roles. AMMA does have a special model type called a MegaModel for

expressing metadata about models and bears some similarity to our macromodel

language for the role level [17]. Unfortunately, there is no special support for

expressing role constraints at this level.

Finally, the Software Process Engineering Metamodel (SPEM) [18] used for

defining development methods effectively captures the notion of a model role with its

concept of a work product used by tasks. Despite this, it is limited to use at the

method level and not the project level. Furthermore, although relationships between

work products can be expressed, these are limited to process sequencing constraints

rather than constraints on the content of models realizing the work products.

6 Conclusions

Much of modeling research and practice has focused on the model level where the

information about the application domain is created. In this paper, we argue that there

is also another level of information that is central to modeling but has not been subject

to significant examination. The model role level is where model intent exists and the

focus of this paper is to analyze this notion and present a vision of how it can

positively impact modeling.

We approached the analysis by first recognizing that when modelers create a

collection of models in order to satisfy the requirements of stakeholders, they do so

with an intent about what role each model plays in the collection. We then presented a

framework that defines four aspects of model intent at the role level: the existential

intent for a model that arises in response to the need for information by stakeholders,

the content criteria that expresses what information the model is intended to contain,

model relationships that express how models are intended to constrain one another

and the decomposition criteria that expresses the intent behind how a model is

decomposed into a collection of models. Explicitly articulating model intent has

benefits for all stakeholders by supporting model comprehension, improving model

quality and enabling automated support for model analysis.

Although we have laid foundations here and in our other work [16,17], making the

use of the role level a practical reality requires further research. In particular, because

expressions of model intent can be used both for supporting model automation and

comprehension, they have the conflicting requirement of both being formal and being

understandable by non-technical stakeholders. In addition, the added burden of

expressing model intent may discourage its use and we need techniques such as reuse

and automated inference of intent to help minimize this effort. Finally, while our

work focuses mainly on the project level, more research must be done on how the role

level can enrich method specification languages such as SPEM [18] by using model

intent to constrain the content of artifacts used by a method.

References

[1] Bernstein, P.: Applying Model Management to Classical Meta Data Problems. In Proc.

Conf. on Innovative Database Research, pp. 209--220 (2003)

[2] Bezivin, J., Jouault, F., Rosenthal, P., and Valduriez, P.: Modeling in the Large and

Modeling in the Small. Lecture Notes in Computer Science, Num. 3599, Springer-Verlag

GmbH, pp. 33--46 (2005)

[3] Czarnecki, K. and Helsen, S. : Feature-based survey of model transformation approaches.

IBM Syst. J., Vol. 45, No.. 3, pp. 621--645 (2006)

[4] Harel, D. and Rumpe, B.: Meaningful modeling: what's the semantics of" semantics"? IEEE

Computer, vol. 37, no. 10, pp. 64--72 (2004)

[5] Kruchten, P.: The rational unified process: an introduction. Addison-Wesley Longman

Publishing Co., Inc. Boston, MA, USA (2000)

[6] Lange, C.F.J. and Chaudron, M.R.V.: Managing Model Quality in UML-Based Software

Development. 13th IEEE International Workshop on Software Technology and Engineering

Practice, pp.7--16 (2005)

[7] Ledeczi A., Maroti M., Bakay A., Karsai G., Garrett J., Thomason IV C., Nordstrom G.,

Sprinkle J., Volgyesi P.: The Generic Modeling Environment, Workshop on Intelligent

Signal Processing, May 17 (2001)

[8] Lucas, F. J., Molina, F., Toval, A.: A systematic review of UML model consistency

management, Information and Software Technology (2009)

[9] Masolo, C., Vieu, L., Bottazzi, E., Catenacci, C., Ferrario, R., Gangemi, A. and Guarino,

N.: Social roles and their descriptions. In Proc. of KR’04, pp. 267--277 (2004)

[10] Mens, K., Mens, T. and Wermelinger, M.: Maintaining software through intentional

source-code views. In proc. of the 14th international conference on Software engineering

and knowledge engineering (2002)

[11] Moody, D. L.: Metrics for evaluating the quality of entity relationship models. Lecture

notes in computer science. Springer, pp. 211--225 (1998)

[12] Moody, D. L.: The “Physics” of Notations: Toward a Scientific Basis for Constructing

Visual Notations in Software Engineering. IEEE Transactions on Software Engineering, pp.

756-779, November/December (2009)

[13] Mylopoulos, J., A. Borgida, M. Jarke, and M. Koubarakis, Telos: Representing Knowledge

About Information Systems. ACM Transactions on Information Systems, vol. 8, no. 4, pp.

325--362 (1990)

[14] Nuseibeh, B., Kramer J. and Finkelstein, A. : A Framework for Expressing the

Relationships Between Multiple Views in Requirements Specifications. IEEE TSE, vol. 20,

no. 10, pp. 760--773 (1994)

[15] Ralyté, J. and Rolland, C.: An assembly process model for method engineering. In Proc.

CAiSE 2001, pp. 267--283 (2001)

[16] Salay, R., Mylopoulos, J.: Improving Model Quality Using Diagram Coverage Criteria. In

Proc. CAiSE 2009, pp. 186--200 (2009)

[17] Salay, R., Mylopoulos, J., Easterbrook, S.M.: Using Macromodels to Manage Collections

of Related Models. In Proc. CAiSE 2009, pp.141--155 (2009)

[18] Software Process Engineering Metamodel V2.0 specification. Object Management Group.,

http://www.omg.org/technology/documents/formal/spem.htm

[19] Yu, E.S.K. and Mylopoulos, J.: Modelling organizational issues for enterprise integration.

Proc. Int. Conf. On Enterprise Integration and Modelling Technology. Turin, Italy (1997)

