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Abstract

Complex software systems, and self-adaptive systems in particular, are char-

acterized by complex structures and behavior. For their design, appropriate

notations for the specification of properties that integrate structural and tem-

poral aspects are required.

The UML has become the de-facto standard in software engineering. Due

to the visual nature and accessibility of its structural diagrams, it is widely

accepted as the tool of choice for structural modeling. However, for specify-

ing structural properties that go beyond cardinalities, the UML only provides

a textual specification language, the OCL. For mixed structural and temporal

properties, only proprietary combinations of OCL with temporal logic exist

today. The intricate nature of both OCL and temporal logic already causes

problems for many software engineers. When communicating with people

without a computer science background, e.g. domain experts, employing

OCL, any dialect of temporal logic, or a mix of both is usually impractica-

ble.

In this paper, we propose two visual languages for specifying require-

ments, Story Decision Diagrams for structural properties and Timed Story

Scenario Diagrams for scenario specifications that integrate structural and

temporal aspects. Based on UML Object Diagrams, our approach is capa-

ble of specifying both detailed static properties and requirements concerning

structural dynamics. Combining structure, first order and temporal logic, it

is more expressive than existing visual constraint and scenario languages.

Based on the formal semantics we define, it is furthermore possible to turn a

specification into a powerful behavioral monitor, enabling the verification of

dynamic structural properties of models at run-time or in a model checker.

∗This work was developed in the course of the Special Research Initiative 614 - Self-optimizing

Concepts and Structures in Mechanical Engineering - University of Paderborn, and was published on

its behalf and funded by the Deutsche Forschungsgemeinschaft.
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4 1 Introduction

1 Introduction

The popularity of the UML is in large part due to its visual nature and accessibility

of its structural modeling concepts. However, for specifying more detailed struc-

tural properties, the UML only provides a textual specification language, the OCL

[32]. The writing of OCL properties requires that the developer translates his/her

concrete ideas about the required structural properties from the familiar structural

view in form of UML Class and Object Diagrams into an often intricate textual syn-

tax. When reading OCL, a complicated and error prone translation in the opposite

direction is required.

This mental mapping problem of textual OCL is already problematic in most stan-

dard software engineering environments, where OCL is therefore rarely employed.

Important structural properties are often not documented, and information to this

effect is lost in the course of the development process, as no tool besides natural

language seems to be able to capture them, at least not economically.

For temporal logic such as LTL or CTL [11], the situation is even graver. As re-

ported in [13], developers (even experts) have serious problems handling the intri-

cate nature of these logics. Even in projects with very well trained experts, employ-

ing them is often impossible, as the resulting property specifications will usually

be unintelligible to domain experts from other disciplines that need to participate

in the effort.

For example, this problem becomes a serious hinderance when software engineers

develop the software for complex mechatronic systems which also involve complex

control engineering, mechanical engineering, and electrical engineering. As part

of the trend towards more intelligent, efficient, and flexible mechatronic systems,

dynamic software architectures which permit structural adaptation at run-time are

beginning to displace static architectures and models. While this permits building

systems that change in response to current needs, designing and validating such

adaptable systems poses new challenges to software engineers, as the involved

structural and temporal aspects are closely intertwined.

The Approach. In this paper, we demonstrate that visual languages can be used

for specifying structural as well as dynamic properties. First, we show how Story
Decision Diagrams (SDD) [18] can be used to capture structural requirements.

SDD are an extension of Story Patterns [27], combining the intuitive concept of

matching structural patterns with decision diagrams, which foster a consecutive if-

then-else decomposition of complex properties into comprehensible smaller ones.

We then introduce Timed Story Scenario Diagrams (TSSD) [19], a new notation

inspired by the Visual Timed Event Scenario approach [1], as a way of capturing

dynamic properties. They provide conditional timed scenarios describing the par-
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tial order of specific structural configurations. In addition, we present a scheme

for turning specifications into powerful monitors which enable the verification of

models w.r.t. dynamic structural properties using a model checker that supports

structural evolution.

Outline. The technical report is organized as follows: After reviewing and dis-

cussing the current state of the art in Subsection 1.1, we introduce our applica-

tion example from the mechatronic domain in Subsection 1.2. In Section 2, we

present the existing notations for graph-based modeling, their formalization, and

the existing tool support. In the following two main sections, we introduce our

extended notations, list the complete syntax, define the formal semantics, and pro-

vide a mapping from the property specification to operational detector behavior for

each of them. Section 3 discusses the concepts for modeling structural properties.

Section 4 embeds the concepts for structural modeling into our approach for mod-

eling temporal properties. In Section 5, we focus on the application of the proposed

specification techniques and discuss how the introduced concepts can be used to

derive a formal model from textual requirements. Finally, the paper provides a

conclusion and an outlook on planned future work.

1.1 Related Work

Visual Structural Properties. Constraint diagrams [24] visualize constraints as

restrictions on sets using Euler circles, spiders and arrows. To compensate for the

decrease in expressive power w.r.t. the OCL, constraint trees [25] combine them

with the idea of parsing an OCL statement into a tree, replacing only selected

constraints with constraint diagrams. The downside is that while quantification on

sets is intuitive, structural constraints quickly result in intricate, visually complex

diagrams with little relation to the original UML specification.

VisualOCL [6] is an approach that focuses on mapping OCL syntax to a visual

format as closely as possible, thus facilitating the parsing of structural constraints.

Based on the theory of graph grammars, Story Patterns (cf. [27]), an extension

of UML Object Diagrams, are an alternative approach which can also be used

for specifying constraints. Like most approaches that extend UML Structure Dia-

grams, they are very accessible, but in turn have deficits when it comes to quantifi-

cation and negation.

Visual Temporal Properties. Several notations for scenarios as a means to visu-

ally describe temporal behavior have been proposed: UML 1.x Sequence Diagrams

or message sequence charts have been employed to specify and check timed prop-

erties (cf. [30]). However, they are usually considered as not expressive enough, as

only a set of runs or one specific run of the system, but no conditional properties,
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can be described. Therefore, the interpretation w.r.t. the system is usually unclear.

This limitation has been tackled by a number of approaches such as Live Sequence

Charts (LSC) [21] or Triggered Message Sequence Charts (TMSCs) [39], which

add the ability to describe conditional behavior in a sequence diagram style nota-

tion. To some extent, these enhancements found their way into UML 2.0 Sequence

Diagrams (cf. [33, p. 444] assert block).

Other approaches such as the Visual Timed Event Scenario approach [1] focus on

scenarios for pure events, rather than the interaction of predefined units. Therefore,

they provide a more intuitive notion of temporal ordering than Sequence Diagrams,

which require specifying a sequence of interactions that ”enforces” this ordering.

Specification patterns for temporal properties represent an attempt to alleviate the

problem that temporal logics are difficult to apply. As outlined in [13], many use-

ful temporal properties can be constructed using a small set of elementary build-

ing blocks. This idea has been extended and applied to real-time systems in [28].

However, while applying the patterns may be intuitive, the resulting formulas them-

selves are no more transparent or readable than before.

In the UML 1.x, real-time properties could only be expressed using the UML Pro-
file for Schedulability, Performance, and Time [31]. It allows attaching specific

schedulability or quality of service characteristics to classes, but only provides

rudimentary support for the detailed specification of real-time behavior. UML 2.0

introduces only marginal improvements w.r.t. Sequence Diagrams.

However, all these scenario-based or specification pattern-based approaches fo-

cus on the purely temporal aspect of behavior, abstracting from its structural as-

pects. Statements concerning the required temporal behavior of expressive struc-

tural properties are not supported.

Combined Structual and Temporal Properties. Most approaches which permit

combining structural and temporal properties are extensions of the OCL towards

the description of dynamics. Through the introduction of additional temporal logic

operators in OCL (e.g., eventually, always, or never), modelers are enabled to spec-

ify required behavior by means of temporal restrictions among actions and events,

e.g., [8]. Temporal extensions of the OCL that consider real-time issues have been

proposed for events in OCL/RT [10] and for states in RT-OCL [15]. As temporal

logic alone already causes an even more demanding mapping problem (cf. [13]),

integrating the OCL and some temporal logic concepts at the textual level does not

yield a sufficiently comprehensible solution.

In [17], an embedding of graph pattern into LTL formulas is proposed in order

to be able to capture structural properties. This approach tackles the theoretical

aspects of the proposed integration rather than the design of a practical specification
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language, which would suffer from the intricate nature of the underlying LTL.

Story Diagrams [14] extend UML Activity Diagrams with Story Patterns to provide

them with operational semantics. Though visually similar to TSSDs, their purpose

is different: They strive to specify exactly how something happens, while TSSDs

focus on mechanisms to specify what and when should result.

The only notation that takes an approach similar to ours is a recent proposal [37] for

writing temporal graph queries. The approach extends Story Diagrams by annotat-

ing unary forward or past operators from LTL with additional explicitly encoded

time constraints. It requires the explicit specification of an accepting automaton

rather than employing the idea of scenarios. In cases where only partial orders of

events or time constraints between partially ordered situations have to be specified,

the encoding of the time constraints in the automaton will therefore become rather

complex.

1.2 Application Example

Motivation. The RailCab R&D project is developing a system of autonomous

shuttles travelling on a railway network, with the intent to combine the advantages

of railways and automobiles, providing fast, safe, energy-efficient and convenient

individual transportation. In order to achieve significant improvements over exist-

ing systems, the project combines traditional mechanical and electrical engineering

with software engineering techniques. The project is representative of a new class

of advanced mechatronic systems [9] using sophisticated control and coordina-

tion techniques such as structural adaptation, ad-hoc collaboration, or self-optimi-

zation in complex real world situations. The promise of more intelligent, efficient,

and flexible systems has led to an increased interest in such mechatronic systems,

notably in the automotive sector. However, these improvements come at a cost,

as designing the required more complex software poses new challenges to soft-

ware engineers. Advanced mechatronic systems typically run concurrently and

with real-time requirements, are often distributed and heterogeneous, the relevant

context for decisions is often characterized by complex structural properties, and

their physical nature makes them safety-critical almost by default. Approaches for

handling the additional levels of complexity and verifying system safety are thus

required.

Throughout this paper, we will use an example that is inspired by the RailCab

project. In previous work, we have used related examples to demonstrate the com-

positional verification of real-time coordination patterns [20], modular system co-

ordination using social structures, and the verification of safety properties that are

inductive invariants of the system [4]. Here, we focus on specifying the associated

structural and behavioral system requirements in a manner that is expressive, ac-
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cessible to domain experts, and yet operational and compatible with existing model

checking and verification techniques.

Structure. The railway network is modeled as a graph of small track segments,

each about as large as a shuttle. Tracks are unidirectional, they have one or two

(branch) successors and are successor to one or two (join) tracks. Shuttles are

located on one track and may have next relationships with other tracks to indicate

where they are travelling.

Tracks are monitored by responsible controllers. Shuttles can perform a registration
pattern with a controller. The registration pattern is a real-time coordination pattern

which ensures that a shuttle keeps the controller informed about its exact position

and is in turn informed about the position of all other shuttles in the controller’s

area of responsibility in regular intervals. This pattern is the foundation upon which

another coordination pattern, the convoy pattern, operates. This pattern ensures that

two shuttles in close proximity safely coordinate their behavior, which provides

shuttles with the ability to reduce drag by forming contact-free convoys. Figure

1.1 provides an overview of these elements.

Shuttle Track

ControllerConvoyPattern

RegistrationPattern

next

on

0..*

0..*

2

1

leader follower

2

0..10..1

supervises
1

1..*

0..*

registry

entry

1..*

1

1
0..*

successor

1..2

1..2

1

uses

0..2

destination0..* 0..1

Figure 1.1: The elements of the shuttle system

The primary requirement we are considering is the absence of accidents. As the

continuous control aspects are (correctly) encapsulated in the coordination pat-

terns, we can analyze the safety of the system on a discretized world model by

checking whether the correct coordination patterns exist in all specific instance

situations, i.e. evaluating the structural correctness of the system.

Properties. We now derive the properties we will formalize below. First of all, no

two shuttles may share a track, as this would correspond to a collision. In order to

make shuttle behavior predictable, shuttles need to mark the next two tracks they

will use. Furthermore, if there is a shuttle right in front of another, the shuttles have

to execute the convoy pattern in order to avoid collisions. As the convoy pattern

depends on the registration pattern, both shuttles need to be registered with the

same controller beforehand. Therefore, shuttles are required to register with all

available controllers for their current position. To avoid problems when moving

from one controller’s area to another, these areas overlap - we require that for each
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shuttle, there always exists a controller that covers both the shuttle and its two next

tracks. Finally, we impose a structural constraint that the system contains no dead

ends and all tracks are reachable from any other track.
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2 Foundations: A Graph-based Approach

The fundamental abstraction that our approach is based upon is the idea of inter-

preting instance situations of an object-oriented system as graphs. Informally, this

seems intuitively plausible, as UML Object Diagrams as a common way of de-

scribing instance situations already have a graph-like structure. More specifically,

we map each object to a node and each attribute/association to an edge of a labeled

graph. The theory of graph transformation systems (cf. [36]) then provides the for-

mal semantics that are typically missing from UML-based notations, which allows

reasoning about states and behavior of object-oriented systems modeled using a

visual notation.

2.1 UML Diagrams and Story Patterns

Class Diagrams. We use UML Class Diagrams for structural modeling. The

diagram not only defines the elements of the system and their relationships, but

characterizes the set of all possible system states. Figure 1.1 above presents a basic

example. Additionally, it is also possible to attach attributes and methods to classes

and to define subtyping relationships.

Story Patterns. Object Diagrams can be used to depict specific configurations of

objects which are valid instances of a given Class Diagram. Story Patterns are an

extended type of UML Object Diagram (cf. [27]) that allow expressing properties

and transformations, especially structural changes. A Story Pattern consists of two

Object Diagrams representing a pre- and a postcondition, the left hand side (LHS)

and the right hand side (RHS). At runtime, the LHS is matched against the instance

graph, and the free elements of the pattern are bound to specific nodes and edges. If

a match is found, it is transformed in order to match the RHS by adding, modifying

and deleting the appropriate nodes and edges using the Single Push Out strategy

(SPO).

When specifying Story Patterns, the RHS and the LHS are integrated into a single

diagram in order to obtain a more compact representation. This is achieved by

using the stereotypes �create� for marking exclusive elements of the RHS that

need to be created and�destroy� for denoting elements of the LHS which should

be deleted as a side-effect of the rule. Figure 2.1 shows the definition (Figure 2.1a)

of a Story Pattern for moving a shuttle from its current Track to the next track and

an instance graph representing a small fragment of the system before (Figure 2.1b)

and after (Figure 2.1c) the pattern is applied.

Negation. Furthermore, it is possible to indicate forbidden elements in a Story Pat-
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<<destroy>>
on

<<create>>
 on

<<destroy>>
next

s1 : Shuttle

t2 : Trackt1 : Track

LHS RHS

successor

on next

s1 : Shuttle

t2 : Trackt1 : Track
successor

on

s1 : Shuttle

t2 : Trackt1 : Track
successor

a. Pattern specification (center) combining LHS (left) and RHS (right) in a single graph

on next

sa : Shuttle

tc : Tracktb : Trackta : Track

successor

td : Track

successorsuccessor

b. Matching the precondition (LHS)

tc : Tracktb : Trackta : Track

successor

td : Track

successorsuccessor

on next

sa : Shuttle

c. Applying the postcondition (RHS)

Figure 2.1: A shuttle moving to its next track

tern by crossing them out. They can be employed to specify patterns that are only

applied when no match for any one of their forbidden elements is found, enabling

more differentiated rules. E.g., Figure 2.2 encodes that the track that a shuttle is

moving to needs to be empty. However, it is not possible to express that a combi-

nation of elements should be absent, as the forbidden elements are interpreted as

alternatives, i.e. the pattern application fails as soon as the first forbidden element

is found.

<<destroy>>
on

<<create>>
 on

<<destroy>>
next

s1 : Shuttle

t2 : Trackt1 : Track
successor

s2 : Shuttle

on

Figure 2.2: Forbidden element - movement is only allowed into vacant tracks

For the same reason, it is not possible to specify forbidden elements that are char-

acterized by multiple associations. This poses a serious practical problem, as such

a construct is needed to encode many comparatively simple properties, e.g., ’no

pattern exists between shuttles s1 and s2’. Figure 2.3 presents several failed at-

tempts to specify this property. The pattern in Figure 2.3a will fail as soon as any

of the shuttles has any pattern (false negative). The pattern in Figure 2.3b is com-

pletely wrong, as it will not only not match if there is a pattern belonging to either

of the shuttles (false negative), but also if there is no pattern in the system at all

(false negative), and additionally also match if there is a pattern that is unrelated

to either shuttle, even though the shuttles share a pattern (false positive). Figure

2.3c is equivalent to Figure 2.3a. Finally, Figure 2.3d is a makeshift solution using

optional elements (read as ’s1 may or may not have a pattern, but if so, then not

with s2’). While this works as long as s1 has at most one pattern, the solution
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is not robust and does not convey the intended semantics. If s1 has two patterns,

the property might hold or not depending on which pattern is bound to c1. If the

element in question is characterized by more than two associations, this problem

intensifies.

s1 : Shuttle s2 : Shuttle

c1 : ConvoyPattern

follower leader

a. Does not work.

s1 : Shuttle s2 : Shuttle

c1 : ConvoyPattern

follower leader

b. Does not work ei-

ther.

s1 : Shuttle s2 : Shuttle

c1 : ConvoyPattern

follower leader

c2 : ConvoyPattern

c. Equivalent to (a).

s1 : Shuttle s2 : Shuttle

c1 : ConvoyPattern

follower leader

d. May work at times.

Figure 2.3: Attempts to encode that s1 and s2 do not already share a pattern.

Invariant Story Patterns. When a Story Pattern contains no stereotypes, the LHS

and the RHS are identical and the pattern has no side effects. Such Story Patterns

describe and allow testing for system properties. E.g., the Story Pattern in Figure

2.4 matches if a shuttle’s on and next associations point to adjacent tracks in the

proper order. A translation into OCL is provided below the figure. For our example,

we would like this property to be a positive invariant of the system that is true for

all shuttles. However, there is no way to make this explicit in the pattern.

s1 : Shuttle

t1 : Track t2 : Track t3 : Track

on next next

successorsuccessor

c o n t e x t s1: Shuttle inv
s1.next→ e x i s t s (t2 |
s1.on.successor→ e x i s t s (ta | ta = t2))

and
s1.next→ e x i s t s (t2 |

s1.next→ e x i s t s (t3 |
t2.successor→ e x i s t s (tb | tb = t3)))

Figure 2.4: Story pattern: a simple positive invariant

In [4], we used Story Patterns to specify invariants of the system that represented

forbidden states (accidents, hazards), which could then be formally verified. This

required the implicit convention that all patterns represented negative invariants of

the system, which could not be indicated explicitly. The resulting restriction to

negative invariants entailed the use of unintuitive multiple negations, i.e. a required
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element of a positive invariant is translated into a forbidden element of a forbid-

den pattern. Combined with the described limitations concerning negation, this

significantly complicated modeling.

2.2 Formal Semantics

The presented (extended) UML Diagrams provide a visual modeling language

for the specificiation and presentation of systems and their associated constraints

which – apart from the mentioned limitations – is expressive and accessible to

human users. However, in order to provide them with the formal semantics that

UML-based notations are typically lacking, we internally map our notations to a

formal graph-based model which, though less suitable for presentation, can sub-

sequently serve as the basis for theoretical analysis, formal verification, and code

generation. We first introduce all required concepts and afterwards map the ele-

ments of the visual modeling language to them.

2.2.1 Graphs

As graphs are the foundation of our modeling language, we start by providing a

formal definition and a set of related properties and operators.

Basic definitions. Our formalization is based on sets and functions over these sets.

In our definitions, we use the following notations:

For a function f : A → B, we denote by f |C the function f ′ with domain A ∩ C
for which for all x ∈ A ∩ C holds f ′(x) = f(x).

We compose two functions f : A → B and g : C → A using the operator f ◦ g,

resulting in a function f ′ : C → B for which for all x ∈ C holds f ′(x) = f(g(x)).

Two functions f : A → B and g : C → D can be composed using the operator

f ⊕ g if for all x ∈ A∩B holds f(x) = g(x), resulting in a function h : A∪C →
B ∪ D for which for all x ∈ A holds h(x) = f(x) and for all x ∈ C holds

h(x) = g(x).

Labeled graphs. Following the conventions used in [36], we define a graph G as

a directed graph that can accommodate multiple edges between two nodes.

Definition 1 A graph is a tuple G = (NG, EG, srcG, tgtG), where NG is a finite
set of nodes,EG is finite set of edges,src : EG → NG is the source function, which
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assigns a source node to each edge, andtgt : EG → NG is the target function,
which assigns a target node to each edge.

We can then extend this definition to the definition of a labeled graph by adding

labeling functions:

Definition 2 A labeled graph is a pair (G, LG) of a graph G =
(NG, EG, srcG, tgtG) and an appropriate labeling LG = (ΩN

G , ΩE
G, lNG , lEG) where

ΩN
G is a set of node labels, ΩE

G is a set of edge labels, lNG : N → ΩN
G is a node

labeling function that assigns a label to each node, and lEG : E → ΩE
G is an edge

labeling function that assigns a label to each edge.

Two graphs G1 and G2 are label compatible iff the labelings of both graphs are

compatible, i.e., identical for the shared elements of both graphs: lNG1
|(NG1

∩NG2
) =

lNG2
|(NG1

∩NG2
) and lEG1

|(EG1
∩EG2

) = lEG2
|(EG1

∩EG2
).

They are edge compatible iff the source and target functions are identical for shared

edges that are contained in both graphs: srcG1 |(EG1
∩EG2

) = srcG2 |(EG1
∩EG2

) and

tgtG1 |(EG1
∩EG2

) = tgtG2 |(EG1
∩EG2

)).

Two graphs that are both label and edge compatible are called compatible.

We use G∅ to denote the empty graph with NG∅ = EG∅ = ∅.

Graph Operators. For compatible graphs, we define the union, intersection and

substraction of the graphs.

Given two compatible graphs G1 and G2, their union is built by combining their

node and edge sets and combining the labeling, source and target functions: G′ =
G1 ∪ G2 with G′ := (N ′, E′, src′, tgt′, ΩN ′

, ΩE′
, lN

′
, lE

′
), where N ′ := NG1 ∪

NG2 , E′ := EG1 ∪ EG2 , src′ := srcG1 ⊕ srcG2 , tgt := tgtG1 ⊕ tgtG2 , ΩN ′
:=

ΩN
G1
∪ΩN

G2
, ΩE′

:= ΩE
G1
∪ΩE

G2
, lN

′
:= lNG1

⊕ lNG2
and l′E := lEG1

⊕ lEG2
. The union

is commutative, G1 ∪G2 = G2 ∪G1 holds.

Their intersection of G1 and G2 is built by intersecting their node and edge sets

and restricting the labeling, source and target functions: G′ = G1 ∩G2 with G′ :=
(N ′, E′, src′, tgt′, ΩN ′

, ΩE′
, lN

′
, lE

′
), where N ′ := NG1∩NG2 , E′ := EG1∩EG2 ,

src′ := srcG1 |(EG1
∩EG2

), tgt := tgtG1 |(EG1
∩EG2

), ΩN ′
:= ΩN

G1
∩ ΩN

G2
, ΩE′

:=
ΩE

G1
∩ ΩE

G2
, lN

′
:= lNG1

|(NG1
∩NG2

) and l′E := lEG1
|(EG1

∩EG2
). The intersection is

commutative, G1 ∩G2 = G2 ∩G1 holds.

The subtraction of the two graphs G1 and G2 is similar to intersection. The

node and edge sets of a graph are subtracted from the sets of the other graph,
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and the functions are restricted accordingly: G′ = G1 \ G2 with G′ :=
(N ′, E′, src′, tgt′, ΩN ′

, ΩE′
, lN

′
, lE

′
), where N ′ := NG1 \ NG2 , E′ := {e ∈

EG1 \ EG2 |srcG1(e) ∈ N ′ ∧ tgtG1(e) ∈ N ′}, src′ := srcG1 |E′ , tgt := tgtG1 |E′ ,

ΩN ′
:= ΩN

G1
, ΩE′

:= ΩE
G1

, lN
′

:= lNG1
|N ′ and l′E := lEG1

|E′ . For non-empty

graphs, subtraction is not commutative, G1 \G2 = G2 \G1 holds. The definition

of E′ results in the implicit deletion of dangling edges, i.e. edges whose source

or target node is undefined. Otherwise, the resulting tuple might not represent a

graph, as the functions srcE′ and tgtE′ would not necessarily be restricted to N ′.

Typed graphs. We now add the notion of types to our definition of a graph. In

a type graph GT = (NT , ET , srcT , tgtT , ΩN
T , ΩE

T , lNT , lET ), nodes represent node

types, edges represent edge types, and labels are used to assign type names.

A typed graph G is then a labeled graph whose node and edge labels are the nodes

and edges of some type graph GT , i.e. ΩN
G = NT and ΩE

G = ET .1 We call G type
conformant for GT if the labeling of G is compatible with GT , which means that

if there is an edge labeled with e1 ∈ ET between nodes labeled with n1 ∈ NT and

n2 ∈ NT in G, e1 must be an edge connecting nodes n1 and n2 in GT :

Definition 3 The labeling of a graph G = (NG, EG, srcG, tgtG, ΩN
G , ΩE

G, lNG , lEG)
is type conformant for the type graph GT = (NT , ET , srcT , tgtT , ΩN

T , ΩE
T , lNT , lET )

iff ΩN
G ⊆ NT , ΩE

G ⊆ ET and ∀e ∈ EG : (∃eT ∈ ET : lEG(e) = eT ∧
lNG (srcG(e)) = srcT (eT ) ∧ lNG (tgtG(e)) = tgtT (eT )).

We denote the set of all type conformant labeled graphs for a type graph GT by

G[GT ].

In order to accomodate subtyping, we need to extend our notion of a type graph

and of type conformity. An inheritance type graph GT is a type graph whose

edge label alphabet ΩE
T contains a special element isa. If there is an edge la-

beled with isa from node nsub to node nsuper, we say that nsub is a subtype of

nsuper. We define subtype(nsub, nsuper) := ∃e ∈ ET : lNT (e) = isa ∧ nsub =
srcT (e) ∧ nsuper = tgtT (e). The transitive closure of subtype then yields the

set super(n) := {n′|(n, n′) ∈ subtype+}, while the reflexive-transitive closure

yields types(n) := super(n) ∪ n.

We can now extend our previous definition of type conformity to include subtying:

Definition 4 The labeling of a graph G = (NG, EG, srcG, tgtG, ΩN
G , ΩE

G, lNG , lEG)
is type conformant for the inheritance type graph GT =

1Note that we do not assign type names (strings) to objects, which we then would have to (string)

compare with the assigned type name of the corresponding type graph node, but directly use the nodes

of the type graph themselves to label the nodes of the instance graph, which simplifies checking type

conformity. The labeling function does not care whether its alphabet is letters or nodes.
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(NT , ET , srcT , tgtT , ΩN
T , ΩE

T , lNT , lET ) iff ΩN
G ⊆ NT , ΩE

G ⊆ ET \ isa and
∀e ∈ EG : (∃eT ∈ ET : lEG(e) = eT ∧ srcT (eT ) ∈ types(lNG (srcG(e))) ∧
tgtT (eT ) ∈ types(lNG (tgtG(e)))).

As for simple type graphs not containing isa we simply have types(n) = n, this

definition includes the previous definition.

Attributed graphs. Finally, we introduce attributed graphs. Following [22], we

only allow node attributes, but no edge attributes. Attributes are represented by

nodes that are the target of special edges whose source is the attributed node. To

abstract from the data types of the attributes, we describe them in terms of an

algebra A over a many sorted signature Σ = 〈SΣ, OPΣ〉 consisting of sets of sort

symbols SΣ and of operation symbols OPΣ.

Definition 5 An attributed graph is a pair (G, A) of a graph G and an algebra A
over Σ, where for |A| := ⊎

s∈SΣ
As, the disjoint union of the carrier sets of A, we

have |A| ⊆ NG and ∀e ∈ EG : srcG(e) /∈ |A|.

For an attributed graph G, we define attribute value nodes NA
G := |A| and instance

nodes N I
G := NG \ NA

G . We further differentiate between attributes EA
G := {e ∈

EG : tgt(e) ∈ |A|} and links EI
G := EG \ EI

G.

The notion of type conformance is not affected by this extension. The only addi-

tional convention is that when labeling a type graph GT (which does not have to

be an attributed graph itself), we label nodes that represent attribute types (i.e. are

later used to label nodes from NA
G ) with the appropriate sort symbol s ∈ SΣ.

2.2.2 Graph Patterns

In order to formalize the notion of matching and applying a pattern, we now for-

malize these notions based on the above definitions.

Containment. We formalize the notion of containment of a labeled graph in an-

other labeled graph by comparing their defining functions: For two graphs SG
and G we say that SG is a subgraph of G (written as SG ≤ G) iff NSG ⊆ NG,

ESG ⊆ EG, srcSG = srcG|ESG
, tgtSG = tgtG|ESG

, ΩN
SG ⊆ ΩN

G , ΩE
SG ⊆ ΩE

G,

lNSG = lNG |NSG
, and lESG = lEG|ESG

. Two graphs are equal iff SG ≤ G and

G ≤ SG.

Pattern Matching. As a pattern is supposed to be a generalized way of encoding a

recurrent structure. When matching patterns against instance graphs, we only want
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to compare the graphs w.r.t. their structure, i.e. without considering the identity

of the nodes and edges. Instead of the simple subgraph relationship, we therefore

need to use the more general concept of graph morphisms (cf. [36]).

Definition 6 A graph morphism m : G1 → G2 is a pair of functions m := 〈mN :
NG1 → NG2 ,m

E : EG1 → EG2〉 mapping the nodes and edges of G1 to the
elements of G2 while preserving sources, targets and labels. m thus satisfies the
properties mN ◦ tgtG1 = tgtG2 ◦mE , mN ◦srcG1 = srcG2 ◦mE , lNG1

= lNG2
◦mN

and lEG1
= lEG2

◦mE . A graph isomorphism m is a graph morphism whose functions
mN and mE are both bijective.

This definition can be extended to cover attributed graphs:

Definition 7 An attributed graph morphism m : (G1, A1) → (G2, A2) is a pair of
a graph morphism mG and a Σ-morphism mA : A1 → A2 mapping the elements
of the carrier sets of A1 to A2 so that mA ⊆ mN

G .

If there is a graph isomorphism m : G1 → G2, we write G1 =m G2 or G1 ≈ G2

to abstract from the specific morphism m. However, as a pattern will typically be

smaller than the graph against which we are matching it, the more relevant question

is usually whether there is a graph isomorphism from the pattern G1 to a subgraph

SG2 of G2, i.e. m : G1 → SG2 with SG2 ≤ G2. If such an isomorphism exists,

we write G1 ≤m G2, respectively G1 � G2 to abstract from the morphism.

In the literature on graph theory, graph homomorphisms, i.e., morphisms that are

not necessarily bijective, are commonly used instead of isomorphisms. As our def-

inition of � basically eliminates the surjectivity requirement from the matching

process, the decisive difference is that pattern matching using isomorphisms re-

quires injectivity while matching using homomorphisms does not. We have found

that, in most cases, the principle that different pattern elements map to different

instances is closer to the intuitive interpretation of a pattern. Consider a pattern

encoding that two shuttles s1 and s2 are on the same track t1 (see Figure 3.2 in

Section 3.1). For every single shuttle on a track in the system, there is a homomor-

phism for matching that pattern by simply mapping both shuttles from the pattern

to the same shuttle in the system. The pattern then is basically flagging each shuttle

as a collision with itself, which hardly reflects the intended meaning. Though this

can be prevented by adding an additional constraint s1 = s2 requiring the two shut-
tles to be different, this is cumbersome. We therefore prefer using isomorphisms as

the default matching strategy and only employ homomorphisms where explicitly

indicated.

Based on subgraph isomorphisms, we define simple graph patterns as follows:
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Definition 8 A simple graph pattern [G] consists of a graph G. If there is a graph
AG and an isomorphism m with G ≤m AG, we write AG, m � [G] and say that
the graph AG fulfills the pattern.

Negative Application Conditions (NAC) formalize the concept of forbidden ele-

ments. The basic idea is that a pattern will only match if a forbidden second pattern

does not match as well. The semantics of forbidden elements are thus defined as

follows:

Definition 9 A negative application condition (NAC) over a graph G is a finite set
Ĝ of connected graphs with ∀Ĝi ∈ Ĝ : G ≤ Ĝi, called constraints. A constraint
Ĝi is fulfilled by a graph AG if ∃m : G ≤m AG but �m′ with m′|G = m and
Ĝi ≤m′ AG, written AG, G,m′ � Ĝi. A graph AG and the isomorphism m
satisfy a NAC Ĝ, written AG, G,m � Ĝ, if it satisfies all constraints Ĝi ∈ Ĝ, i.e
∀Ĝi ∈ Ĝ : AG, G,m � Ĝi.

This leads to the general definition of a graph pattern and a match of such a pattern:

Definition 10 A graph pattern [G, Ĝ] consists of a graph G and a set of NACs Ĝ of
G.2 It characterizes the set of graphs that contain the graph G but do not contain
any extension Ĝi of G.

Definition 11 A match m for a graph pattern [L, L̂] in some graph G with a sub-
graph SG ≤ G is a graph isomorphism m : L→ SG with G, L, m � L̂. We write
G, m � [L, L̂] or G � [L, L̂].

2.2.3 Graph Transformation Rules

Graph transformation rules describe modifications of a graph by means of two

graph patterns, a precondition and a postcondition. We define:

Definition 12 A graph transformation rule [L, L̂]→r[R] consists of r the rule
name, [L, L̂] the left hand side (LHS), a graph pattern encoding the precondition,
and [R] the right hand side (RHS), a simple graph pattern encoding the postcondi-
tion, with L, all elements of L, and R compatible and L ∩R = G∅.

A rule is type conformant to a type graph GT if all graphs in the rule are type

conformant to GT .

2A simple graph pattern can be interpreted as a graph pattern with an empty set of NACs.
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When a rule r is applied to a graph G, G is called the application graph or source
graph. The resulting graph G′ is called the target graph.

In order to effect the actual graph transformation, we use the Single Pushout Ap-
proach (cf. [36]):

Definition 13 The Single Pushout Approach defines the application of a graph
transformation rule r to an application graph G as a direct transformation of the
source graph G into a compatible target graph G′. Given the rule [L, L̂]→r[R]
and a match m for [L, L̂], such a direct transformation is characterized by the
occurrence o, which is a graph isomorphism o : L∪R → G∪G′ with the following
properties: o|L = m, i.e. o matches the left hand side in accordance with m,
L ≤o G∧R ≤o G′ i.e. the left hand side of r is contained in G and the right hand
side of r is contained in G′, and o(L \R) = G \G′∧ o(R \L) = G′ \G, i.e. those
elements belonging to L but not to R are deleted, while those elements belonging
to R but not to L are created. We write G |=⇒r,o G′ to denote such a transformation
or G |=⇒r G′ to abstract from o.

Informally, when r is applied to G, all elements (nodes and edges) that are con-

tained in both the left and right hand side are preserved, elements that are only

contained in the left hand side are deleted, and elements that are only contained in

the right hand side are added, using appropriate morphisms.

If a sequence of direct graph transformations of the form G0 |=⇒r0,o0 G1 |=
⇒r1,o1 . . . |=⇒rn−1,on−1 Gn exists, where r0, . . . , rn−1 are rules and o0, . . . , on−1

their occurrences, so that for 0 ≤ i < n holds Gi |=⇒ri Gi+1, we write

G0 |=⇒∗
(r0,o0);...;(rn−1,on−1) Gn, or shorter G0 |=⇒∗

r0;...;rn−1
Gn if the occurences are

unambiguous or irrelevant in the given context. Even more compactly, G0 |=⇒∗ Gn

denotes that some transformation sequence from G0 to Gn exists.

2.2.4 Graph Transformation Systems

GTS. Using the concepts we have introduced above, we can now define graph
transformation systems (GTS), a type of state transition system where every state

is represented by a graph and every transition is described as a graph rewrite rule:

Definition 14 A typed graph transformation system (GTS) S is a tuple
(TS ,Gi

S ,RS) with TS a type graph, Gi
S the set of all type conformant initial graphs

of the system, andRS a finite set of type conformant graph transformation rules.

For each system S = (TS ,Gi
S ,RS) and a graph G, the valid applications are de-

noted by |=S⇒r,o, |=S⇒r, or |=S⇒∗
w respectively. We define the – potentially
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infinite – set of all reachable states as REACH(S) := {G | G ∈ G[TS ] ∧ ∃G0 ∈
Gi

S , w ∈ R∗
S : G0 |=S⇒∗

w G}.

Extended GTS. We can extend this definition in various ways:

Definition 15 A GTS S can be extended into a prioritized graph transformation

system by adding a priority function prioS : RS → IN assigning a priority
prioS(r) to every r ∈ RS , where priority 0 has the highest precedence.

For a prioritized system S = (TS ,Gi
S ,RS , prioS) and a graph G, we further re-

strict valid rule applications G |=⇒r,o G′ to those cases where no other application

G |=⇒r′,o′ G′′ with prioS(r′) < prioS(r) exists.

Definition 16 A GTS S can be extended into a constrained graph transformation

system (TS ,Gi
S ,RS , ΦS) by specifying a set of forbidden graph patterns ΦS which

must never match the system state at any time.

For a constrained system S = (TS ,Gi
S ,RS , ΦS) and a graph G, we define a viola-

tion as a rule application G |=⇒r,o G′ where ∃φ ∈ ΦS : G′ � φ ∧ ¬G � φ.

Definition 17 A GTS S can be extended into a labeled graph transformation sys-

tem with (multiple) rule labels from the label set B by providing a mapping
lS : RS → ℘(B)

Parallel composition. When two graph transformation systems are executed con-

currently, the resulting system corresponds to their parallel composition. We

define the parallel composition S‖T of two graph transformation systems S =
(TS ,Gi

S ,RS) and T = (TT ,Gi
T ,RT ) as a GTS U := (TU ,Gi

U ,RU ) with TU :=
TS ∪ TT , Gi

U := Gi
S ∪ Gi

T ∪ {G ∪G′|G ∈ Gi
S ∧G′ ∈ Gi

T }, andRU := RS ∪RT .

For the parallel composition U := (TU ,Gi
U ,RU , ΦU ) of two constrained graph

transformation systems S = (TS ,Gi
S ,RS , ΦS) and T = (TT ,Gi

T ,RT , ΦT ), we

additionally define ΦU := ΦS ∪ΦT . For prioritized graph transformation systems,

we define prioU := prioS ⊕ prioT . For labeled graph transformation systems, we

likewise define lU := lS ⊕ lT .

Paths. A path π := G0 |=S⇒r1,o1 G1 |=S⇒r2,o2 G2 . . . is an alternating

sequence of states and valid rule applications connecting these states. We denote

the – potentially infinite – length of a path by l(π). For i ∈ [0, l(π)), we refer to

the state graph generated by the i-th rule appliction (i.e., Gi) as π[i]. We use πi to

denote the suffix of π starting with π[i].



2.2 Formal Semantics 21

The set of all finite or infinite possible paths π starting from G is defined as

PATH(S, G) := {G0 |=S⇒r1,o1 G1 |=S⇒r2,o2 G2 . . . | G0 = G}. PATH(S)
denotes all paths that can be generated by S and is defined as the union of all sets

PATH(S, G) with G ∈ Gi
S . We also write [[S]] for PATH(S).

When we are considering time, we additionally use a function T (π, i) : [[S]] ×
[0, l(π)] → IR to determine the time when each particular state of a path has been

reached. Depending on the notion of time that is available in the context where

these concepts are applied, we may need to substitute a discrete notion for the

continous notion of time.

2.2.5 Properties of Graph Transformation Systems

Using graph patterns as basic propositions, we can derive more complex graph

properties. The Computational Tree Logic CTL∗ (cf. [11]) with its path quantifiers

A (for all paths) and E (for some path) and temporal operators X (next), F (even-

tually), G (always), U (until), and R (release) can be used to embed these basic

propositions to form an expressive notation for temporal conditions. In [16], it is

shown that a sound and complete general propositional temporal calculus remains

sound and complete when interpreted on graph transformation systems.

We then have the following syntax for state and path formulas:

• If φ is a graph pattern or the constant true or false, then φ is a state formula.
• If φ and ψ are state formulas, then ¬φ, φ ∨ ψ, and φ ∧ ψ are state formulas.
• If φ is a state formula, then φ is also a path formula.
• If p is a path formula, then Ep and Ap are state formulas.
• If p and p′ are path formulas, then ¬p, p∨ p′, p∧ p′, Xp, Fp, Gp, pUp′, and

pRp′ are path formulas.

We write S, G |= φ iff the CTL∗ formula φ holds for the state G and S, π |= φ iff

the CTL∗ formula φ holds for the path π. We further write S |= φ to denote that

∀G ∈ Gi
S holds S, G |= φ.

The semantics of state and path formulas is then defined as follows for a GTS S,a

graph G, and a trace π:

• S, G |= φ iff φ is a graph pattern and G � φ.
• S, G |= ¬φ iff S, G |= φ.
• S, G |= φ ∨ ψ iff S, G |= φ ∨ S, G |= φ.
• S, G |= φ ∧ ψ iff S, G |= φ ∧ S, G |= φ.
• S, G |= Eφ iff ∃π ∈ PATH(S, G) : S, π |= φ.
• S, G |= Aφ iff ∀π ∈ PATH(S, G) : S, π |= φ.
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• S, π |= φ iff G = π[0] ∧ S, G |= φ.

• S, π |= ¬φ iff S, G |= φ.

• S, π |= φ ∨ ψ iff S, π |= φ ∨ S, π |= φ.

• S, π |= φ ∧ ψ iff S, π |= φ ∧ S, π |= φ.

• S, π |= Xφ iff S, π1 |= φ.

• S, π |= Fφ iff ∃k, k ≥ 0 : S, πk |= φ.

• S, π |= Gφ iff ∀i, i ≥ 0 : S, πi |= φ.

• S, π |= φUψ iff ∃k, k ≥ 0 : S, πk |= ψ ∧ ∀j, 0 ≤ j < k : S, πk |= φ
• S, π |= φRψ iff ∀j, j ≥ 0 : (∀i, i < j : S, πi |= φ) ⇒ S, πj |= ψ

To describe, for example, that a given graph pattern [P, P̂] should never be matched

in any reachable configuration, we can then write:

S |= AG(¬[P, P̂]).

2.2.6 UML Models

We have now defined all the necessary preliminaries that will allow us to formalize

the employed UML notations and Story Diagrams.

UML Class and Object Diagrams. A Class Diagram can be represented as a type
graph GT , where nodes represent classes, edges represent associations, and labels

define their names. An inheritance relationship in the diagram translates to an edge

labeled with isa from the node representing the subclass to the node representing

the superclass.

If the diagram contains attributes, we define a signature Σ whose set

of sort symbols comprises the required value types, typically SΣ :=
{boolean, integer, real, string, . . . }, and add value type nodes labeled with s ∈
SΣ. Attributes are then encoded as edges from class nodes to value type nodes,

labeled with the attribute name.

Cardinalities are not incorporated into the type graph itself, but need to be trans-

lated into appropriate constraints. A maximum cardinality of ∗ or n requires no

constraint. A maximum cardinality of k ∈ IN can be encoded as a graph pattern

where k + 1 copies of the constrained element are present, which will match any

instance situation with i > k instances. A minimum cardinality of 0 requires no

constraints. A minimum cardinality k > 0 can be encoded by adding a pattern

containing i copies of the constrained element plus one additional forbidden copy

of the element, which will therefore match a configuration containing i, but not

i + 1 copies of the element, for each 0 ≤ i < k. This is not practical for larger

minimum cardinalities, but poses no problems for typical values in the range [0..2].
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An Object Diagram can be represented as a typed graph G that is type conformant
for the (inheritance) type graph GT representing the corresponding Class Diagram.

Nodes represent objects and edges represent links, each labeled with the respective

class or association.

If the Class Diagram defines attributes, the Object Diagram needs to be an at-
tributed graph. Objects are then represented by instance nodes N I

G, links are rep-

resented by edges from EI
G, attribute value nodes NA

G represent literals, and the

edges EA
G represent attribute assignments.

Story Patterns. Just as the UML Object Diagrams that they extend, Story Pat-

terns can be formally expressed using graphs. Again, objects and attribute values

become nodes, while links and attribute assignments become edges.

An Invariant Story Pattern without forbidden elements can thus be translated to a

simple graph pattern consisting of the corresponding graph. In the more general

case including negative (forbidden) elements, a given Story Pattern can be trans-

lated to a graph pattern [G, Ĝ] by encoding its positive objects, links and attributes

as an attributed typed graph G and building the set of NACs Ĝ by adding, for each

negated link l, a labeled graph Ĝ consisting of G and the negated link l with its

source node src(l) and target node tgt(l). At least one of these nodes already is in

G – if l connects two positive nodes, both source and target are in G, whereas if l
connects to a negative node (as in Figure 2.2), that node only is in Ĝ.

Note that the problems with respect to negation that were discussed above are

due to limitations of the notation and its established semantics and not inherent

in the underlying formalization. It would be possible, instead, to add a NAC Ĝ
(1) for every negative link between positive objects and (2) for every negative ob-
ject including all its links, thus making Figure 2.3a a correct specification with the

intended semantics. However, independently of the chosen semantics, the basic

problem caused by the decision to integrate the NACs into the positive graph to

allow for more compact diagrams remains, namely that the relationships between

multiple negated elements (Which ones are alternatives? Which ones need to occur

together?) are subtle.

The property encoded by an Invariant Story Pattern thus holds for a configuration

represented by an Object Diagram iff the attributed graph AG representing the

object diagram fulfills the corresponding graph pattern [P, P̂]: AG � [P, P̂].

For Story Patterns with side effects, we can derive a graph transformation rule

r := [L, L̂]→r[R]. We encode the LHS of the Story Pattern, which we obtain by

disregarding all elements marked with �create� and treating those marked with

�destroy� as regular positive elements, as the graph pattern [L, L̂]. The RHS,

i.e. the unmarked and newly created elements, are encoded as the simple graph
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pattern [R].

Applying the Story Pattern to a configuration represented by an Object Diagram

AG then corresponds to the rule application AG |=⇒r,o AG′.

System Model. By means of the above definitions, we can now derive a represen-

tation of a complete UML model as a constrained graph transformation system by

combining the above concepts. The underlying Class Diagram becomes the type

graph TS , the Story Patterns with side effects become the rule setRS , the Invariant

Story Patterns make up the constraint set ΦS , and the set of initial graphs Gi
S is

derived from the Object Diagrams representing initial configurations. If there are

forbidden patterns encoding the cardinalities of the Class Diagram, those are also

added to ΦS .

2.3 Tool support

While tool support for standard UML models is abundant, Story Patterns represent

a proprietary extension that, to our knowledge, is only supported by the Fujaba

Tool Suite. We also present GROOVE, a tool for evaluating graph transformation

systems that we have integrated with Fujaba.

2.3.1 Fujaba

The open source UML CASE tool Fujaba 3 offers an extensible platform for visual

modeling, verification and code generation. Among others, the tool offers Class Di-

agrams, Object Diagrams, Story Patterns and Activity Diagrams containing Story

Patterns.

Thanks to the formal semantics that have been defined for the relevant UML con-

cepts, notably Class Diagrams, Object Diagrams, and the proprietary extensions

such as Story Patterns, based on the theory of GTS, it is possible to generate a

completely operational prototype or production system from the visual specifica-

tion (cf. [27]). Currently, the code generation of Java and C++ source code is

supported for all employed diagram types.

2.3.2 GROOVE

GROOVE [34] is a GTS model checker for prioritized constrained graph trans-

formation systems, capable of simulating the GTS and generating state spaces.

3http://www.fujaba.de
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For a GTS specifications, GROOVE can compute all reachable states of the trans-

formation system, optionally bounded by the occurrence of a forbidden graph.

GROOVE’s visualization engine allows a manual exploration of the system, in-

dicating the enabled rules and highlighting the occurences.

We have previously developed a Fujaba plugin for exporting Story Patterns from

Fujaba into GROOVE. Apart from the technical issues, the export has to accommo-

date the fact that GROOVE’s pattern matching engine employs graph homomor-

phisms instead of isomorphisms by adding an inequality constraint between each

pair of objects of the same type.
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3 Structural Properties

We now present our extended notation for the modeling of structural properties, its

syntax, semantics, and application.

3.1 Story Decision Diagrams

Story Decision Diagrams (SDD) are an extension of Story Patterns that allow ex-

pressing more complex properties while retaining or surpassing the intuitiveness of

the original visual notation. The extensions we introduce include quantors, impli-

cation, alternatives, negation of complex properties, and a concept for modularity.

3.1.1 Basic Principles

An SDD is a directed acyclic graph (DAG). Each node contains a Story Decision
Diagram Pattern (SDDP) specifying some property, which basically corresponds

to a Story Pattern without side effects or forbidden elements. The SDDPs on the

same path through the SDD share the same variables; i.e., once a pattern element

has been bound to an instance, it remains bound in all subsequent nodes.

When evaluating the SDD, the nodes are processed starting from the root node

with an empty binding, i.e., all variables unbound. Which node is evaluated next

depends on whether the current node matches or not. Each node in the SDD can

essentially be seen as a local if-then-else decision based on the current binding. If

a match is found, we extend the binding with the corresponding object and link

assigments so that successfully matched elements are propagated to subsequent

elements and follow the solid then connector; if no match is found, we leave the

binding unchanged and follow the dashed else connector.

There are two special leaf nodes, (1) signifying true and (0) signifying false. When

a binding reaches a leaf node, it evaluates to true or false, respectively. SDDs

are thus similar to decision trees. However, like reduced binary decision dia-

grams (RBDD), SDDs are not trees, but allow sharing isomorphic subtrees and leaf

nodes to reduce diagram size. Like in decision diagrams, consecutive conditions

correspond to logical conjunction, respectively implication. Both interpretations

are equivalent: The intuitive interpretation of the statement if a then b else c is

(a ⇒ b) ∧ (¬a ⇒ c), using two implications. Using the definition of implica-

tion, this can be reduced to the simpler statement (a ∧ b) ∨ (¬a ∧ c), using two

conjunctions. Unlike standard decision diagrams, SDDs support alternatives by

allowing multiple then or else connectors per node. It is then sufficient for one of

the available paths to reach (1) in order to evaluate the whole branch as true.
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P :  p

1 0
then else

true false

S :  t

s : Shuttlec : Controller

p : RegistrationPattern

registry entry

t : Track

supervises on

s : Shuttlec : Controller

t : Track

supervises on

R :  r

s : Shuttlec : Controller

r : RegistrationPattern

registry entry

then else

0 1
then else 

false true 

Figure 3.1: SDD Fragment illustrating basic syntax

In the SDD in Figure 3.1, the root node matches when a given controller is the

supervisor of the track a given shuttle is on. Now, if the root node matches, then
(left child) the controller and the shuttle have to run a registration pattern, else (right

child) they must not be running such a pattern.

Observe that there are only positive elements in the patterns - besides their limita-

tions, negative elements often prove problematic when interpreting Story Patterns.

The negation in the right branch is expressed by modeling the forbidden situation

as a positive match and switching the then and else connectors, i.e. a match leads to

failure and no match leads to success. By appropriately chaining the corresponding

nodes, complex negative conditions can be expressed.

In absence of negation, most leaf nodes can be omitted. If not specified otherwise,

a node is interpreted as a positive requirement: matching (then) results in success,

i.e. (1) not matching (else) results in failure, i.e. (0)Ȧll connector and leaf labels

are optional.

Though we extensively use color to make diagrams more readable, color is never
semantically relevant, i.e. the coloring is deduced automatically from the structure.

Unbound elements in Story Patterns are black, bound elements blue (grey). (1)
and connectors leading to (1) are green (light grey), (0) and connectors leading to

(0) are red (dark grey). The remaining then connectors are green, the remaining

else connectors are red. Node frames share the color of their then connector as

a visual cue to make undesired properties stand out. Figure 3.2 illustrates this

principle, marking the existence of an accident (two shuttles on the same track) as

an undesired instance situation.
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 Collision free :  s1, s2, t1

s1 : Shuttle

t1 : Track

on

s2 : Shuttle

on

0 1
then else 

c o n t e x t s1 : Shuttle inv
NOT Shuttle.allInstances()→ e x i s t s (s1, s2 |
s2.on = s1.on)

Figure 3.2: No two shuttles occupy the same track

3.1.2 Quantification

As a significant enhancement, we allow quantification over the free (i.e., previ-

ously unbound) variables of an SDD node. Accordingly, we differentiate between

existential nodes, which require that at least one of the bindings they propagate

evaluates to true, i.e., reaches a (1) leaf node, and universal nodes, which require

this of every binding they propagate.

Existential nodes fall into two categories, depending on the kinds of elements

contained in their SDDP:

Existentially quantified nodes contain free variables, which are bound to objects

and links by the node’s SDDP. When a binding reaches it, the node attempts to

generate an extended binding including its free variables that is consistent with its

SDDP. If such an extension or several alternative extensions of this kind exist, they

are propagated down the then connector. If no such extension exists, the original

binding is propagated down the else connector. If the node binds explicitly named

variables vari to objects or links, it is marked with [∃var+
i ]. If the node only binds

anonymous variables to links, it is marked with [∃ ].

Guard nodes do not contain free variables that could be bound and thus do not

extend the bindings that reach them. They merely act as a filter that decides whether

a binding should be propagated down the then or else connector, depending on

whether it fulfills the node’s SDDP. Guard nodes are marked with [•].

If an existential node only features a then connector, an else connector to (0) is

implied. In the less common case that the node only specifies an else connector, a

then connector to (1) is implied, but it is recommended to specify this explicitly to

avoid confusion.

We now revisit Figure 3.1 to explain the subtleties of the way existentially quan-
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tified nodes operate. The SDD in the diagram actually only is a fragment, as c
and s already need to be previously bound in the root node. Using the interpre-

tation based on implication, the diagram then corresponds to ((∃t|S[c, s, t]) ⇒
∃t′|(S[c, s, t′] ∧ ∃p|P [c, p, s, t′])) ∧ ((�t|S[c, s, t]) ⇒ �r|R[c, r, s]), given a bind-

ing (c, s). The first subterm, where S appears twice, deserves some explanation:

If there is any binding for t that completes S given (c, s), we choose the then con-

nector. However, this does not imply that the specific t we have picked also has to

complete P . As the node S is existentially quantified, it is sufficient if one of the

alternatives generated by S, i.e. some t′, completes P . In the second subterm cov-

ering the else case, �r reflects the fact that R’s outgoing connectors are switched

so that R represents a negative condition.

While the above is more illustrative of the rationale behind the adopted seman-

tics, we prefer the equivalent interpretation based on conjunction for all practical

purposes, as it less complex: (∃t|(S[c, s, t] ∧ ∃p|P [c, p, s, t])) ∨ ((�t|S[c, s, t]) ∧
�r|R[c, r, s]).

Universal nodes. There is only one type of universal node. A universally quantified
node containing the free variables vari is marked with [∀ var+

i ]. It works like an

existentially quantified node, except that the extended bindings it generates are not

alternatives, but all need to succeed. If no extended binding matching the node’s

SDDP exists in the first place, the expected semantics of ∀ quantification require

that the expression evaluate to true – therefore, an else connector to (1) is always

implied.

Supervised:  t1, t2, t3

t1 : Track t2 : Track t3 : Track
successorsuccessor

 c1

t1 : Track t2 : Track t3 : Track
successor

c1 : Controller

supervisessupervises supervises

then 

1 0
then else

c o n t e x t Track inv
Track.allInstances()→ f o r A l l(t1, t2, t3 |

(t1.successor→ e x i s t s (tx | tx = t2)
and t2.successor→ e x i s t s (ty | ty = t3))

i m p l i e s (Controller.allInstances()→ e x i s t s (c1 |
c1.tracks→ e x i s t s (ta, tb, tc |
ta = t1 and tb = t2 and tc = t3))))

Figure 3.3: Connected tracks share a controller

Figure 3.3 encodes the requirement that for any three consecutive tracks (∀), there
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Registered:  s1, t1

s1 : Shuttle t1 : Track
on

 c1

t1 : Track

c1 : Controller

supervises

then 

 rp1

s1 : Shuttlec1 : Controller

rp1: RegistrationPattern

registry entry

then 

Figure 3.4: Registered with all available controllers

must be a controller (∃) supervising them all (see the included OCL listing). Figure

3.4 contains nested ∀ quantors – every shuttle needs to execute a registration pattern
with every controller supervising its track. This is merely an illustrative example –

as there is no interposed existential node, the two universal nodes could simply be

merged.

 r

r : RegistrationPattern

Cardinality:  c

c : ConvoyPattern

c : ConvoyPattern

uses

then 

1 0
elsethen 

[2..2]

Figure 3.5: SDD encoding a cardinality from the Class Diagram

Cardinalities. It is possible to specify cardinalities for a node’s then connector.

These cardinalities concern the number of extended bindings that are generated for

each individual binding that reaches a (existentially or for all) quantified node. If

fewer alternatives than the minimum cardinality or more alternatives than the maxi-

mum cardinality are generated from a binding, the extended bindings are discarded

and the original binding is propagated down the else connector. It is therefore not
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possible to specify a cardinality for the else connector – whenever it is chosen,

there is always exactly one binding, the original binding, anyway. For the same

reason, it does not make sense to place cardinalities on either connector of a guard

node, as there will always be one binding on the selected connector.

Figure 3.5 encodes one of the cardinalities specified in the underlying Class Dia-

gram (see Figure 1.1), namely that each convoy pattern uses exactly two registration
patterns. SDDs thus elimate the need to encode cardinalities by means of a set

of graph patterns as presented in Section 2.2.6. Moreover, SDDs are capable of

expressing constraints that cannot be captured by Class Diagrams, e.g., restricting

the number of permitted concurrent object instances for each class or imposing

conditional cardinalities.

3.1.3 Embedded Story Decision Diagrams

Formal specification languages typically allow the composition of complex proper-

ties from simpler properties. In the OCL, it is possible to reference more concrete

properties in the definition of a property, whereas most visual specification tech-

niques lack this capability. The presented approach offers similar functionality

that provides a visual abstraction for arbitrarily complex structural relationships

and constraints.

SDDs support the composition of specifications through Embedded Story Decision
Diagrams (ESDD). ESDDs can be used to encode nontrivial properties that can

then be referenced by several SDDs. In order to allow their reuse in different con-

texts, ESDDs are defined as patterns with free variables that are bound depending

on the respective current context. If a node contains a reference to an ESDD, a

binding only matches the node if it also fulfills the embedded pattern.

Simple ESDDs. An ESDD specification begins with a dedicated node type – a λ
node [Name : λrole1, role2, . . . ] – that defines its name and available roles, i.e.,

free variables. While all other node labels are optional and mostly serve as com-

ments, the λ node’s label is mandatory, as it is later used to reference the ESDD.

When the ESDD is invoked in a given context, the λ node then binds the local vari-

ables in accordance with the provided context. The ESDD is otherwise processed

like a regular SDD, eventually evaluating to true or false. ESDDs introduce a local

scope, which means that their bindings are not accessible from the host SDD and

discarded as soon as a result has been obtained.

In the host node containing the reference to named property in question, we repre-

sent the ESDD using the UML symbol for a pattern, a dashed circle. The bound

elements of the host node are assigned to the roles of the ESDD by means of dashed

lines labeled with the respective role name. By default, ESDDs support optional
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arguments: If a role is not explicitly bound by the host node, we implicitly add an

existentially quantified element of the required type to the host node.

As a basic example, Figure 3.6 requires that all shuttles are correctly registered with

all controllers that supervise the track they are on. Being registered simply requires

the existence of a registration pattern as encoded by the ESDD in Figure 3.7.

Registration:  c1, s1, t1

s1 : Shuttle

t1 : Track

on

c1 : Controller

supervises

then

 rp1

s1 : Shuttlec1 : Controller

registered
clientserver

c o n t e x t s1 : Shuttle inv
s1.on.controllers→ f o r A l l(c1 |
Shuttle::registered(s1,c1)

Figure 3.6: Shuttles must be properly registered

registered :  client, server

client : Shuttle server : Controller

 pattern
r1: RegistrationPattern

entry  registry

then 

server : Controllerclient : Shuttle

c o n t e x t Shuttle::registered(c1 : Controller, s1 : Shuttle)
s1.registrationPatterns→ e x i s t s (rp1 |
rp1.controller = c1))

Figure 3.7: ESDD encoding the registered property

A more complex property that actually benefits from using an ESDD is encoded

in Figures 3.8 and 3.9. If two shuttles are not close to each other, they must not
form a convoy. If the leading shuttle is on the trailing shuttle’s immediate next track,

they must form a convoy. If the shuttles are two tracks apart, there is no restriction,

giving them time to form or break the convoy. Figure 3.8 encodes these conditions.

The ESDD Convoy in Figure 3.9 then checks whether a convoy pattern with all

required dependencies exists.
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 _

ConvoyMode :  s1, s2, t1, t2

s2 : Shuttle s1 : Shuttle

t1 : Track

on

t2 : Track

on

then

 _

successor

s2 : Shuttle s1 : Shuttle

Convoy

second first

then 

s2 : Shuttle s1 : Shuttle

Convoy

second first

then 

1
else

else

0
then

next
s2 : Shuttle s1 : Shuttle

t1 : Track

on

t2 : Track

on

s2 : Shuttle s1 : Shuttle

t1 : Trackt2 : Track

onon next

1 0
then else

1

else

Figure 3.8: Shuttles must or must not form a convoy

Convoy :  first, second

second : Shuttle first : Shuttle

 cp, c0, r1, r2

cp : ConvoyPattern

second : Shuttle first : Shuttle

follower leader

c0 : Controller

r1: RegistrationPatternr2: RegistrationPattern

registryregistry

entry entry

usesuses

then 

Figure 3.9: ESDD: The shuttles form a convoy

Parametrized ESDDs. It is possible to pass parameters to an ESDD in addition

to the role bindings. Parameters with their types are also declared in the λ node:

[Name : λ parameter1 : type1, parameter2 : type2, . . . ]. They can be used

wherever a value is required, e.g. in constraints on attributes. It is also possible to

use parameters as cardinalities on then connectors.
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Recursive ESDDs. As ESDDs are SDDs, it is possible to have nested ESDDs.

This quite naturally leads to recursively defined patterns. Figure 3.10 recursively

defines the property that track to is reachable from track from. The only restriction

we place on recursive or indirectly recursive ESDD definitions is that it is not

possible to specify a cardinality for the node containing the recursive invocation,

as this may lead to paradox statements.

reachable from, to

from : Track

 t

to : Track

from : Track

to : Track

successor

from : Track to : Track

reachable

t : Track

thenthen

reachable

from from toto

Figure 3.10: to is reachable from from

Recursion raises the question of termination. As the only context is provided by

the previous application, the ESDD in Figure 3.10 could be applied infinitely, and

the evaluation would not terminate if the tracks are not connected. On the other

hand, we can assume that any instance graph consists of only a finite number of

elements. There is therefore only a finite number of distinct initial bindings that can

be passed to an ESDD’s λ node. By adopting the restriction that, in any recursion,

each initial binding is evaluated at most once, we can thus guarantee termination.

The ESDD in Figure 3.11 provides a more constructive definition of reachability.

Additionally, it can be parametrized with the allowed minimum and maximum

distance between the tracks.

{ min 1 }

successor

 interposed { max 1 }

from : Track
to : Track

reachable min : integer, max : integer, from, to

from : Track to : Track

then then

from : Track

to : Track

reachable (min-1, max-1)

tofrom

interposed : Tracksuccessor

Figure 3.11: to is reachable from from
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Figure 3.12 encodes the requirement that any two tracks in the system are con-

nected. By means of the invocation parameters, we express the additional require-

ment that the distance between them is at most 100 links.

Connected:  t1, t2

t1 : Track

reachable (1,100)

t1 : Track

tofrom

t2 : Track

t2 : Track

then 

Figure 3.12: All tracks of the system are connected

In the example, the upper bound enforces a recursion depth of at most 100 and thus

ensures termination. In general, however, proving termination for parametrized

ESDDs is more difficult, as, potentially, there may now be infinitely many distinct

initial bindings. We need to prove additional termination conditions, e.g., in the

present case, that the upper bound is strictly decreasing.

Scoped nodes are a merely syntactical enhancement that is based on ESDDs. A

scoped node contains a nested SDD, which inherits all the bindings of the host

SDD, but itself only creates bindings that have local scope. Internally, the nested

SDD is interpreted as an ESDD definition, whereas the scoped node is replaced

with a guard node containing an ESDD invocation assigning each bound variable

of the host SDD to the ESDD role of the same name.

While anything that can be expressed using scoped nodes can thus be specified

using ESDDs, the mechanism provides a lightweight notation that is mostly use-

ful for emulating parentheses. Especially if an SDD contains several unrelated ∀
quantifiers, scoped nodes can group related nodes, which also makes computation

more efficient. For convenience, scoped AND nodes contain two nested SDDs that

both need to be fulfilled, which simply provides a shorthand that is equivalent to

two consecutive simple scoped nodes.

3.1.4 Transformations

The extensions we have so far presented enable the specification of more complex

(pre-)conditions, i.e. they enhance the LHS of Story Patterns. As SDDPs in univer-

sal and existential nodes by definition never have side effects, such nodes can only

encode an Invariant Story Pattern, which is sufficient for the main focus of SDDs,

the modeling of constraints or system properties.
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Transformation nodes. In order to provide a full replacement for Story Patterns,

we introduce transformation nodes as a means of specifying transformations, i.e. the

RHS of a Story Pattern. They are marked with→∼ var+
i ; + var+

i , listing which

elements are destroyed (∼) or created (+) by the node. Elements that are to be

destroyed need to be bound already; the node only transforms an existing match.

Which objects and links are to be created or destroyed is indicated using the same

stereotypes as in Story Patterns, �create� and �destroy�. As a more compact

notation, SDDPs also allow using ++ for creation and ∼ for destruction.

Transformation nodes replace (1) leaf nodes. When a binding reaches the node, it

is stored, and when the SDD evaluates to true, the transformations are applied to

a randomly chosen set of bindings that fulfills the SDD. For existentially quanti-

fied properties, this simply means that once the first binding reaches a transfor-

mation node, the transformation is applied to that binding. Universally quantified

transformations are only applied when a binding for each alternative has reached

a transformation (or (1)) node. Note the significant difference between iteration

(over existentially quantified properties), e.g., ’iterate over all tasks: if the task

is completed, delete the task’, and universal quantification, e.g., ’if all tasks are

completed, delete all tasks’.

Figure 3.13 provides a simple example for an existentially quantified transforma-

tion, creating a pattern provided that no matching pattern already exists.

 shuttle, supervisor, t1, t2

supervises

 rp

 + p1

shuttle : Shuttle

t1 : Track t2 : Track

next

successor

supervisor : Controller

next

then

shuttle : Shuttle supervisor : Controller

rp : RegistrationPattern

registryentry

shuttle : Shuttle supervisor : Controller

<<create>>
p1 : RegistrationPattern

<<create>>
registry 

<<create>>
 entry

else

Figure 3.13: Creating a registration pattern

Conditional transformation nodes. The previous example, creating an element

only if it is not already there, represents a very common idiom. Without such a

guard, subsequent applications of the pattern would create arbitrarily many new

instances. We therefore introduce a dedicated notation for compactly specifying
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such a conditional transition: If we mark a transformation node as conditional,
the node will only ensure that the postcondition holds. We indicate this with a

dashed border and by writing→ ∃ var+
i . Internally, the pattern in Figure 3.14 will

expand to Figure 3.13, but we have eliminated the need to explicitly specify the

second node. If there are multiple created elements, we perform the check for each

element individually, thus ensuring that all missing elements are created.

 shuttle, supervisor, t1, t2

supervises

 p1

shuttle : Shuttle

t1 : Track t2 : Track

next

successor

supervisor : Controller

next

then

shuttle : Shuttle supervisor : Controller

<<create>>
p1 : RegistrationPattern

<<create>>
registry 

<<create>>
 entry

Figure 3.14: Conditional transformation: only create the pattern if it does not exist.

We use the same notation for a similar though different purpose. While SDDs are

much more expressive than Story Patterns, they are also less compact. The clean

separation of LHS and RHS entails that even the simplest transformation requires

two nodes. We therefore allow quantified elements in conditional transformation

nodes, indicated by ∃ var+
i → . . . , and the deletion of previously unbound ele-

ments, indicated by → � var+
i (i.e. the pattern ensures that vari does not exist).

Figure 3.15 provides an example, deleting the second pattern if two are present.

This is a purely pragmatic extension that basically provides a compatibility mode

that simplifies the migration of existing Story Patterns (we are, however, inflexible

on the point of forbidden elements, which are not supported).

 s1, c1 c2

s1 : Shuttle

<<destroy>>
c2 : ConvoyPattern

c1 : ConvoyPattern

first
<<destroy>>

first

Figure 3.15: Conditional transformation: permits unbound elements.

Merge connectors. The merge connector is a syntactical feature that allows join-

ing transformation nodes in order to avoid redundant specifications. Figure 3.16

provides an example: If a convoy pattern exists, the shuttle is moved forward. If

there is no pattern, we would like to create a pattern and also move the shuttle.
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Instead of specifying the shuttle movement twice, we only specify the pattern cre-

ation and reference the previously defined transformation using the merge connec-

tor. Note that the merge connector does not indicate a sequence – both transforma-

tions are applied at once.

<<create>>
 next

<<destroy>>
on

<<destroy>>
next

<<create>>
 on

 + cp

 s1, s2, t1, t2, t3, t4

s1 : Shuttle

t2 : Track t3 : Track

next

successor

s2 : Shuttle

onnext

then

 cp

s1 : Shuttle s2 : Shuttle

cp : ConvoyPattern

firstsecond

s1 : Shuttle s2 : Shuttle

<<create>>
cp : ConvoyPattern

<<create>>
first

<<create>>
second

t1 : Track

successor

t4 : Track

successor

on

s1 : Shuttle

t2 : Track t3 : Track

successor

t4 : Track

successor

next

t1 : Track

successor

then else

and

Figure 3.16: Merge connector: move the shuttle, if necessary create a pattern.

3.1.5 Annotations

Like in UML Object Diagrams or Story Patterns, it is possible to annotate SDDPs

with constraints on attributes or collaboration statements.

- weight < 16000

s1 : Shuttle

Figure 3.17: Constraint on an attribute of a single object

Constraints on the attributes of a single object can be specified within the object

(see Figure 3.17. This is possible both for either quantified or bound objects. In
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transformation nodes, new values can be assigned using :=. The guard expressions

for an attribute can consist of literals, other attributes, ESDD parameters and calls

to queries as defined by the UML (i.e., functions without side effects).

s1 : Shuttle s2 : Shuttle

{ abs(s1.position - s2.position) > safetyDistance }

Figure 3.18: Constraints concerning multiple objects

Constraints that concern the attributes of multiple objects can be placed freely

within the SDDP (see Figure 3.18). Attributes are referenced using the standard

notation object.attribute. Expressions may contain the same elements as listed

above.

c1 : Controller

1. c1.registerShuttle(s1)

s1 : Shuttle

t1 : Track
on supervises

a. Freely placed collaboration

s1 : Shuttle rp1 : RegistrationPattern

1. rp1.updateEntry(s1)
3. rp1.requestShuttleList(s1)

2. s1.confirmUpdate()
4. s1.sendShuttleList()

b. Collaborations with indicative arrows

Figure 3.19: Collaboration statements

Collaboration statements typically only appear in transformation nodes and encode

a sequence of function calls. Collaboration statements may be freely placed (see

Figure 3.19a), but preferably, they are placed on arrows indicating which object is

calling the function (see Figure 3.19b).4

SDDPs are matched based on graph isomorphisms, in accordance with our formal-

ization of Story Patterns. While we believe that isomorphisms are generally closer

to the intuitive interpretation of a pattern, there may be cases where it is desirable

to allow homomorphisms, i.e., different variables to refer to the same object. In

Figure 3.20, the shuttle has a current position (on) and a destination. The desti-

nation has to be reachable from the current position (left branch). However, this

would not match if the shuttle already is a the destination. We therefore allow that

the two tracks might be identical using the special constraint ∼=. The right branch

then checks whether they actually are identical using the constraint ==, which is

equivalent to writing {t1 == t2}. Note that this example could easily be rewritten

4When modeling temporal properties in specific application contexts, it may be useful to employ

collaboration statements in LHS nodes, e.g. to require the arrival of an incoming message in order to

emulate the semantics of interface state charts. However, we define no semantics for such constraints

in the general case.
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Valid destination:   s1, t1, t2

s1 : Shuttle

t1 : Track

reachable

t1 : Track

tofrom

t2 : Track

destination

t2 : Track

on

t1 : Track t2 : Track

thenthen

Figure 3.20: Explicitly permitted homomorphism

without homomorphisms. In general, it is always possible to use a set of alterna-

tives using isomorphisms instead – it may just be much more verbose.
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3.2 Syntax reference

In this section, we list the complete syntax of SDDs. We start with the syntax of

Story Decision Diagram Patterns(SDDP), which slightly extends and modifies the

existing Story Pattern respectively Story Diagram (Activity Diagram with Story

Patterns) syntax, and then present the syntax of the surrounding SDDs. For each

element, we present the abstract syntax (top) and a basic application example (bot-

tom).

3.2.1 Story Decision Diagram Patterns

SDDPs may contain objects, links between objects, constraints and ESDDs.

Objects

object : Class

o1 : A

Quantified object. An unbound object that, if possible, is

bound by the SDDP is drawn in black.a The object identi-

fier and class name are both mandatory. A quantified ob-

ject may also specify constraints concerning its attributes;

the pattern will then backtrack over all candidates if the

selected object does not fulfill the requirements.

aAs black, we define 100% black or rgb(0, 0, 0).

object [: Class]

o1 : A

Bound object. An object that has been bound by a pre-

vious SDDP in the same SDD, i.e. was present as a quan-

tified object with the same object identifier in a previous

SDDP, is automatically drawn in slate blue.b In SDDs,

the class name is optional, but unlike in Story Diagrams,

where omitting the class name indicates that an object is

previously bound, it is not omitted by default. In SDDs,

it is therefore not possible to rebind an object identifier or

even reassign it a different class – we believe, however, that

providing this capability would only lead to confusing dia-

grams. On the other hand, type information is essential and

should be made explicitly available if the user desires it. A

bound object may introduce additional constraints (drawn

in black) concerning its attributes. The constraints act as a

filter; if the bound object does not meet the requirements,

the SDDP does not match.

bAs slate blue, we define rgb(90, 140, 180).
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object : Class

o1 : A

Locally quantified object. An unbound object that be-

comes locally bound within a scoped node is drawn in

grey.c The object identifier and class name are both manda-

tory. At the end of the local scope, the binding is deleted,

and the object identifier becomes unbound again.

cAs grey, we define 60% black or rgb(95, 95, 95).

(++|<<create>>)
object : Class

++ o1 : A

<<create>>
o1 : A

Created object. In SDDPs with side effects, newly created

objects are marked with the stereotype �create� or ++
and are drawn in green.d The class name is mandatory.

They may also specify attribute values that will be used

to initialize the new object. In SDDs, SDDPs with side

effects may only appear in transformation nodes.

dAs green, we define rgb(108, 206, 48).

(~|<<destroy>>)
object [: Class]

~ o1 : A

<<destroy>>
o1 : A

Destroyed object. In SDDPs with side effects, objects that

are deleted are marked with the stereotype �destroy� or

and are drawn in red.e As transformation nodes do not con-

tain quantifiers, all destroyed objects need to be previously

bound and the class name is thus optional.

eAs red, we define 100% red or rgb(255, 0, 0).

Links

[link :] association

has

Quantified link. Previously unbound links are drawn in

black. The association type is mandatory. As an extension

of normal object diagram syntax, it is possible to assign a

link identifier to a link, just like to an object. This is useful

only in connection with quantification, mostly in case the

modeler wants to universally quantify over a set of links

between two unique objects.

[link :] association

has

Bound link. Previously bound links are drawn in slate

blue. The association type is mandatory, the link identi-

fier is optional even if the quantified link that introduced

the binding used one.

[link :] association

has

Locally quantified link. A previously unbound link that

becomes locally bound within a scoped node is drawn in

grey. The association type is mandatory, the link identifier

is optional. At the end of the local scope, the binding is

deleted, and any potential link identifier becomes unbound

again.
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(++|<<create>>)
[link :] association

++ has

<<create>>
has

Create link. In SDDPs with side effects, newly created

links are marked with the stereotype �create� or ++ and

are drawn in green. The association type is mandatory, the

link identifier is optional.

(~|<<destroy>>)
[link :] association

~ has

<<destroy>>
has

Destroy link. In SDDPs with side effects, links that are

deleted are marked with the stereotype�destroy� or and

are drawn in red. The association type is mandatory, the

link identifier is optional even if the quantified link that

introduced the binding used one.

Constraints

{o1.a + o2.b limit}

{o1.size() + o2.size() limit}

Constraint (attributes). Besides constraints concerning

only a single attribute of an object, which can be specified

inside the object itself, it is also possible to specify con-

straints that are expressions over multiple attributes of an

object or different objects, literals, and queries. It is also

possible to use built-in operators, e.g. arithmetic, on at-

tributes. The restriction to UML query functions, i.e. pred-

icates or functions without side effects, is not a technical

requirement, but a precondition for reasonable matching

semantics with predictable results.

1. o1.method()

1. o1.method()

Constraint (collaboration). In RHS nodes, collaboration

statements enable SDDPs to call methods on bound ob-

jects, just as in UML Collaboration Diagrams. The lead-

ing number allows determining the order of the sequence

of invocations in case of multiple statements. Preferably,

the interacting objects are marked with a dashed arrow in-

dicating the direction of the call. If used in existential

nodes, collaboration statements serve as guards, i.e. the

SDDP only matches when the corresponding method is

called. While this feature is not included in the standard

matching semantics, it might be useful for specific appli-

cations, e.g. translating Message Sequence Charts (MSC)

into SDD-based scenarios.
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o1 : A o2 : A

Homomorphism link. SDDPs are matched using graph

isomorphism by default, i.e. different identifiers in the pat-

tern are mapped to different objects in the instance graph.

However, it is sometimes desirable to specify that two ob-

jects may or may not be the same. This kind of ambi-

guity is provided by non-injective graph homomorphisms.

Story Patterns support this by means of textual maybe-

annotations. SDDPs introduce a dashed red line with the

label ∼= as a graphical notation. The link is automatically

carried over into subsequent SDDPs in the same SDD.

o1 : A o2 : A

Identity constraint. In connection with homomorphism

links, one might later on in the SDD want to address the

case where both objects are actually identical. This can, of

course, simply be expressed by a regular constraint, but as

the homomorphism link is there anyway, SDDPs support

the == label as a special syntax for expressing this.

Embedded SDDs

[match :]
label [(par )]

linked(2)
head tail

ESDD. An Embedded SDD is represented by a dashed cir-

cle (the symbol for a pattern in the UML), with its name in

bold face. Optionally, the ESDD may also have an instance

identifier that differentiates multiple patterns in the same

SDDP. Besides the role bindings that are assigned to it, an

ESDD can also accept a list of parameters, usually prim-

itive types such as numeric values, as a more economic

alternative to assigning roles to value objects.

role

sender

Role for ESDD. A role in an Embedded SDD is assigned

to a quantified or bound object by a dashed black line, with

the role name in italics.

3.2.2 Story Decision Diagrams

SDDs consist of five classes of nodes and three types of connectors.

Node types

All non-leaf nodes use UML 2.0 boxes with a header field. Except for transfor-

mation nodes, which are always black, these boxes are typically green, but may

automatically turn red if they are used to model forbidden properties.
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[label :]  name+

 SDDP 

[objects, links, guards]

safe :  o1, o2

o1 : A
o2 : B

has

{o1.a > o2.b}

Quantified universal node. A quantified universal

node contains at least one quantified object or link. It

creates a set of required bindings, each of which needs

to successfully match the overall SDD, i.e. reach a

(1) leaf node, at some point. Operationally, the node

causes the iteration over a set of bindings, AND join-

ing the results. The quantor expression in the header

can be computed automatically from the SDDP. The

node label is optional. A quantified universal nodes

may have (multiple) then connectors. The implied

else connector always leads to a (1) leaf node, as any

for all expression is true over the empty set.

[label :]  name+

 SDDP 

[objects, links, guards]

[label :]  _

 SDDP 

[objects, links, guards]

linked :  o1, o2, r1

o1 : A o2 : B
r1 : has

{o1.a > o2.b}

related : _

o1 : A o2 : Bhas

{o1.a > o2.b+1}

Quantified existential node. An existential node that

contains at least one quantified name element, e.g.

a quantified object or a named quantified link, be-

comes a quantified existential node. Quantified ex-

istential nodes can introduce new possible bindings,

i.e. increase the number of alternatives to be consid-

ered. Operationally, they create one possible bind-

ing at a time and, if it does not manage to reach a

(1) leaf node, backtrack and try the next alternative,

i.e. OR joining the results. The list of quantified el-

ements in the header can be computed automatically

from the SDDP. If the node contains no named quan-

tified elements but only anonymous quantified links,

the header contains an existential quantor followed by

an underscore. The node label is only used for docu-

mentation and better readability and is thus optional.

Like all existential nodes, quantified existential nodes

can have (multiple) then and else connectors.

[label :]

 SDDP 

[objects, links, guards]

good :

- p < 4

o1 : A
has

- q = 8

o2 : B

{o1.a/3 > o2.b/2}

Guard existential node. An existential node that

contains only bound elements and introduces addi-

tional constraints concering their attributes becomes

a guard node. A guard node acts as a filter and can

only reduce the number of eligible alternative bind-

ings. In the header, it is marked by a bold dot. The

node label is optional.
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[label :]

 SDD 

available :

free :  o1, o2

o1 : A o2 : B
has

Scoped node. A scoped node is a guard existen-

tial node containing a nested SDD. It matches if the

nested SDD matches, i.e. acts as a filter. The node in-

troduces a local scope; all quantified objects and links

inside the block node are thus only locally bound.

However, all previous bindings remain valid inside

the block node. A scoped node can always be replaced

by an equivalent ESDD, but offers a more compact

representation if reuse is not an objective. A scoped

node is particularly useful when an SDD contains two

unrelated conditions, the first of which is universally

quantified. By placing the first condition inside a

block, the independent second condition is not eval-

uated for each of the additional bindings created by

the first condition. The node label is optional.

[label :]

 SDD  SDD 

property :

sufficient :  o1, o2

o1 : A o2 : B
rel

necessary :  o3, o4

o3 : C o4 : D
lnk

Scoped AND node. A scoped AND node basically

combines to simple scoped nodes. It is equivalent to

connecting two scoped nodes with a then connector. It

is again mostly useful in connection with universally

quantified subexpressions, as existentially quantified

nodes can simply be chained without any adverse ef-

fects in order to obtain AND-semantics. The node

label is optional.

label :  par+, role+

 SDDP 

[objects]

linked :  limit : int, head, tail

head : E tail : E

Lambda node. A lambda node is the initial node of

an ESDD definition. The node label is required, as it

defines the name of the ESDD by which it can later be

referenced in SDDPs. The lambda node contains an

SDDP which only contains bound objects (as there is

no quantor creating new bindings, but only one bind-

ing that is passed in) which define the types of the

ESDD’s roles. The lambda expression in the header

can be computed from these roles. Additionally, it

may contain a list of typed parameters. The parame-

ters, usually primitive numeric values, are useful for

simple customizations and controlling recursion. A

more verbose alternative to parameters is simply as-

signing roles to value objects.
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[bound, create, destroy]

 SDDP 

name name

~ o2 : B

o1 : A

~ rel

++ rel ++ o3 : B o2;  o3

Transformation node. Transformation nodes are

marked with →. They may only contain bound, cre-

ate and destroy objects and links, and destroy objects

and links must be previously bound. Transforma-

tion nodes do not add or filter, but only process bind-

ings. Transformation nodes appear in place of (1) leaf

nodes. When a binding reaches the node, it is stored,

and when the SDD evaluates to true, the transforma-

tions are applied to a randomly selected sufficient set

of bindings.

[quantified, bound, create, destroy]

 SDDP 

name name name

o2;  o3

~ o2 : B

o1 : A

~ rel

++ rel ++ o3 : B

Conditional transformation node. Conditional

transformation or ensure nodes expand to a set of ex-

istential and transition nodes and provide a more ef-

ficient syntax for certain idioms. If they create ele-

ments, they check whether matching elements already

exist, indicated by → ∃. For backwards compatibil-

ity with Story Patterns, they also allow existentially

quantified objects (∃ →) and destroying previously

unbound obejcts (→ �) – if they can be bound.

[true]

1

1

True leaf node. The (1) leaf node indicates that a

binding has successfully satisfied this branch of the

SDD. Whether this already means that the whole SDD

matches depends on the preceding quantifiers. The

label is optional.

[false]

0
0

False leaf node. The (0) leaf node indicates that a

binding has failed to satisfy this particular branch of

the SDD. However, there are two possibilities how the

SDD might still be fulfilled: Either there is a preced-

ing quantified existential node which can provide an

alternative binding that succeeds, or there previously

was a node with multiple exiting connectors (OR-

branches), one of which might evaluate to true. The

label is optional.



48 3 Structural Properties

Connector types

[then] [[min..max]]

then

Then connector. The then connector connects a node

to the condition that must follow if the node’s SDDP

matches at all. Optionally, it is possible to specify a

cardinality, i.e. a restriction on how many different al-

ternative bindings fulfilling the SDDP there may or

must be per original binding. It is possible to specify

more than one then connector; the multiple connec-

tors then specify alternatives. The then connector is

drawn as a solid green line. The label is optional, but

typically included.

[then] [[min..max]]

then

Then connector. There is a red variant of the then
connector. It solely exists to make the modeler’s in-

tent more obvious – its semantics are identical to those

of the green then connector. The then connector au-

tomatically turns red when it is connected to a (0)
leaf node, or if the node’s else connector is green.

All node borders always share the color of the at-

tached then connector; therefore, node borders turn

red whenever the red then connector is used.

[else]

else

Else connector. The else connector connects a node

to the condition that must follow if the node’s SDDP

does not match at all. This means that a specific bind-

ing arriving at a node either goes on down the then or

the else connector, but never both. Specifically, those

newly created bindings that fail to match the SDDP

are not passed down the else connector. It is therefore

pointless to specify a cardinality for the else connec-

tor, as the number of alternative bindings generated

by the node will always be 0. The else connector is

drawn as a dashed red line. The label is optional, but

typically included.

[else]

else

Else connector. There is a green variant of the else
connector. It solely exists to make the modeler’s in-

tent more obvious – its semantics are identical to those

of the red else connector. The else connector automat-

ically turns green when it is connected to a (0) leaf

node, or if the node’s then connector is red.
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[and]

Merge connector. The merge connector is a solid

black arrow with a massive tip. It is used to con-

nect multiple transformation nodes. It exists for con-

venience and enables reusing transformation nodes.

The condition ’IF a and not b THEN DO A, IF a and

b THEN DO A AND B’ can then be rendered us-

ing two transformation nodes, one specifying ’A’ and

one specifying ’B’, and connecting ’B’ to ’A’ using

a merge connector, instead of a transformation node

specifying ’A AND B’ (thus redundantly repeating

’A’). The label is optional.
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3.3 Formal Semantics

Language definitions that focus on expressiveness and intuitive semantics often

run into problems when it comes to defining the formal semantics, which the OCL

itself illustrates. On the other hand, languages that are constructed starting from

a set of formally motivated operators with precise semantics often suffer in terms

of expressiveness and especially practical applicability. We therefore now show

that the operational, control-flow-oriented informal semantics we have used above

to introduce the specification technique can be mapped to a formal graph-based

semantics that allows us to analyze and reason about the matching process. We

will then be able to use SDDs for the specification of positive invariants of the

system that must hold in every reachable state of the system, i.e., match every

graph that is generated by the corresponding GTS. SDDs with side effects can be

used to specify more complex graph transformation rules.

3.3.1 Variable Bindings

Story Decision Diagram Pattern Semantics. For the patterns in each individual

node, we can build on our formalization of the semantics of Story Patterns. As

SDDPs do not contain forbidden elements, each SDDP can be encoded as a simple

graph pattern [P ], which can then be matched using standard matching seman-

tics. Likewise, the SDDPs of transformation nodes can be translated into graph

rules [L]→r[R], which can also be applied normally – with the exception that the

occurence of the LHS o(L) is already determined by the preceding SDD nodes.

This is where a new aspect comes in: The SDDPs of an SDD are not independent

of each other, but may contain bound objects that have already been matched by

preceding nodes. When matching the pattern, we therefore have to respect these

previous matchings. The straight-forward way to achieve this would be to take the

graph morphism m mapping a pattern P into an instance graph G, pass it down

to the subsequent pattern P ′, and merely extend it for the additional elements of

P ′. However, this would introduce the requirement that all SDDPs in an SDD are

compatible, i.e., that the elements of P and P ′ are actually identical – otherwise,

the morphisms for P could not be applied to P ′. We therefore adopt a similar, but

slightly more general solution.

Bindings. In order to relate the matches from different patterns in the same dia-

gram to each other, we introduce an additional labeling lvP := (V N
S , V E

S , vN
P , vE

P )
for every graph P representing an SDDP of the SDD S. We label each node and

edge with the corresponding variable from the set of node variables V N
S and the

set of edge variables V E
S of S. V N

S consists of all declared object identifiers and
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V E
S consists of all declared link identifiers and, as most links are anonymous, gen-

erated unique link identifiers. As we are working with attributed graphs, attributes

are represented by attribute edges – so that V A
S ⊆ V E

S – and attribute values are

represented by value nodes in V N
S . Finally, parameters (of ESDDs) are also repre-

sented by node variables V P
S ⊆ V N

S that point to value nodes.

Based on this labeling, we can now share matched elements, attributes and param-

eters between patterns in the same SDD. A variable binding ξ for the node and

edge variables of S and an attributed instance graph G is then a pair of functions

ξ = (ξN , ξE) with ξN : V N → NG∪⊥, ξE : V E → EG∪⊥, where NG is the set

of nodes of G, EG is the set of edges of G, and ⊥ is the undefined element. The

binding functions are typically partial, as some variables may not be bound yet or,

in case of alternative paths through the SDD, may never be bound at the same time.

We write ξ1 ≤ ξ2 := ∀v ∈ dom(ξ1) : (ξ1(v) = ξ2(v))∨ (ξ1(v) = ⊥) if ξ2 is equal

to or a more restrictive extension of ξ1. We denote the empty binding that maps all

variables to ⊥ by τ .

Pattern matching. We use var(P ) to denote the pair of sets of node and edge

variables that occur in P , i.e. are in the range of the labeling functions vN
P and

vE
P . In order to match the pattern P in the instance graph G, we define P [ξ] as the

graph which results from substituting all nodes and edges of P with the elements

assigned to the corresponding variables by ξ, i.e., we replace each n ∈ NP with

nP [ξ] := ξN (vN
P (n)) and each e ∈ EP with eP [ξ] := ξE(vE

P (e)), provided that ξ is

defined for all variables v ∈ var(P ). Together, the variable labeling lvP of P and

the binding ξ define a graph morphism between P and P [ξ]. We call a binding ξ
valid if P [ξ] is a correct subgraph of G, i.e., P [ξ] ≤ G.

Given a pattern P and a binding ξ, we define the set of free variables of P as

free(P, ξ) := {v | v ∈ var(P ) ∧ ξ(v) = ⊥}. We then say that the pattern P
constrained by the existing binding ξ matches a graph G, written as P |ξ � G, if

there is a binding ξ′ that extends ξ for the variables in free(P, ξ) so that P [ξ′] ≤ G.

We use XS [G] respectively XS [NG, EG, V N
S , V E

S ] (for NG the set of all nodes of

G, EG the set of all edges of G, and variables V N
S and V E

S of S) to denote the set

of all possible bindings of an SDD S over a graph G.

3.3.2 Witness Sets

Diagram structure. For an SDD S, we define NS as the set of its nodes. For

each node n ∈ NS , we define Pn as the pattern contained by n, parent(n) as

the set of parent nodes connected to n by outgoing connectors, with its transitive

closure parent∗(n), and then(n) and else(n) as the set of nodes connected to n by
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then respectively else connectors. Cardinalities are represented by two functions

min : NS ×NS → INand max : NS ×NS → IN , where min(n, n′) respectively

max(n, n′) is the minimum respectively maximum cardinality for the connector

from n to n′.

λS denotes the unique root node of the SDD S with parent(λS) = ∅. The set trueS

contains all (1) and transformation nodes of S, falseS contains all (0) nodes of S.

We further define var(n) := var(Pn) as the variables appearing inside n and

free(n, ξ) := free(Pn, ξ) as the free variables of n that are not bound, i.e. mapped

to ⊥, by ξ.

Witnesses. Only a subset of the possible bindings XS satisfies the SDD S, i.e. is

valid for a set of patterns Pn on a path to a (1) node. We can immediately discard

all those bindings that are not valid for any pattern Pn, e.g. because they do not all

required variables. However, even those bindings that are valid for one pattern Pn

might not be valid for some other pattern Pn′ on the same path. When evaluating

an SDD, we therefore need to consider a binding’s context, i.e., nodes and their

connections.

We define an application ζ as a pair (n, ξ) of a node n and a binding ξ. We call

a valid application a witness. An application is valid if a path from λS to n exists

so that ξ is valid for all nodes on the path (excluding n) but binds no additional

variables:

ω(n, ξ) :=∃(n1, . . . , nk) ∈ NS
∗ :

(n1 = λS ∧ nk = n ∧
∧

i=1..k−1

(ni ∈ parent(ni+1) ∧ Pni [ξ] ≤ G) ∧

∀v : ξ(v) = ⊥ ⇒ v ∈
⋃

i=1..k−1

var(ni)). (3.1)

The set of possible witnesses for an SDD S is then

ZS := {(n, ξ) | n ∈ NS ∧ ξ ∈ XS ∧ ω(n, ξ)}. (3.2)

We further define the truth value eval(ζ) of a witness ζ = (n, ξ) as true if n is a

(1) or transformation node, false if n is a (0) node, and else ⊥:

eval(ζ) :=

⎧⎨
⎩

true | n ∈ trueS

false | n ∈ falseS

⊥ | otherwise.
(3.3)

As the truth value of a witness may thus be undefined, we use the convention that

boolean operators (∧, ∨ and ¬) applied to ⊥ also yield ⊥ in the following. A
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witness whose truth value is defined is final, all other witnesses are intermediate
and represent unfinished evaluations.

Candidate sets. When informally introducing the semantics of SDDs above, we

used an operational interpretation where we iteratively propagated individual bind-

ings across the SDD. In order to define the formal semantics using set-based logic,

we need to consider sets of bindings.

For a witness ζ of a universal node n, each extension of the contained binding that

the node generates ultimately needs to satisfy the SDD S, or ζ will not satisfy

the SDD. We group the new witnesses that n generates out of ζ into a candidate
set of witnesses that need to succeed together. We define such a candidate set as

C ∈ ℘(ZS). C only satisfies S if all witnesses ζ ∈ C satisfy S. The truth value of

C is thus defined as

eval(C) :=
∧
ζ∈C

eval(ζ). (3.4)

As for witnesses, a candidate set is final if its truth value is defined, i.e., it only

contains final witnesses.

Alternative sets. An existential node or the presence of multiple then or else con-

nectors can create multiple alternative ways to extend the binding ξ of a witness ζ,

only one of which needs to satisfy S. The new witnesses that the node generates

out of ζ thus form an alternative set of witnesses.

Result sets. If, starting with a single initial binding for the root node, we naively

applied these definitions, we would end up with an nested structure of candidate

and alternative sets. If the witness we process is part of some candidate set, we

would generate a new candidate set that contains an alternative or candidate set in

place of the witness – likewise for witnesses in alternative sets. Such a structure

would greatly complicate the formalization. We therefore prefer a flattened struc-

ture with only two levels, a set of alternative candidate sets A ∈ ℘(℘(ZS)). We

call such a set of candidate sets a result set.

We start evaluation with a single candidate set containing the initial binding. For

the root node λS of an SDD, we define Aλ := {{(λS , τ)}}, i.e. there is one candi-

date set consisting of the only witness, the empty binding τ at λS .

Now, whenever a node generates alternatives ζi from a witness ζ, for each C con-

taining ζ we add a new candidate set Ci where ζ is replaced by ζito the result set

A. As C is a set of witnesses, each of which may have alternative extensions, the

number of new candidate sets Cijk... generated from C by a node depends on the

Cartesian product of the extensions for each witness in C. Existential nodes thus

increase the number of candidate sets and thus the size of the result set.
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When a universal node generates new interpedendent witnesses from a witness ζ,

we simply create a new candidate set C′ where ζ is replaced by the generated wit-

nesses ζ1 . . . ζk for each C containing ζ. Universal nodes thus increase the size of

the candidate sets.

As the sets are alternatives, i.e., one valid candidate set is sufficient, the truth value

of a result set A is defined as

eval(A) :=
∨
C∈A

eval(C). (3.5)

The set of all witnesses occuring in a result set A is denoted by WA :=
⋃

Ci∈A Ci.

A result set is final if all witnesses inWA are final.

Propagation. We now formalize the computations on result sets that we have

described above. For each node n, we define the propagation function

applyn : G × ℘(℘(ZS)) → ℘(℘(ZS)), (3.6)

which basically removes obsolete candidates and adds appropriately extended ver-

sions. When computing the updated result set A′ = applyn(G,A), we initialize

A′ = A. For each witness ζ = (nζ , ξζ) for n from WA′ (i.e. ζ ∈ WA′ ∧ nζ = n),

the following steps are then performed by applyn:

1. The possible extensions of the binding ξζ are computed. We define

X (t)
ζ := {ξ′ζ | Pn[ξ′ζ ] ≤ G ∧

ξζ ≤ ξ′ζ ∧ ∀v : ξ′ζ(v) = ξζ(v) ⇒ v ∈ free(n, ξζ)}, (3.7)

i.e. those ξ′ζ that are valid for Pn and extend ξζ with the variables introduced

by Pn. If no such ξ′ζ exists, i.e. X (t)
ζ := ∅, we have X (e)

ζ := {ξζ}, otherwise

X (e)
ζ := ∅, i.e.

X (e)
ζ :=

{
∅ | X (t)

ζ = ∅
{ξζ} | X (t)

ζ = ∅.
(3.8)

Note that exactly one of the sets is thus always empty. The definition covers

both quantified and guard nodes. As guard nodes do not introduce any new

variables, we have the special case that ξ′ζ = ξζ so that ξζ is either placed in

X (t)
ζ or X (e)

ζ depending on whether Pn[ξ′ζ ] ≤ G holds.

2. The corresponding witnesses are computed, i.e. the generated bindings are

propagated along all applicable connectors – which are either the then or the

else connectors.
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If cardinalities are specified, we first need to verify whether the number of

generated extended bindings satisfies the constraints of at least one then con-

nector, i.e. ∃n′ ∈ then(n) : min(n, n′) ≤ #X (t)
ζ ≤ max(n, n′). Oth-

erwise, we need to discard the generated bindings and send the original

binding down the else connector by setting X (t)
ζ := ∅ and, accordingly,

X (e)
ζ := {ξζ}.

We then define the set of generated witnesses as

W+
ζ :={(n′, ξ′) | n′ ∈ then(n) ∧ ξ′ ∈ X (t)

ζ

∧min(n, n′) ≤ #X (t)
ζ ≤ max(n, n′)} ∪

{(n′, ξ′) | n′ ∈ else(n) ∧ ξ′ ∈ X (e)
ζ }. (3.9)

3. The result set A′ is updated. This implicitly removes ζ from WA′ and adds

the new bindings: WA′ :=WA′ \ ζ ∪W+
ζ .

(a) If n is universal, we define

A′
∀ := {C′ | ∃C ∈ A′ :(ζ ∈ C ∧ C′ = C \ ζ ∪W+

ζ ) ∨
(ζ /∈ C ∧ C′ = C)}, (3.10)

i.e. extending each candidate set with the new witnesses.

(b) If n is existential, we define

A′
∃ := {C′ | ∃C ∈ A′ :(∃ζ ′ ∈ W+

ζ : (ζ ∈ C ∧ C′ = C \ ζ ∪ ζ ′)) ∨
(ζ /∈ C ∧ C′ = C)}, (3.11)

i.e. adding a new alternative candidate set for each new witness.

3.3.3 Story Decision Diagram Semantics

In order to evaluate an SDD S, we start with a result set A containing a single

candidate (consisting of the initial binding) and successively apply the propaga-

tion function of each node of the SDD (using a breadth-first or preorder depth-first

traversal) to it, extending and modifying the result set until it is final. The evalua-

tion results in a unique final result set that serves to define the semantics of S. Note

that all nodes actually need to operate on the same instance of A as candidate sets

may contain witnesses for any node in the SDD so that simple recursion down any

particular branch could only return results for individual witnesses, but typically

not candidate sets.
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Iteration function. In order to achieve the required evaluation order, i.e. that ev-

ery node uses the output of the previous node as its input, we define the iteration

function

iterate(N ,A) :=
{

[[n]]Giterate(N\n,A) | n ∈ N | N = ∅
A | N = ∅, (3.12)

where [[n]]GA is the semantics of node n for graph G and set of alternative candidate

sets A as defined below. The iteration function passes the result set A through

every node in the set of sibling nodes N in turn.5

Semantics definition. We can now define the semantics of an SDD S. For leaf

nodes, we have

[[(1)]]GA := A, (3.13)

[[(0)]]GA := A, (3.14)

i.e. they simply return the original result set.

For non-leaf nodes, we define

[[n]]GA := iterate(then(n) ∪ else(n), applyn(G,A)), (3.15)

i.e. we first apply n’s propagation function and then pass the result through all of

n’s children.

Finally, we define for the whole SDD:

[[S]]G := {C | C ∈ [[λS ]]G{{(λS ,τ)}} ∧ eval(C)}, (3.16)

i.e. the semantics of the SDD S are defined as the satisfying final candidate sets

generated by its root node λS , evaluated for the single candidate set consisting of

the empty binding τ at λS . Note that all candidate sets in [[λS ]]G{{(λS ,τ)}} are final
so that eval(C) is always defined.

The truth value of an SDD S is then

eval(S) := ([[S]]G = ∅). (3.17)

Negation. We define the negation of an invariant SDD S, written as S, as the SDD

that is satisfied by all graphs G that do not satisfy S. S can be derived by inverting

5Note that iterate is in fact a function in spite of the fact that n is chosen non-deterministically.

As the nodes in N are siblings, no node in N will generate new witnesses for any other node in N .

For a fixed set of witnesses, we have applyn(G, applyn′(G,A)) = applyn′(G, applyn(G,A)) as

the invocations operate on disjunct subsets of the witness set and their effects on the result set are

orthogonal.
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all leaf nodes and quantifiers of S, i.e. turning all (explicitly specified and implied)

(1) leaf nodes of S into (0) leaf nodes and vice versa, and turning all existential

quantifiers (∃) in S into universal quantifiers (∀) and vice versa.

Examples. We now discuss three examples that illustrate the introduced semantics,

especially the relationship between candidate sets and witnesses.

:  s1

:  p1

s1 : Shuttle

p1 : Pattern

s1 : Shuttle

entry

then 

1 0
then else

a. The SDD S

sa : Shuttle

sc : Shuttle

sb : Shuttle

pa : Pattern

pb : Pattern

pc : Pattern

entry

entry

entry
entry

b. An instance graph G

0. [s1 , p1 ]0

c. (0) (i.e. τ ) is the only witness at

root node α

1 2 1. [s1 sa, p1 ]3
2. [s1 sb, p1 ]

3. [s1 sc, p1 ]

0

d. applyα(G,A), ζ = (0):

extends the candidate set to

((1), (2), (3))

4 2 4. 1 [s1 sa, p1 pa]3
2. [s1 sb, p1 ]

3. [s1 sc, p1 ]

1

e. applyβ(G,A), ζ = (1): creates

witness (4)

4 5 4. 1 [s1 sa, p1 pa]3

3. [s1 sc, p1 ]

5. 1 [s1 sb, p1 pb]

6. 1 [s1 sb, p1 pc]
4 6 3

2

f. applyβ(G,A), ζ = (2): cre-

ates witness (5) and (6), intro-

ducing two new alternative can-

didate sets

4 5 4. 1 [s1 sa, p1 pa]7

7. 1 [s1 sc, p1 pc]

5. 1 [s1 sb, p1 pb]

6. 1 [s1 sb, p1 pc]
4 6 7

3

g. applyβ(G,A), ζ = (3): creates

witness (7). eval(S) evaluates

to true, both candidate sets sat-

isfy S, even.

Figure 3.21: Example 1: Successful evaluation of a simple property

In Figure 3.21, we present a basic example. The SDD S in Figure 3.21a is eval-

uated on graph G in Figure 3.21b. Figures 3.21c–g then list the witness ζ that is

currently processed by apply, the result set A, and the set of witnesses WA for

each iteration of the propagation functions. The result setA is marked by the outer

(black) border, the candidate sets C inA are symbolised by the inner (blue) border,

and the witnesses are represented by numbers in (orange) circles referencing the

corresponding elements of WA. Final witnesses and candidate sets are drawn in

green or red, according to their truth value.

While the property holds for graph G, graph G′ in Figure 3.22a is not a correct

match (as sc is missing a pattern). Evaluation proceeds in an identical fashion to

Figure 3.21, except for witness (3) in Figure 3.22b. As no pattern is found, the
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sa : Shuttle

sc : Shuttle

sb : Shuttle

pa : Pattern

pb : Pattern

pc : Pattern

entry

entry

entry

a. An incorrect instance

graph G′

4 5 4. 1 [s1 sa, p1 pa]7

7. 0 [s1 sc, p1 ]

5. 1 [s1 sb, p1 pb]

6. 1 [s1 sb, p1 pc]
4 6 7

3

b. applyβ(G′,A), ζ = (3): creates

witness (7). eval(S) evaluates to

false, no candidate set satisfies S.

Figure 3.22: Example 1’: For the incorrect graph G′, the last step differs

witness proceeds to the (0) node.

The second example in Figure 3.23 is more complex. Each A must have a B with

a C, or a D. There are multiple (1) nodes, and as a1 and a2 have a valid B but no

D, whereas a3 only has a valid D, the successful candidate set unites witnesses that

are at different leaf nodes.

The third example is introduced in Figure 3.24 and evaluated in Figures 3.25 and

3.26. The example contains two nested universal quantors and serves to illustrate

how evaluation is nonetheless based on a flattened data structure. In this example,

we not only list the current result set and the currently selected witness, but also

which obsolete candidate sets are eleminated in each step.
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 :  c  :  d

1 0
then else

 :  a

 :  b

then

a : A

b : Ba : A

then

b : B

a : A c : C
a : A

d : D

else

1 0
then else

a. The SDD S

a1 : A a2 : A a3 : A

b1 : B b2 : B

c1 : C c2 : C

d1 : D

b3 : B

b. An instance graph

G

0. [a , b , c , d ]0

c. (0) (τ ) at the root node α

1 2 1. [a a1, b , c , d ]3
2. [a a2, b , c , d ]

3. [a a3, b , c , d ]

0

d. applyα(G,A), ζ = (0)

4 2 4. [a a1, b b1, c , d ]3
2. [a a2, b , c , d ]

3. [a a3, b , c , d ]

1

e. applyβ(G,A), ζ = (1)

4 5 4. [a a1, b b1, c , d ]3

3. [a a3, b , c , d ]

5. [a a2, b b2, c , d ]

6. [a a2, b b3, c , d ]
4 6 3

2

f. applyβ(G,A), ζ = (2)

4 5 4. [a a1, b b1, c , d ]7

7. [a a3, b , c , d ]

5. [a a2, b b2, c , d ]

6. [a a2, b b3, c , d ]
4 6 7

3

g. applyβ(G,A), ζ = (3)

8 5 8. 1 [a a1, b b1, c c1, d ]7

7. [a a3, b , c , d ]

5. [a a2, b b2, c , d ]

6. [a a2, b b3, c , d ]
8 6 7

4

h. applyγ(G,A), ζ = (4)

8 9 7

7. [a a3, b , c , d ]

9. 1 [a a2, b b2, c c2, d ]

6. [a a2, b b3, c , d ]
8 6 7

8. 1 [a a1, b b1, c c1, d ]5

i. applyγ(G,A), ζ = (5)

8 9 7

7. [a a3, b , c , d ]

9. 1 [a a2, b b2, c c2, d ]

A. 0 [a a2, b b3, c , d ]
8 A 7

8. 1 [a a1, b b1, c c1, d ]6

j. applyγ(G,A), ζ = (6)

8 9 B

B. 1 [a a3, b , c , d d1]

9. 1 [a a2, b b2, c c2, d ]

A. 0 [a a2, b b3, c , d ]
8 A B

8. 1 [a a1, b b1, c c1, d ]7

k. applyδ(G,A), ζ = (7). eval(S)
evaluates to true as one of the candi-

date sets is valid. Note that the suc-

cessful witnesses are at different (1)
nodes.

Figure 3.23: Example 2: Successful evaluation of a more complex property
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 :  d

1 0
then else

 :  a

 :  b

then

a : A

b : Ba : A

then

 :  c b : B

a : A c : C

b : B

a : A c : C

d : D

then

a. The SDD S

a1 : A a2 : A a3 : A

b1 : B b2 : B b3 : B b4 : B

c1 : C c2 : C c3 : C c4 : C

d1 : D d2 : D d3 : D d4 : D

b. An instance graph G

Figure 3.24: Example 3: Nested universally quantified nodes

1. [a a1, b , c , d ]

2. [a a2, b , c , d ]

3. [a a3, b , c , d ]

0. [a , b , c , d ]

4. [a a1, b b1, c , d ]

5. [a a1, b b2, c , d ]

6. [a a2, b b2, c , d ]

7. [a a3, b b3, c , d ]

8. [a a3, b b4, c , d ]

a. Witnesses (0)-(8)

9. [a a1, b b1, c c1, d ]

A. [a a1, b b2, c c2, d ]

B. [a a2, b b2, c c2, d ]

C. [a a3, b b3, c c2, d ]

D. [a a3, b b3, c c3, d ]

E. [a a3, b b4, c c3, d ]

F. [a a3, b b4, c c4, d ]

b. Witnesses (9)-(F)

G. 1 [a a1, b b1, c c1, d d1]

H. 1 [a a1, b b2, c c2, d d2]

I. 1 [a a2, b b2, c c2, d d2]

J. 1 [a a3, b b3, c c2, d d2]

K. 1 [a a3, b b3, c c3, d d3]

L. 1 [a a3, b b3, c c3, d d4]

M. 1 [a a3, b b4, c c3, d d3]

N. 1 [a a3, b b4, c c3, d d4]

O. 0 [a a3, b b4, c c4, d ]

c. Final witness set WA

Figure 3.25: Example 3: Intermediate and final witnesses
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0

a. (0) (τ ) at root node α

1 2 30 0

b. n = α, ζ = (0)

4 2 3

5 2 3

1 2 31

c. n = β, ζ = (1)

4 6 3

5 6 3

4 2 3

5 2 3

2

d. n = β, ζ = (2)

4 6 7

4 6 8

3 4 6 3

5 6 3

5 6 7

5 6 8

e. n = β, ζ = (3)

4 4 6 7 9 6 7

9 6 8

5 6 7

5 6 8

4 6 8

f. n = γ, ζ = (4)

5 5 6 7 9 6 7

9 6 8

A 6 7

A 6 8

5 6 8

g. n = γ, ζ = (5)

6 9 B 7

9 B 8

A B 7

A B 8

9 6 7

9 6 8

A 6 7

A 6 8

h. n = γ, ζ = (6)

7 9 B C

9 B 8

A B

A B 8

9 B 7

A B 7

D

C D

i. n = γ, ζ = (7)

8 9 B C

A B

9 B 8

A B 8

D

C D

A B E F

9 B E F

j. n = γ, ζ = (8)

9 G B C

A B

D

C D

A B E F

G B E F

9 B C D

9 B E F

k. n = δ, ζ = (9)

A G B C

H B

D

C D

H B E F

G B E F

A B C D

A B E F

l. n = δ, ζ = (A)

B G I C

H I

D

C D

H I E F

G I E F

G B C

H B

D

C D

H B E F

G B E F

m. n = δ, ζ = (B)

C G I J

H I

D

J D

H I E F

G I E F

G I C D

H I C D

n. n = δ, ζ = (C)

D G I J

H I

K

J K

H I E F

G I E F

G I J D

H I J D G I J L

H I J L

o. n = δ, ζ = (D)

E G I J

H I

K

J K

H I M F

G I M F

G I E F

H I E F G I J L

H I J L

G I N F

H I N F

p. n = δ, ζ = (E)

F G I J

H I

K

J K

H I M O

G I M O

G I J L

H I J L

G I N O

H I N O

H I M F

H I N F

G I M F

G I N F

q. n = δ, ζ = (F )

Figure 3.26: Example 3: Result sets. Evaluation succeeds
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3.3.4 Embedded Story Decision Diagram Semantics

In order to define the semantics of ESDDs, we need to extend the semantics of

SDDs in three places: We need to define the way how an ESDD’s λ node bind roles

to instances, we need to deal with ESDD invocations in the host nodes containing

them, and we need to formalize the semantics of recursive ESDDs.

λ nodes. Differently from SDDs, ESDDs typically do not use τ as their initial

binding, but define roles in their λ node which are bound externally. The roles

are defined as the elements of the pattern Rλ. For each host node n containing

a reference to an ESDD F , we define a partial graph isomorphism mF from Pn

to Rλ, mapping elements of the host SDDP to roles of F in accordance with the

dashed role connectors in the diagram.

The mapping function �Fn : XS → XF then performs the actual rebinding, binding

F ’s variables in accordance with the binding in the host node. For a binding ξP and

variable labelings lvP := (V N
S , V E

S , vN
P , vE

P ) for Pn and lvR := (V N
F , V E

F , vN
R , vE

R)
for Rλ, we define

�Fn(ξP ) := (ξN
F , ξE

F ) |ξN
F ◦vN

R ◦mN
F = ξN

P ◦vN
P ∧ξE

F ◦vE
R ◦mE

F = ξE
P ◦vE

P , (3.18)

i.e. each element of Rλ is bound to the same instance as the element of P that is

matched onto it by mF .

Candidate set evolution. For candidate sets, we define the evolved from relation

C � C′ which indicates that C′ has evolved out of C. We have

C � C′ := ∀(n, ξ) ∈ C : (∃(n′, ξ′) ∈ C′ : ξ ≤ ξ′ ∧ n ∈ parent∗(n′)), (3.19)

i.e. for each witness in C′, there needs to be a witness in C that is less or equally

restrictive at a possible parent node.

We extend this notation to result sets so that for a candidate set C and a result set

A′, we have

C � A′ := ∃C′ ∈ A′ : C � C′. (3.20)

ESDD invocations do not generate new bindings but merely act as an extended

form of guard, declaring a binding to be either valid or invalid. Accordingly, they

are processed in step (1) of the evaluation of the propagation function.

LetFn be the set of ESDDs invoked in the SDDP of node n. When computingX (t)
ζ ,

we extend Equation 3.7 and additionally require that each ξ′ζ ∈ X
(t)
ζ fulfills every

ESDD F ∈ Fn, i.e., there needs to be a candidate set in the result set generated by
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the ESDD that has evolved from the rebound binding {�Fn(ξ′ζ)}. For brevity, we

use F (ζ) to denote the witness (λF , �Fn(ξ)) with ζ = (n, ξ). We then have:

X (t)
ζ := {ξ′ζ | Pn[ξ′ζ ] ≤ G ∧ ∀F ∈ Fn : {F ((n, ξ′ζ))} � [[F ]]G ∧

ξζ ≤ ξ′ζ ∧ ∀v : ξ′ζ(v) = ξζ(v) ⇒ v ∈ free(n, ξζ)}. (3.21)

Non-recursive ESDD Semantics. Non-recursive ESDDs, i.e. ESDD definitions

not containing direct or indirect references to themselves, can efficiently be com-

puted like regular SDDs. As the semantics of the ESDD F with λ node λF for a

graph G and an initial binding ξP , we can then define

[[F ]]GξP
:= [[λF ]]G{{(λF ,�F (ξP ))}} (3.22)

and use the generated result set in place of [[F ]]G in Equation 3.21.

Well-formedness of recursive ESDDs. We require recursive ESDDs to be well-
formed. A well-formed ESDD does not contain vacuous cycles, i.e. there always

needs to exist a potential path to a termination condition from any node.

Whether a set of ESDDs is well-formed can be analyzed using the invocation graph
of the ESDDs. The invocation graph is a reduced representation of the diagrams’

structure that focuses on the aspects that are relevant for recursion. We are only

interested in λ nodes, leaf nodes, nodes containing ESDD invocations, and the

paths connecting them. Starting from the λ node, we connect it to all leaf nodes

that are reachable without invoking another ESDD first. For each invocation, we

add an invocation node and connect it with the λ node of the invoked ESDD. We

also need to note whether the invocation arguments are all unmodified roles and

parameters of the preceding λ node.

An ESDD is then well-formed if (a) it is fulfillable, i.e. a (1) leaf node is reachable

from its λ node in the invocation graph, and (b) it is progressing, i.e. on every cycle

through the invocation graph, there is at least one quantor affecting an element that

is used as an argument for an ESDD invocation, or a parameter is modified from

the previous invocation.

Figure 3.27a presents the invocation graph for our definition of reachable in Figure

3.11. From the λ node, we can reach the (1) node on the left branch if the termi-

nation condition holds. If the termination condition does not hold, we will have

to evaluate the recursive invocation as the branches represent alternatives, hence

the connection back to λR. However, the invoking node is quantified, and if we

fail to bind some intermediate track, the right branch will evaluate to (0) without

recursion.

Now imagine the same definition without the left branch. The recursion could

still terminate once it reaches tracks without successors that could be bound to
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Figure 3.27: Invocation graphs for recursive ESDDs

intermediate, but the property could never be fulfilled and would thus be trivially

false. Figure 3.27b presents the corresponding invocation graph.

If the invoking node was universally quantified instead, a track without successors

would fulfill the right branch, which results in the minimal invocation graph in

Figure 3.27c.

In Figure 3.27d, we present the invocation graph for the example in Figure 3.28

below. F invokes G, and G invokes F . F can terminate in two ways: If there is no

epsilon, evaluation reaches (1) while if there is no delta, it reaches (0). G can reach

(1) without further recursion if beta has the required label.

G does not contain any quantifiers, but passes beta straight on to F , which is indi-

cated by the dashed border around the invoking node. If G invoked itself instead

of F , there would be a non-progressing cycle as shown in Figure 3.27e.

Finally, we present synthetic examples where an ESDD L depends on both M and

N , which in turn reference L. If the two invocations are alternatives, the invocation



3.3 Formal Semantics 65

F:  alpha

 delta

 epsilon

alpha : N

alpha : N

epsilon : E

src

epsilon : E

G beta

delta : N

tgt

a. F invokes G

G:  beta

beta : N

F
alpha

beta : N- label = blue

beta : N

b. G invokes F

Figure 3.28: Example for indirect recursion
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Figure 3.29: Invocation graphs for recursive ESDDs

graph in Figure 3.29a results. As all nodes form a single cycle, reaching one of the

(1) nodes is sufficient. If the the invocation of N follows on the then branch of M ,

the invocation of N is added in place of the (1) node in the subgraph representing

M as in Figure 3.29b, thus ensuring that, for the same binding, first M and then N
is fulfilled.

Recursive ESDD Semantics. In order to define the semantics of a well-formed

recursively defined ESDD F , we need to compute a fixed point of F . If FI is a set

of interdependent ESDDs Fi that are connected in a single invocation graph, we

need to compute their fixed points together.
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The semantics [[Fi]]G of an ESDD Fi should correspond to a result set containing

all valid final candidate sets that can evolve from any initial binding that could be

passed to Fi for a given graph G. In order to compute this result set, we extend

Fi with an auxiliary existential node αFi quantifying all roles of the ESDD Fi,

which is added before the λ node λFi and thus becomes the new root node. The

existential node will generate all possible combinations of bindings for the roles

and pass them on to the λ node.

The unconstrained semantics of non-recursive ESDDs can then be computed di-

rectly as

[[Fi]]G := [[αFi ]]
G
{{(αFi

,τ)}}. (3.23)

However, this will not work for recursive ESDDs, as [[Fi]]G is required in order to

evaluate the propagation function apply (see Equation 3.21).

We therefore introduce the fixed point operator −��, which successively computes

the semantics using approximations [[f (j)
i ]]G of [[Fi]]G. Instead of relying on the –

undefined – semantics [[Fi]]G, −�� substitutes [[f (j)
i ]]G for [[Fi]]G when computing the

extended bindings. Furthermore, as [[f (j)
i ]]G is only an approximation of the final

semantics, we cannot just check whether there is a candidate set in [[f (j)
i ]]G that has

evolved from a given role binding, but have to differentiate between unsuccessful
and undefined invocations. We therefore do not use Equation 3.21, but the original

Equation 3.7

X ′
ζ := {ξ′ζ | Pn[ξ′ζ ] ≤ G ∧

ξζ ≤ ξ′ζ ∧ ∀v : ξ′ζ(v) = ξζ(v) ⇒ v ∈ free(n, ξζ)}, (3.24)

and evaluate the constraints represented by ESDDs in a separate step. We compute

the valid extended bindings for which all invocations are successful as

X (t)
ζ := {ξ(t)

ζ | ξ(t)
ζ ∈ X ′

ζ ∧ ∀F ∈ Fn :

(∃C ∈ [[F ]]G : eval(C) ∧ {F ((n, ξ
(t)
ζ ))} � C)} (3.25)

and the indeterminate bindings that are not valid, but not definitely invalid because

there is no invocation that is definitely unsuccessful as

X (⊥)
ζ := {ξ(⊥)

ζ | ξ(⊥)
ζ ∈ X ′

ζ \ X
(t)
ζ ∧ �F ∈ Fn :

(∀C ∈ [[F ]]G | {F ((n, ξ′ζ))} � C : ¬eval(C))}. (3.26)

Consequently, we only follow the else branch if there are no valid or indeterminate

bindings and have

X (e)
ζ :=

{
∅ | (X (t)

ζ ∪ X (⊥)
ζ ) = ∅

{ξζ} | (X (t)
ζ ∪ X (⊥)

ζ ) = ∅.
(3.27)
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If one of the ESDDs in Fn is recursively defined, we ignore the cardinalities and

use a modified version of Equation 3.9, defining the set of generated witnesses as

W+
ζ :={(n′, ξ′) | ξ′ ∈ X (t)

ζ ∧ n′ ∈ then(n)} ∪

{(n′, ξ′) | ξ′ ∈ X (e)
ζ ∧ n′ ∈ else(n)} ∪

{(⊥, ξ′) | ξ′ ∈ X (⊥)
ζ }. (3.28)

By adding the permanently intermediate witnesses (⊥, ξ′), we prevent premature

negative results — they basically indicate that ξ′ might or might not turn out to be

a valid binding.

Starting with the initial result sets [[f (0)
i ]]G, we then apply −�� for all ESDDs Fi, in

turn, to compute

[[f (j+1)]]G := −��([[f (j)
i ]]G), (3.29)

where the actual fixed point operator is defined as

−��([[f (j)
i ]]G) := [[αFi ]]

G
{{(αFi

,τ)}} | ∀Fi ∈ FI : [[Fi]]G := [[f (j)
i ]]G. (3.30)

−�� is applied until −��([[f (j)
i ]]G) = [[f (j)

i ]]G for all of the involved ESDDs Fi. We

have then computed a fixed point [[fi]]G which allows us to define the semantics of

the ESDDs Fi as

[[Fi]]G := {C | C ∈ [[fi]]G ∧ eval(C)}. (3.31)

We define two versions of−��, the least fixed point operator−��μ and the greatest fixed

point operator −��ν . The standard semantics of SDDs are defined by means of −��μ,

i.e. using least fixed points.

The least fixed point operator −��μ starts with empty initial result sets:

∀Fi ∈ FI : [[f (0)
i ]]G := ∅. (3.32)

The result set is then successively extended with additional valid candidate sets.

[[f (1)
i ]]G contains those candidate sets that succeed without recursive invocations,

and [[f (j)
i ]]G contains those candidate sets that succeed with a recursion depth of at

most j − 1.

All involved sets (especially the result sets [[f (j)
i ]]G) are finite. The intermediate

witnesses (⊥, ξ′) make sure that [[Fi]]G grows monotonically, i.e. a candidate set

that has been added to [[Fi]]G is never eliminated in subsequent iterations. −��μ can

thus only be applied to [[f (j)
i ]]G finitely often before a fixed point is reached.

The greatest fixed point operator −��ν starts by assuming that all ESDD invocations

are successful. This can be realized by using the set of all possible candidate sets
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as the initial result set:

∀Fi ∈ FI : [[f (0)
i ]]G := {C | C ∈ ℘(ZFi)}. (3.33)

Successive applications will then eliminate those candidate sets that contain invalid

witnesses.

As the fixed point operator −��ν only changes [[Fi]]G by eliminating, never adding,

candidate sets, it can again only be applied to [[f (j)
i ]]G finitely often before a fixed

point is reached. We can therefore guarantee that the fixed points exist and that

their computation terminates for both operators.

The effective difference between the two operators lies in their treatment of cyclic

dependencies between recursive invocations. −��μ evaluates sets of mutually depen-

dent invocations to false, while −��ν evaluates them to true. An example for such

a cycle would be generated by reachable, applied to a circle of tracks that is not

connected to the destination tracks. In this case, −��μ provides the intuitively correct

result (false). When the recursion is existentially quantified, cycles only occur

if G is not acyclic and the evaluation cannot reach a termination condition at all.

When the recursion is universally quantified, cycles may occur whenever G is not

acyclic. The universally quantified property ’a node is valid if it is certified or if

all its neighbors are valid’ of a two-dimensional grid leads to cyclic dependencies

between uncertified nodes. If no node is certified,−��μ computes that no node is valid,

while −��ν yields that all nodes are valid. As we have so far encountered no actual

practical examples that required greatest fixed point semantics, there currently is

no way to specify that −��ν should be used in place of −��μ in the syntax.

For recursively defined parametrized ESDDs, which can accept and manipulate ar-

bitrary parameters, we can guarantee the existence of a fixed point and termination

based on the above definitions if we restrict the domains of the parameters to a

finite set represented by value nodes in G and treat the parameters as roles that are

bound to the corresponding value node. While the restriction to a finite domain

holds on any physical machine, the size of the potential result set would prohibit

explicitly computing the fixed point. Unsurprisingly, parametrized ESDDs are thus

in the same situation as regular recursive function definitions over infinite domains

and subject to conventional recursion theory. In particular, we require that F be

monotonic as a necessary condition for the existence of a fixed point, following the

argument in [23].

3.3.5 Transformation Semantics

The semantics of transformation nodes are very closely related to standard Story

Pattern semantics as they do not contain any quantification or other advanced fea-

tures, but merely apply are graph rule to a single binding.
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Selection. In the presence of transformation nodes, we randomly pick a final can-

didate set C ∈ [[S]]G after the SDD S has been successfully matched. For each

witness ζ = (n, ξ) ∈ C, we then have n ∈ trueS , i.e. the witness is either at a (1)
leaf node or at a transformation node.

Application. If n is a transformation node, we interpret its SDDP as a graph

transformation rule [L]→r[R], where bound and destroyed elements make up the

LHS and bound and created elements make up the RHS as defined in Section 2.2.6.

The rule is then applied using the standard semantics defined in Definition 13,

using the graph morphism from Pn to Pn[ξ] as determined by the binding ξ as the

match m. However, in order to avoid problems with destroyed elements that are

part of several bindings in the selected candidate set, we split the rule application

into two parts: We first create the elements in o(R \ L) for all witnesses in C that

are at transformation nodes in a first pass, and then delete the elements in o(L \R)
in a second pass.

Conditional transformations are actually quite simple at the formal level, as they

simply expand into an existential node and a regular transformation node. Note that,

however, this expansion may be somewhat more complex than it may seem at first

glance. If the conditional transformation is supposed to ensure the presence of

three elements, one of which is missing, we do not want the transformation to cre-

ate three elements, but reuse the two existing elements. We therefore need to verify

the presence of each element individually and only create the missing ones. If the

elements are unconnected, we can simply perform the individual conditional trans-

formations in a scoped AND node, but if they are connected, we need to expand the

different cases as alternatives, which may result in a large number of nodes.

3.3.6 Expressiveness

First-order predicate logic formulas ϕ with p ranging over a finite set of predi-

cates P , sets X , and elements x ∈ X , are defined as

ϕ ::= p(x) | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃x ∈ X : ϕ | ∀x ∈ X : ϕ. (3.34)

Predicate logic for graphs. Based on the definitions in Sections 2.2.1, we can en-

code a typed graph by means of predicates 〈typename〉(n), 〈typename〉(n, e, n′),
where n and n′ are graph nodes, e is a graph edge, and 〈typename〉 represents

some typename from the type graph. For a given graph G, these predicates can be

derived based on the labeling, source and target functions.
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A predicate logic for graphs over a given graph G can then be derived by using

the predicates encoding G as P and the nodes and edges of G as the domain of

the predicates and the quantors. Based on Section 3.3.1, the set XP [G] of possible

bindings becomes the set X , and the elements x are bindings ξ.

SDDs and first-order predicate logic. We can now compare the expressiveness

of first-order predicate logic for graphs and SDDs.

Theorem 3.1 Story Decision Diagrams over a given graph G are at least as ex-
pressive as first-order predicate logic for graphs over G.

Proof. We prove the theorem by showing that for every first-order predicate logic

formula over G, there is an equivalent SDD:

• p(x) : If p is a predicate encoding a node and x accordingly is a binding ξ
for a node variable, p(x) can be encoded as P |ξ � G where P is a graph

pattern containing a single node with type p. If p is a predicate encoding an

edge and x accordingly is a binding ξ for an edge and two node variables,

p(x) can be encoded as P |ξ � G where P is a graph pattern containing two

nodes connected by an edge with type p. The formula can thus be expressed

as a guard node containing P as its SDDP.

• ¬ϕ : If ϕ is encoded by S, ¬ϕ is encoded by S’s negation S.

• ϕ∧ϕ : If two terms ϕ1 and ϕ2 are encoded by S1 and S2, ϕ1∧ϕ2 is encoded

by a scoped and node containing S1 and S2, or by two scoped nodes (S1) then
(S2) then . . . (or two regular nodes if the terms have no common variables).

• ϕ ∨ ϕ : If two terms ϕ1 and ϕ2 are encoded by S1 and S2, ϕ1 ∨ ϕ2 can

be encoded using two scoped nodes as (S1) then . . . else ((S2) then . . . ), or

using two alternative then connectors issuing from a scoped node ((1)) then
((S1) then . . . ) ∨ then ((S2) then . . . ).

• ∃x ∈ X : ϕ : If ϕ is encoded by S, ∃x ∈ X : ϕ can be encoded using an

existential node n containing only the type constraints for x as n then S.

• ∀x ∈ X : ϕ : If ϕ is encoded by S, ∀x ∈ X : ϕ can be encoded using a

universal node n containing only the type constraints for x as n then S. �

These encodings show that SDDs, though obviously less compact on paper, also

are as succinct as first-order predicate logic.

SDDs and the predicate μ-calculus. The predicate μ-calculus extends predicate

logic with variables V , the least fixed point operator μ, and the greatest fixed point

operator ν:

ϕ ::= p(V ) | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | V | μV (ϕ) | νV (ϕ). (3.35)
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As SDDs provide recursion by means of ESDDs, formulas of the predicate μ-

calculus for graphs can be written as SDDs:

Theorem 3.2 Story Decision Diagrams over a given graph G are at least as ex-
pressive as the predicate μ-calculus for graphs over G.

Proof. As we have already shown that any expression of first-order predicate logic

can be written as an SDD, we merely need to focus on variables and the μ-operator:

• V : If V is a variable, any expression containing V can be written as an

ESDD with role V .

• μV (ϕ) : If ϕ is a term containing V and ϕ is encoded by the ESDD F
defining role V , μV (ϕ) is equivalent to [[F ]]G using the least fixed point

operator −��μ.

• νV (ϕ) : If ϕ is a term containing V and ϕ is encoded by the ESDD F
defining role V , νV (ϕ) is equivalent to [[F ]]G using the greatest fixed point

operator −��ν . �

3.4 Property Detectors

SDDs are not merely a tool for communicating and reasoning about structural, but

can be verified at run time by running a property detector monitoring the specified

properties in parallel with the system.

There are two fundamentely different ways to implement such a property detector

open to us. The first possibility is to start from the formal graph-based semantics,

translate the property detector into a GTS and execute it inside a graph model

checker. The second, more efficient possibility is to start from the operational,

control-flow-based semantics and ultimately implement the detector as a Java or

C++ program.

When translating SDDs into either format, we have two further options: If we

need to determine all valid matches of the SDD, we can directly implement the

formal semantics based on sets of candidate sets. On the other hand, if we are only

interested in determining whether an instance situation satisfies an SDD or not,

we can build on the informal operational semantics that will, in most cases, result

in a much more efficient evaluation because we will focus on computing a single

candidate set for the SDD, typically disregarding a large number of equally valid

alternatives.
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3.4.1 GROOVE

Implementing the desired property detector using GTS rules is more complex than

the equivalent code generation, but at the same time quite quite intriguing, as it

allows us to actually model check a system w.r.t. properties specified as SDDs. At

this point, however, our main goal was to demonstrate the feasibility of evaluating

an SDD using GROOVE.

For our experiments, we therefore used the operational semantics in order to reduce

complexity and keep the evaluation efficient. The exhaustive search employed in

the definition of the formal semantics is not only much less efficient for complex

graphs, but also more complex. As tool support for SDDs is not yet available, we

had to manually encode the SDDs as graph rules using the GROOVE editor, adding

a further argument for the simpler alternative. We thus use a depth-first search that

stops as soon as a sufficient match has been identified.

Approach

A single SDD is transformed into many small graph rules (e.g., the supervised SDD

resulted in 23 rules) following a repetitive pattern that can easily be automated,

especially since the largest part of the rules are identical for all SDDs.

The basic algorithm works by implicitly traversing the SDD from its root to the

leaves. On the way up, markers are used to store bindings and activate and inhibit

the appropriate nodes. Markers thus play the role of witnesses in the formal seman-

tics. When a marker reaches a leaf, it is in turn marked up with the result, which

is then propagated back down towards the root, along with the matching bindings.

Once a result marker reaches the root, the evaluation of the SDD is complete and

all markers and results are cleared. There is only one type of marker; markers are

identified by their position relative to the root element and connected through 1
and 0 edges, corresponding to then and else connectors. Each marker only stores

the free variables bound by itself; the complete binding is thus defined by the path

from the marker to the root element. Figure 3.30 shows a snapshot of the matching

process for the property from Figure 2.4 – the shuttle to the left has already been

marked as correct; the detector will next try to bind tracks t1, t2, t3 using the rule

in Figure 3.31 for the shuttle on the right.

Rule priorities are very important for the correct execution.

1. Cleanup has the highest priority. It is triggered by a result marker at the root

element.

2. Next come the immediate propagation rules, i.e. success for existential and
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failure for universal nodes. Here, nodes closest to root have the highest

priority to ensure immediate propagation.

3. Then the rule groups containing the main part of the rules follow. Here,

nodes that are farther away from the root node have higher priority to enforce

depth-first traversal. Inside each group, there are three rules per node: (2)

if no matching 1 marker is present, the then rule tries to match the actual

pattern and create a 1 marker (see e.g. Figure 3.31). (2) Rules creating result

markers at leaf nodes operate at this level as well. (1) The else rule creates a

0 marker if no 1 or 0 marker is present. (0) The return rule propagates failure

(success) for existential (universal) nodes.

Figure 3.30: Located: Markers while processing

Figure 3.31: Located: Graph rule encoding the implication

4. Nodes containing ESDDs have a fourth rule with the highest priority (3)

that triggers the ESDD by creating a root marker with a binding for the free

variables. The (2) then rule then additionally checks the result marker of the

ESDD. The whole ESDD has higher priority than the current SDD.
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Figure 3.32: The test scenario in GROOVE

When all rules were translated, we created a set of correct and incorrect instance

graphs (see Figure 3.32) and ran the SDD property detectors on them. All examples

were evaluated correctly, yielding the expected results. Notwithstanding the large

number of rules, evaluation was fast and efficient, as the individual rules were

mostly small and only a limited number of them was active at any one time.

Detailed Example

As an example, we present the patterns that are used to encode the requirement that

for any three consecutive Tracks (∀), there must be a Controller (∃) supervising them

all (Figure 3.3). We discuss what is happening in detail, presenting each rule. The

letters at the beginning of each section indicate in which situation the described

rule is applied, i.e. where the control flow currently is, to facilitate navigation. The

letters (S) and (F) indicate that the active node has been marked with success or

failure.

The SDD node SDD-SV represents the SDD that is to be evaluated. A trigger node

is recreated by a lowest priority rule after all SDDs have finished evaluating.

SDD. The first rule mark SDD → R (Figure 3.33) deletes the trigger and creates a
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Figure 3.33: mark SDD → R:1

marker, the root marker (R). A to link is created between every marker and SDD-SV,

which is used for cleaning up the markers later. This rule is structurally identical

for all SDDs. Its relative priority is 1, but no other rule is enabled at this time.

Figure 3.34: mark R → R1:12

R. Now, one of the few truly specific rules is applied: mark R → R1 (Figure 3.34).

It encodes the SDDP from the universally quantified root node of the SDD. It is

triggered by the R marker. If the required pattern (here the tracks t1, t2 and t3) is

found and no 1 marker exists that already binds the instances in question, a 1 marker
is created and connected to the bound objects with links bearing the names of the

variables. Unsurprisingly, only the rules of the type mark R* → R*1, i.e. adding a

1 marker indicating a successful match, are truly structurally differing from SDD

to SDD. Its priority is 12 - the first digit indicates the depth, i.e. the distance of the

node from the root element, the second digit is the local priority, which is 2 for a

positive marking rule, as explained above.

Figure 3.35: mark R → R0:11

R. Rule mark R→ R0 (Figure 3.35) encodes the failure to match of the SDD’s root

node. It is triggered by the R marker as well. It only matches if there is no 1 marker
(indicating a match) and no 0 marker (rule has already been applied). Its priority
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is 11 (group priority 10, local priorty 1 for a negative marking rule), i.e. it only

matches after mark R → R1 has been processed. This rule is structurally identical

for all SDDs.

Figure 3.36: mark R0 → R0(S):22

R0. Let us first consider the simpler case that the first node does not match,

i.e. there are no three connected tracks in the system. Remember that – as the

candidate set is thus empty, the node is universally quantified, and any universally

quantified statement is true for the empty set – there is an implicit else edge from

every universally quantified node to the true leaf node. Rule mark R0→ R0(S) (Fig-

ure 3.36) encodes this. It is triggered by the R-0 marker path, i.e. the control flow

is at the leaf node. The rule creates a result node which has an is relation which

is used for cleanup (similar to the markers’ to relation) and a success relation for

indicating that we have reached a true leaf node. It also points to the marker that is

a witness for the success, i.e. has the successful bindings – which is rather point-

less in this case, as nothing was bound. The result marker is then attached to the

R0 marker representing the leaf node. The priority is 22, 20 for the depth, 2 as the

local priority. This rule is structurally identical for all SDDs.

Figure 3.37: propagate R0(S) → R(S):10

R0(S). Now, we need to propagate this positive result. Rule propagate R0(S) →
R(S) (Figure 3.37) copies the result node down from the leaf node at R-0 to R, the

universally quantified root node, provided that the target node is not already marked

with a result value. Its priority is 10, 10 for the depth, 0 as the local priority for

propagation rules. This rule is structurally identical for all SDDs.

R(S). Rule propagate R(S) → SDD(S) (Figure 3.38) then copies the result node

down to SDD-SV. This rule has a very high priority of pmax−depth with depth =
0. In our manually generated rules, we used pmax = 990, which limits SDDs to a

generous depth of 99 nodes – a limitation which can easily be lifted by dynamically
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Figure 3.38: propagate R(S) → SDD(S):990

using a sufficiently high priority in the automated implementation. This rule is

structurally identical for all SDDs.

Figure 3.39: clean results:996

SDD(S). The result value has now reached the node representing the SDD; we can

thus look at the result and study the witness if we are interested in analyzing the

responsible valid or invalid binding. Afterwards, cleanup starts. Rule clean results
(Figure 3.39) deletes all result nodes except the one directly connected to the SDD

node by iterating over the markers. Its priority is pmax + 6, i.e. 996. This rule is

structurally identical for all SDDs.

Figure 3.40: clean markers:995

SDD(S). We can now also remove the markers. Rule clean markers (Figure 3.40)

deletes all markers using the to link. Its priority is pmax + 5, i.e. 995, because we

need the markers to delete the result nodes. This rule is structurally identical for

all SDDs.

Figure 3.41: mark success:994

SDD(S). Finally, the mark success rule (Figure 3.41) simply deletes the last result
node if it indicates success. As the invariant held, we are no longer interested. The

priority is pmax + 4, i.e. 994. This rule is structurally identical for all SDDs.
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Figure 3.42: mark R1 → R11:22

R1. Let us now return to the more interesting case where mark R → R1 matches.

The control flow is now at R1, i.e. the second SDD node. Rule mark R1 → R11
Figure 3.42 is the SDD-specific rule that tries to match the SDDP from the SDD’s

existentially quantified second node, i.e. it matches if there is a common controller
supervising the three tracks. The controller (c1) is bound to the new marker; the

complete binding is thus the combination of R1, the tracks, and R11, the controller.

The rule’s priority is 22, 20 for depth 2 and 2 as the typical local priority for a

positive marking rule.

Figure 3.43: mark R1 → R10:21

R1. Again, if the SDDP does not match, i.e. mark R1 → R11 is not applied, the

negative rule mark R1 → R10 (Figure 3.43) matches. The priority is 21, 20 for the

depth, 1 as the typical local priority for a negative marking rule.

Figure 3.44: mark R10 → R10(F):32

R10. Let us again first look at the else-case. mark R10 → R10(F) (Figure 3.44)

encodes that the path R-1-0 leads to a false leaf node and thus marks the marker
with a result node just like rule mark R0 → R0(S) above, only this time with a

failure instead of a success link. As a positve marking rule, its priority 2 at a depth

3, i.e. 32.
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Figure 3.45: propagate R10(F) → R1(F):20

R10(F). The failure is then propagated down by rule propagate R10(F) → R1(F)
(Figure 3.45). Its priority is 20.

Figure 3.46: propagate R1(F) → R(F):989

R1(F). We now have a set of tracks for which no controller was found. High

priority rule propagate R1(F) → R(F) (Figure 3.46) immediately propagates this

down, marking the universally quantified root node as failed. Its priority is again

pmax − depth, i.e. 989.

Figure 3.47: propagate R(F) → SDD(F):990

R(F). What ensues is similar to what we have already seen. propagate R(F) →
SDD(F) (Figure 3.47) copies the failure result down to the SDD-SV node. Its priority

is again pmax−depth, i.e. 990. Then, clean results at 996 and clean markers at 995

are applied.

Figure 3.48: mark failure:994

SDD(F). Like mark success, mark failure (Figure 3.48) deletes the last result node,

but replaces it with a failed marker. The priority is pmax + 4, i.e. 994.
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Figure 3.49: violation:999

SDD failed. violation, the highest priority rule of the SDD at a relative priority

of 999, i.e. pmax + 9, is simply an instance graph where the SDD-SV is marked

with the failed marker (Figure 3.49). It is specified as a forbidden state, i.e. the

model checker will check for it and thus, implicitly, for a violation of the invariant

specified by the SDD.

Figure 3.50: mark R11 → R11(S):32

R11. We now jump back one last time. Both SDDPs have just matched and we

have reached the true leaf node at R-1-1. Rule mark R11 → R11(S) (Figure 3.50)

thus marks the R11 marker with a success result node. The priority is 32 (depth 3,

positive marking rule).

Figure 3.51: propagate R11(S) → R1(S):988

Rule propagate R11(S) → R1(S) (Figure 3.51) then propagates this success down

with a high priority of pmax − depth, i.e. 988.

Figure 3.52: propagate R1(S) → R(S):10

Now things get more interesting again! Rule propagate R1(S)→ R(S) (Figure 3.52)

is ready to propagate the success down to the root node. However, its priority 10

is comparatively low, most notably lower than the priority of rule mark R → R1,
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which is 12. This means that the success will not be propagated down as long as

there are unmarked, i.e. unchecked, groups of tracks. The whole recursion will be

repeated until a controller has been found for all matching tracks – that is, unless

this check fails for some track group and propagate R1(F)→ R(F) with priority 989

fires first. Only once all required bindings have returned a success result will this

rule be applied.

Figure 3.53: propagate R11(F) → R1(F):20

Figure 3.54: propagate R10(S) → R1(S):988

Figure 3.55: propagate R0(F) → R(F):989

Finally, for completeness and symmetry, we also specify rule propagate R11(F) →
R1(F) (Figure 3.53) at a priority of 20, rule propagate R10(S)→ R1(S) (Figure 3.54)

at a priority of 988 and rule propagate R0(F) → R(F) (Figure 3.55) at a priority of

989. However, they are never applied, as they try to propagate failure from true and

success from false leaf nodes, which can never occur there.

Algorithm

Looking at the complete list of rules (including the above superfluous rules), the

underlying structure becomes visible:

999. violation



82 3 Structural Properties

996. clean results
995. clean markers
994. mark success
994. mark failure
990. propagate R(S) -> SDD(S)
990. propagate R(F) -> SDD(F)
989. propagate R1(F) -> R(F)
989. propagate R0(F) -> R(F)
988. propagate R11(S) -> R1(S)
988. propagate R10(S) -> R1(S)
032. mark R11 -> R11(S)
032. mark R10 -> R10(F)
022. mark R1 -> R11
022. mark R0 -> R0(S)
021. mark R1 -> R10
020. propagate R11(F) -> R1(F)
020. propagate R10(F) -> R1(F)
012. mark R -> R1
011. mark R -> R0
010. propagate R1(S) -> R(S)
010. propagate R0(S) -> R(S)
001. mark SDD -> R

• The initialization rule mark SDD→ R at priority 1 is structurally identical for

all SDDs.

• The termination rules with priorities ≥ pmax, i.e. 990, are also identical for

all SDDs, except for the exact name of the SDD node (SDD-SV). They clean

up the auxiliary nodes (result and markers) and mark the SDD as failed if the

invariant is violated.

• For each leaf node at depth d and path R*, where * represents a sequence of

d − 1 1s or 0s encoding the node’s position, there is one marker rule: mark
R* → R*(S) for true leaf nodes, mark R* → R*(F) for false leaf nodes. Their

priority is 10d + 2.

• For each existential or universal node at depth d, there are two rules: mark
R*→ R*1 at priority 10d+2 and mark R*→ R*0 at priority 10d+1. All rules

follow the same schema, with the former including the specific elements that

encode the SDDP in question, and the latter just varying dependening on the

node’s position.

• For each existential node at depth d, there are four propagation rules for

retrieving the results from its child nodes: rules propagate R*1(S) → R*(S)
and propagate R*0(S) → R*(S) at priority pmax − d for propagating success,
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and rules propagate R*1(F)→ R*(F) and propagate R*0(F)→ R*(F) at priority

10d for propagating failure. All these rules follow the exact same schema. As

one valid alternative binding is sufficient for an existentially quantified node,

success is propagated with high priority, while failure is only propagated if

backtracking has failed and there are no more alternatives to try.

• For each universal node at depth d, there are four propagation rules for re-

trieving the results from its child nodes: rules propagate R*1(F) → R*(F) and

propagate R*0(F) → R*(F) at priority pmax − d for propagating failure, and

rules propagate R*1(S)→ R*(S) and propagate R*0(S)→ R*(S) at priority 10d
for propagating success. These rules are identical to the rules used for exis-

tentially quantified nodes, only the priorities are inverted. As a universally

quantified node requires a valid binding for each required binding, failure is

propagated with high priority, while success is only propagated if there are

no more required bindings to validate.

ESDDs

Encoding an ESDD is basically no different from encoding any other SDD. The

only notable difference is that there is no rule mark SDD→ R, and no need for mark
success/failure rules. Also, as the root node is a lambda node, it always matches

and already provides some bindings. Rule mark R → R1 (Figure 3.56) illustrates

this for the Convoy property.

Figure 3.56: mark R → R1:12

Invoking the ESDD requires one additional rule in the invoking SDD. Also, the

base priority of the ESDD needs to be higher than the base priority of all SDDs

that include it. We provide an example from the ConvoyMode SDD:

The rule mark R10 → R10L (Figure 3.57) activates the ESDD. Its local priority is

higher than for positive matching rules; the priority is therefore 10d + 3, i.e. 33.

If no 1 or 0 marker is present, and if there is no pattern link to the ESDD node,

the rule is applied. It creates a root marker (R) for the ESDD, thus activating its

evaluation, and the pattern and lambda links. The root marker is also bound to the

two previously bound shuttles s1 and s2, which become first and second.
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Figure 3.57: mark R10 → R10L:33

Figure 3.58: mark R10 → R101:32

Rule mark R10 → R101 (Figure 3.58) has priority 32 and is thus evaluated after

the ESDD. It adds the additional constraint that the pattern needs to have the result
success, and deletes the auxiliary constructs. In this case, the rule only checks for

the success of the ESDD, but it would be possible for the rule to create its own

additional bindings as well, as any other positive matching rule.

Rule mark R10 → R100 (Figure 3.59) is applied if mark R10 → R101 did not suc-

ceed. The pattern link referencing the ESDD is removed, so is the result node.

The result of the ESDD is not necessarily negative, as the positive matching rule

might have failed to create some other bindings unrelated to the (successful) ESDD

(though in this example, the result would always be negative as there are no such

bindings).
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Figure 3.59: mark R10 → R100:31

Multiple alternative paths

Alternative paths, i.e. multiple then or else edges for the same node, require special

attention in some cases. When all alternative nodes are existential, it is sufficient to

simply add the rules representing the different nodes with the same priority – as it

is sufficient that one of them succeeds, the usual mechanism (propagating the first

success) is still working.

If one or all of the alternatives are universally quantified, however, the usual mecha-

nism of propagating the first failure does not work, however. Therefore, we present

a slight extension of the basic approach, using a universally quantified root node

with two universally quantified then nodes as the example:

Figure 3.60: propagate R1(S) → R(S):989

Rule propagate R1(S) → R(S) (Figure 3.60) is unchanged.

Rule mark R1 → R11a (Figure 3.61) matches the SDDP of alternative a (some

condition about ’all shuttles s2’) normally, but only creates and reacts to markers
with label 1 and a.

Rule mark R1→ R11b (Figure 3.62) does the same for alternative b (some condition

about ’all predecessor tracks of t2’) normally, but only creates and reacts to markers
with label 1 and b.
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Figure 3.61: mark R1 → R11a:22

Figure 3.62: mark R1 → R11b:22

Figure 3.63: propagate R11a(S) → R1(S):20

Low priority rule propagate R11a(S) → R1(S) (Figure 3.63) propagates down suc-

cess for alternative a.

Figure 3.64: propagate R11b(S) → R1(S):20
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Low priority rule propagate R11b(S) → R1(S) (Figure 3.64) propagates down suc-

cess for alternative b.

Figure 3.65: propagate R11a(F) → R1(F):988

High priority rule propagate R11a(F) → R1(F) (Figure 3.65) propagates down fail-

ure for alternative a.

Figure 3.66: propagate R11b(F) → R1(F):988

High priority rule propagate R11b(F) → R1(F) (Figure 3.66) propagates down fail-

ure for alternative b.

Figure 3.67: propagate R1(F) → R(F):989

Finally, the most important rule: propagate R1(F)→ R(F) (Figure 3.67) only marks

a binding from the root node as failed if both path a and path b have failed.

3.4.2 Code Generation

We now look at possibilities to derive a program that acts as a property detector

from an SDD.
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One possibility for translating an SDD into code would be to create a Story Dia-

gram (i.e. an Activity Diagram with Story Patterns), add a foreach loop for every

quantified variable, add the Story Patterns from the SDD, and connect the activi-

ties according to the connectors. The loops then iterate over all possible bindings.

However, additional auxiliary variables would be required to log the success of

each iteration, with existential nodes returning at the first success, universal nodes

aborting at the first failure. All the actual graph matching is provided by the ex-

isting code generation for Story Patterns, even though the increased expressive

power, e.g. w.r.t. negation, would make it necessary to split some of the SDDPs

into several connected patterns.

We prefer the direct translation into source code (C++ and Java) as the cleaner

solution. Again, we present manually implemented prototypes. In the future, the

detectors will automatically be generated using Fujaba.

Basic structure. Using the above example, we present the resulting program for

checking the SDD. For run-time monitoring, it is sufficient to check whether the

pattern matches at all, not where. The monitoring version below thus signals suc-

cess as soon as it encounters the first valid alternative binding:

Listing 1: Supervised (Java), runtime monitor

1 / / SDD r o o t
2 boolean i s S u p e r v i s e d ( )

3 {
4 / / E v a l u a t e SDD
5 boolean r e s u l t = i s S u p e r v i s e d R ( ) ;

6 / / Does t h e p a t t e r n match ?
7 re turn r e s u l t ;

8 }
9

10 / / U n i v e r s a l l y q u a n t i f i e d node
11 boolean i s S u p e r v i s e d R ( )

12 {
13 / / D e f a u l t i s t r u e , AND j o i n t h e r e s u l t s f o r a l l r e q u i r e d b i n d i n g s
14 boolean r e s u l t = t rue ;

15 / / Bind v a r i a b l e s
16 I t e r a t o r <Track> i t 1 = Track . i t e r a t o r ( ) ;

17 whi le ( i t 1 . hasNext ( ) )

18 {
19 Track t 1 = i t 1 . n e x t ( ) ;

20 I t e r a t o r <Track> i t 2 = t 1 . g e t S u c c e s s o r s ( ) . i t e r a t o r ( ) ;

21 whi le ( i t 2 . hasNext ( ) )

22 {
23 Track t 2 = i t 2 . n e x t ( ) ;

24 i f ( t 1 != t 2 )

25 {
26 I t e r a t o r <Track> i t 3 = t 2 . g e t S u c c e s s o r s ( ) . i t e r a t o r ( ) ;

27 whi le ( i t 3 . hasNext ( ) )

28 {
29 Track t 3 = i t 3 . n e x t ( ) ;

30 i f ( t 1 != t 3 && t 2 != t 3 )

31 {
32 / / E v a l u a t e THEN branch
33 r e s u l t &= i s S u p e r v i s e d R 1 ( t1 , t2 , t 3 ) ;
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34 }
35 }
36 }
37 }
38 }
39 re turn r e s u l t ;

40 }
41

42 / / E x i s t e n t i a l l y q u a n t i f i e d node
43 boolean i s S u p e r v i s e d R 1 ( Track t1 , Track t2 , Track t 3 )

44 {
45 / / Track whe ther t h e node ’ s p a t t e r n has matched
46 boolean matched = f a l s e ;

47 / / Bind v a r i a b l e s
48 I t e r a t o r <C o n t r o l l e r > i t 1 = t 1 . g e t C o n t r o l l e r s ( ) . i t e r a t o r ( ) ;

49 whi le ( i t 1 . hasNext ( ) )

50 {
51 C o n t r o l l e r c1 = i t 1 . n e x t ( ) ;

52 i f ( t 2 . g e t C o n t r o l l e r s . c o n t a i n s ( c1 ) )

53 {
54 i f ( t 3 . g e t C o n t r o l l e r s . c o n t a i n s ( c1 ) )

55 {
56 / / THEN case
57 matched = t rue ;

58 / / E v a l u a t e THEN branch
59 i f (SDD . Lea fTrue )

60 re turn true ;

61 }
62 }
63 }
64 / / ELSE cas e
65 i f ( ! matched )

66 / / E v a l u a t e ELSE branch
67 re turn SDD . L e a f F a l s e ;

68 / / THEN case , e v a l u a t i o n o f THEN branch n e g a t i v e
69 re turn f a l s e ;

70 }

In order to monitor the invariants specified by the SDDs, the generated code can

then be run in parallel or lock-step with the monitored program. Note that we

abstract from the navigability problem by assuming that there is a way to statically

access all instances of a type, e.g. for obtaining a binding for t1.

ESDDs. The handling of ESDDs is much less complicated than in GROOVE,

as programming languages already provide a comparable feature in the form of

functions. We thus encapsulate the ESDD in a method that we query as required.

Listing 2: Alternatives (Java fragment), runtime monitor

1 / / U n i v e r s a l l y q u a n t i f i e d node
2 boolean i s P r o p e r t y R ( )

3 {
4 . . .

5 / / Bind v a r i a b l e s
6 S h u t t l e s1 = . . . ;

7 S h u t t l e s2 = . . . ;

8 R e g i s t r y r1 = . . . ;

9 . . .
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10 / / ESDD
11 i f ( i sESDDProper ty ( r1 , s1 , s2 )

12 {
13 / / THEN CASE
14 . . .

15 }
16 . . .

17 }
18

19 boo l i sESDDProper ty ( R e g i s t r y r1 , S h u t t l e s1 , S h u t t l e s2 )

20 {
21 / / R e s u l t
22 boo l r e s u l t = f a l s e ;

23 / / E v a l u a t e
24 . . .

25 re turn r e s u l t ;

26 }

Multiple alternative paths. Implementing multiple alternative paths is trivial in

code for the monitoring version:

Listing 3: Alternatives (Java fragment), runtime monitor

1 / / U n i v e r s a l l y q u a n t i f i e d node
2 boolean i s P r o p e r t y R ( )

3 {
4 / / D e f a u l t i s t r u e , AND j o i n t h e r e s u l t s f o r a l l r e q u i r e d b i n d i n g s
5 boolean r e s u l t = t rue ;

6 / / Bind v a r i a b l e s
7 . . .

8 / / THEN case
9 r e s u l t &= ( i s P r o p e r t y R 1 a ( v1 , v2 , v3 ) | | i s P r o p e r t y R 1 b ( v1 , v2 , v3 ) ) ;

10 . . .

11 re turn r e s u l t ;

12 }

Advanced applications. The above code represents a compact solution that is suit-

able where SDDs are used to specify system behavior in place of Story Patterns or

to simply monitor properties. For advanced applications like formal verification or

debugging, it may be desirable to explicitly keep track of successful or unsuccess-

ful bindings. We may even want to compute the entire result set.

In order to be able to efficiently generate such verifiers, we provide a more so-

phisticated framework, consisting of classes that implement key concepts of the

formalization, i.e. the SDD structure and bindings, witnesses and witness sets etc.,

applying to all SDDs. As these classes closely reflect what was presented in Sec-

tion 3.3 above, presenting the details of such an implementation would be mostly

redundant.

Implementations of the propagation functions (applyn) and the evaluation proce-

dure (iterate etc.) are provided using the strategy pattern. We provide three strate-

gies – computing the first valid candidate set, computing all valid candidate sets,
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and computing all valid candidate sets with guaranteed termination for recursive

ESDDs.

In order to generate a specific SDD, we then only have to specialize the Ab-

stractSDD and AbstractSDDNode classes, connect them in the correct order and

overload the matching function of each node so that it correctly reflects the node’s

SDDP.
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4 Temporal Properties

With SDDs, we have introduced a notation for expressing complex static proper-

ties. It is tempting to apply the same approach to temporal properties and use it to

describe the structural evolution of a system.

The temporal behavior of a system can be described as a sequence of states. When

we model the system as a graph transformation system (see Definition 14), each

of these states corresponds to a graph. Between states, the identity of nodes and

edges is preserved.

When evaluating temporal properties, it is no longer sufficient to focus on the

question whether certain structural properties hold for a single state – we need

to consider the duration and temporal ordering of the individual incidences of the

properties.

4.1 Timed Story Scenario Diagrams

The idea behind Timed Story Scenario Diagrams (TSSD) is to use the ordering of

incidences of structural properties in order to specify temporal properties as sets of

valid orderings. The diagrams are thus directed acyclic graphs consisting of nodes,

each containing an SDD defining a structural property, and edges, constraining the

ordering of incidences.

[0..100]

    Inside critical area

    Shuttle approaching critical area

 c1, s1, t1, t2

s1 : Shuttle

t1 : Track t2 : Track

next

successor

c1 : Controller

supervises
next

    Registered with controller

 rp

s1 : Shuttle c1 : Controller

rp : RegistrationPattern

registryentry

 _ s1 : Shuttle

t2 : Track

on

Figure 4.1: TSSD - A Shuttle registers with a Registry

Figure 4.1 is a basic example presenting the key elements of a TSSD. When a

Shuttle is approaching a Controller’s supervised area, they have between 0 and 100

time units to instantiate a RegistrationPattern. In the mean time, the Shuttle must

not yet have entered the critical area, which is indicated by the (forbidden) state on

the transition.

We now systematically introduce the underlying concepts.
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4.1.1 Basic Principles

Situations. Each node of a TSSD defines a situation. While a situation character-

izes a set of states, calling it a state would be misleading. As we discuss in Section

4.1.3 below, a TSSD is not a state chart, as multiple situations of the same TSSD

can be incident, i.e. active, at the same time.

A situation may have a label, which can then be used to represent the situation. As

the SDDs themselves may already be quite large, it may sometimes be preferable to

define the situations separately and then draw the actual TSSD using such situation

references – especially if the TSSD itself is complex or the same situation appears

multiple times in it.

All SDDs that appear on the same path through a TSSD are connected so that

bindings are shared between subsequent situations. If a variable is bound by a

situation, it cannot be rebound later. If bindings were not retained, it would be

difficult to specify simple properties such as ’If a shuttle accepts a task, it needs

to complete it.’ because any shuttle fulfilling any task would then complete the

scenario.

s1 : Shuttle c1 : Controller
registered

Sa – Ca

Sb – Ca

Sb – Cb

Sc – Cb

Sa Sb Sc Ca Cb

Sa Sb Sc

Ca Cb

++ ++

Sa Sb Sc

Ca Cb

++ ++

Sa Sb Sc

Ca Cb

~

Sa Sb Sc

Ca Cb

~

Sa Sb Sc

Ca Cb

++

1 2 3 4 5

Situation: Shuttles: Controllers:

Sa Sb Sc

Ca Cb

Figure 4.2: The relationship between a situation and its observations

When matching a situation, its SDD generates a result set. Each valid candidate

set in the result set is called an observation of the situation. However, as the SDD

encodes a structural property, whose incidence is typically not limited to a single

point in time but spans an interval, the situation could generate infinitely many

observations for the same candidate set. An observation is thus made only at the

specific time when a structural property is first present after being absent. For a

given situation encoding a property p and a given candidate set C, an observation

is thus generated at every time t where p(C) at t and there is a time u with u < t
so that ¬p(C) at all times v with u ≤ v < t. Figure 4.2 illustrates this for a situ-

ation encoding that a specific shuttle is registered with a specific controller. As the

truth value of this property changes over time for the different pairs, observations
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(marked by small circles) are only generated where the truth value changes from

false to true. For the pair (Sa, Ca), two observations are generated, one a time 1
and one at time 5.

Temporal connectors. The observations for a TSSD are then placed in relation to

each other using temporal connectors between situations specifying their temporal

ordering.

• The eventually connector (A � B) denotes that an observation for sit-

uation A is made before an observation for situation B. Note that this in-

cludes the case that the observations for A and B occur simultaneously, i.e.

t(oA) ≤ t(oB). Figure 4.3 shows an example of such a connector: A task
that is started needs to be completed at some future time.

Task started Task completed

Figure 4.3: Eventually connector: A ∧ FB

• The until connector (A ��B) denotes that an observation for situation A
is made and that the encoded structural property remains valid until a com-

patible observation for situation B is made. If no appropriate B is matched

before the structural property ceases to be valid, the observation for A is

discarded. Figure 4.4 shows an example of such a connector: The convoy
pattern needs to remain active until the convoy is dissolved.

Execute Pattern Break Convoy 

Figure 4.4: Until connector: A ∧AUB

• The immediately connector (A � B) denotes that an observation for

situation B is made at the same time as the corresponding observation for

situation A, i.e. in the same state of the system. If no such observation of

B exists, the observation for A is also discarded. Figure 4.5 provides an

example: When an additional task is accepted, the schedule still needs to be

consistent.

Task accepted Consistent Schedule

Figure 4.5: Immediately connector: A ∧B
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Technically, only the eventually connector is actually fundamental. Both the imme-

diately connector, which can be emulated using an eventually connector and a time

constraint of 0, and the until connector, which can be emulated using an eventually

connector and an appropriate transition guard, are redundant. They are included for

convenience, to facilitate the application of optimized evaluation strategies, and to

reduce clutter in diagrams.

Traces. As situations generate sets of observations and as bindings are retained

across situations, the indicated temporal ordering only makes sense when applied

to compatible pairs of observations, i.e. if the candidate set of the more recent

observation actually evolved from the candidate set of the earlier observation. For

example, Figure 4.3 constrains the life-cycle of a single task, whereas the behavior

of separate tasks is completely independent. Moreover, this same argument applies

to multiple observations based on the same candidate set (such as the pair (Sa, Ca)
in Figure 4.2) as well – a subsequent observation should not be invalidated just

because the structure matched by the antecedent reappears. A � B therefore

does not imply that all compatible A need to occur before B, but rather that a

compatible A exists before B. Such a sequence of correctly ordered compatible

observations is called a trace. As there may be multiple antecedent observations

with identical candidate sets, a single observation can extend multiple traces. As a

candidate set may later be extended in multiple ways, each trace may furthermore

be extended by several concurrent observations, resulting in a set of alternative

traces.

Pseudostates. The evaluation semantics of a TSSD are determined by the graph

structure set up by the connectors and a set of pseudostates, which specify where

evaluation should start and terminate and provide a way to encode logical opera-

tors.

Evaluation always starts at the initial node • which always matches exactly once at

the earliest time possible. The descriptive, sequential character of TSSDs implies

the assumption that time is bounded in the past so that this point in time is uniquely

identified.

The termination node
⊙• marks the end of a branch of a TSSD, i.e. sequence of

connected situations. A
⊙• node always matches as late as possible, i.e. the cur-

rent state during runtime monitoring or the last state of a finite system execution

path π when analyzing a completed run. When the path π is infinite, the
⊙• node

technically never matches at all.

A trace is completed once it has reached a termination node, i.e. when it could be

extended with an observation for the
⊙• node. A system execution path π then

fulfills a TSSD if a completed trace to a
⊙• node exists within a prefix of π.
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The basic example in Figure 4.6 specifies that sometime during the system exe-

cution, a shuttle selects a task and completes it. In conjunction with an ��

Acquire Task Complete Task

Figure 4.6: Some task is eventually completed

connector, a
⊙• node can express that a property, e.g. safety, should hold globally,

as illustrated in Figure 4.7.

System Safe

Figure 4.7: The system is globally safe

Branches. While TSSDs need to be acyclic, each situation may have multiple suc-

cessors and predecessors. If the TSSD forks, both branches progress independently

and in parallel. Observations are only partially ordered.

By using multiple
⊙• nodes on independent branches, disjunction (logical ∨) can

be expressed, as a completed trace at any one of the
⊙• nodes is sufficient. Figure

4.8 provides an example: Once a shuttle has acquired a task, it must either complete

or delegate it.

Acquire Task

Complete Task

Delegate Task

Figure 4.8: TSSD containing disjunction

If a situation has multiple ingoing temporal ordering edges, observations for all

situations directly preceding it need to exist. Multiple incoming connectors thus

correspond to conjunction (logical ∧). Figure 4.9 provides an example: A shuttle
needs to notify the source storage facility and reserve a route before it can pick up

the cargo.

Acquire Task

Notify Source

Reserve Route

Pick up Task

Figure 4.9: TSSD containing conjunction
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In order to keep the notation based on a limited number of concepts, there are no

specific ∧ or ∨ nodes (as exist e.g. in EPCs). This means that it is not trivially

possible to ∨-join two branches.6 Using subscenarios (see Section 4.1.4), the oth-

erwise required duplicate specification of the postfix can, however, be avoided.

A branch that does not end in a
⊙• node is optional and has no effect on the satis-

faction of a TSSD as it can never generate a completed trace. Figure 4.10 provides

an example: The shuttle may stop for maintenance while executing a task.

Acquire Task Complete Task

Maintenance

Pick up Task

Figure 4.10: TSSD with an optional branch

More relevantly, it is possible in situations with multiple ingoing connectors to

have a branch that does not lead back to an initial node in order to make statements

about the past. While the eventually connector then serves as the past operator,

until can be used to emulate since as time is assumed to be bounded in the past.

In the example in Figure 4.11, the shuttle must have been licensed for passenger

transport sometime before picking up a passenger. Using references to the past is

mostly useful on the conceptual level in order to denote a property as a necessary

precondition to, but not an integral part of the specified sequence. Semantically,

connecting all branches to the initial node would yield the same result as time is

bounded in the past.

Acquire Task Pick up Pasenger

Licensed

Figure 4.11: TSSD containing a reference to past events

Forbidden scenarios. As a way of expressing logical ¬ and negate whole scenar-

ios, it is possible to turn branches of a TSSD or the entire diagram into forbidden

scenarios. In the style of SDD connectors, required situations and connectors are

drawn with solid green lines, while forbidden situations and connectors use dashed

red lines. In order to avoid visual confusion with the contained SDDs, TSSDs use

darker shades of green and red.

6It could be argued that ∨-joins are contra-intuitive anyway. If a customer has a complaint, and

can then send it by post or email, what if he does both? Both traces continue to be live, and if there

are no appropriate procedures in place, the complaint may actually be processed twice. While using

xor resolves this specific ambiguity, its use can easily introduce subtle semantic issues of its own, as

witnessed by EPCs [26].
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Forbidden scenarios are defined by means of inhibitors. Normally, a connector

is disabled and becomes enabled when it is reached by an appropriate trace. In-

hibitors are enabled and become disabled if a trace reaches them. Inhibitors mark

the end of a forbidden scenario and thus are the connectors leading from forbidden

to required elements. This can either occur where a forbidden scenario is joined

with a required one or at the end of a branch in the
⊙• node, which is considered

a required element. Normally, a situation is incident if all inbound connectors are

enabled, i.e. a compatible trace for each predecessor exists, and if its structural

property can be matched. In the presence of an inhibitor, the subsequent required

situation is only enabled if no trace completing the forbidden branch exists. The se-

mantics of all other situations and connectors in a forbidden scenario is unchanged.

Unregistered Collision

Figure 4.12: A forbidden scenario

The TSSD in Figure 4.12 will thus immediately be fulfilled until a shuttle is not

properly registered and then collides with another shuttle. As soon as this sequence

of events occurs, the TSSD is no longer satisfied.

Acquire Task

Execute Task

Unload Cargo

Complete Task

Figure 4.13: Forbidden during execution

Figure 4.13 encodes that a shuttle may not unload the cargo before the task is

completed, i.e. the shuttle has arrived at the proper destination. Complete Task will

only match if Unload Cargo has not been observed before.

Acquire Task

Complete Task

Collision

Figure 4.14: Forbidden during and after execution

The TSSD in Figure 4.14 is similar to the previous example, but as the join only

takes place at the
⊙• node which will match as late as possible, any collision, even

after the task is completed, will invalidate the scenario.

As multiple
⊙• nodes represent alternatives, the example in Figure 4.15 is satisfied

if the shuttle on standby either receives a task and completes it, or never receives a

task at all.
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On Standby

Receive Task

Receive Task

Complete Task

Figure 4.15: Forbidden scenario as an alternative

Parallel composition. If there are multiple initial nodes in a single diagram, evalu-

ation starts at all initial nodes simultaneously. The TSSD will then only be satisfied

if a
⊙• node is reached by a trace from every initial node. In particular, this mech-

anism can be used to create the parallel composition of multiple TSSDs. If the

diagram graph is not connected because the branches have no situations in com-

mon, a dotted constraint edge is drawn between the initial nodes in order to indicate

that the branches actually constitute a single diagram.

Acquire Task

Complete Task

Delegate Task

Unregistered Collision

Figure 4.16: Parallel composition of scenarios

A particularly useful application of this construct is the specification of invariants.

In Figure 4.16, parallel composition is used to specify that there must be no col-

lision during task execution. The same effect could be achieved by inserting the

forbidden scenario between the initial node and both
⊙• nodes of the constrained

scenario, which would, however, result in a more complex diagram.

4.1.2 Constraints

The valid scenarios recognized by a TSSD can be further restricted by specify-

ing guards that constrain the observations that are admissible between situations

and introducing time bounds. The notations we use for specifying constraints are

specifically inspired by the Visual Timed Event Scenario approach [1].

Constraint Edges. Constraints can appear directly on the temporal connectors

defining the ordering of situations or on dedicated constraint edges that may con-

nect any two situations regardless of their relative position in the diagram. Con-

straint edges are drawn as curved, dotted connectors between situations. They have

no direction.
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Guards. Forbidden scenarios provide a generic notation for prohibiting certain

observation sequences between any two situations of a required scenario. However,

as subsequent situations may be observed in the same system state, a forbidden

scenario forbidding C between A and B requires A∧(¬C U (B∧¬C)), i.e. B will

not match if C is observed at the same time. While it would be possible to prohibit

C only strictly before B is observed by placing a non-zero time constraint on the

inhibitor leading from C to B, this seemed unnecessarily complex, particularly if

the forbidden scenario consists of a single situation. In order to directly support the

common idiom that a situation is forbidden between two situations, we introduce

guards as a more lightweight notation. By annotating a connector from A to B
with a situation C, written as A ¬C � B, we forbid compatible observations for

C between two compatible observations for A and B, i.e. require A ∧ (¬C UB).
Additionally, it is possible to constrain the interval between two observations on

concurrent branches of the diagram using a constraint edge A · · · ¬C · · ·B, which

cannot be expressed using a single forbidden scenario, which would introduce an

implied temporal ordering.

When specifying a guard in a diagram, we link the forbidden situation to the con-

nector with a line. As the situation is forbidden, it is drawn in the style of forbidden

scenarios, i.e. dark red and dashed, albeit with a slightly bolder border. See Fig-

ure 4.17 for an example: While inside the critical section, the shuttle must not be

disconnected from the controller.

Enter Critical 
Section

Leave Critical 
Section

Disconnected

Figure 4.17: A forbidden guard

In Figure 4.18, we use a constraint edge in order to specify a constraint spanning

multiple situations.

Acquire Task Execute Task Complete Task

Cancel Task

Figure 4.18: A forbidden guard spanning multiple situations

As a natural extension, we also allow specifying required situations A C � B
that define invariants that always need to hold between the two situations in order

to eliminate the need for unintuitive double negations. Their border is drawn in

the style for required elements, i.e. as a dark green solid line. See Figure 4.19

for an example: The shuttle needs to be registered with the controller while inside

the critical section. As the example suggests, it is easy to convert the two types of
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guards into each other by negating the contained SDD.

Enter Critical 
Section

Leave Critical 
Section

Registered

Figure 4.19: A required situation

Note that A A � B is different from A ��B – the former just requires that at

any time between the two observations, some instance of A can be observed, while

the latter requires that a specific observation of A remains valid. The example

A A � B brings up a technical point: As variables may not be rebound and

the same variables may thus not be quantified twice in the same branch, the free

variables of the contained SDD of a situation that is used as a guard are implicitly

renamed to make their names unique. A A � B therefore actually corresponds

to A A′ � B, where A′ is the situation that is derived from A by renaming A’s

free variables.

Active

 a a : Active

s : Service is

Released

 r r : Released

s : Service is

a. Specification using an �� connector

a : Active

iss : ServiceActive

 a a : Active

s : Service is

Released

 r r : Released

s : Service is

b. Specification using a required guard

a : Active

iss : Service

Active

 a a : Active

s : Service is

Released

 r r : Released

s : Service is

0 1

c. Specification using a forbidden guard

Figure 4.20: The relationship between until, guards and forbidden scenarios

In Figure 4.20, we specify the property that a service needs to remain active until

it is released using an �� connector, which can be rewritten using a required
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guard. The required guard is, in turn, just a syntactic feature that is expanded into a

forbidden guard containing the negated property, which provides an efficient way

of verifying the property.

Strict situations. There are four commonly used idioms in connection with guards

that are supported by a logical extension of the syntax.

Select TaskReceive Requests Complete Task

Figure 4.21: Strictly next situation

The standard situation semantics only ensure that the same observation cannot be

made earlier. However, it is frequently desirable to require that a situation should

not have matched at all before it is observed. In the example in Figure 4.21, we

would like to require that the task that is selected is actually the first one to be

selected, i.e. that no other task has previously been selected by the same shuttle
(this also excludes that the same task is selected again later). Completion of the

scenario can thus only be achieved by completing the first selected task – the shuttle
may select and complete other tasks, but this is not recognized by the scenario. This

effect can be achieved by placing a situation on a connector leading to itself as a

forbidden guard. As a more compact notation, it is possible to ’bend’ the forbidden

guard on top of the situation itself, which is then drawn with an additional slightly

bolder dashed dark red border. The situation is then marked as strictly next.

Planned Route ReservationRequest Route

Figure 4.22: Strictly previous situation

The same concept can be applied in the other direction as well: If a situation is

placed on one of its outgoing connections as forbidden guard, the scenario will only

accept the last observation that is made for the situation. In the example in Figure

4.22, requests are superseded by subsequent ones. Such a situation is marked as

strictly previous. A situation may have multiple guard constraint connectors and

be marked strictly previous and strictly next at the same time.

Use ResourceAcquire Resource Release Resource

Figure 4.23: Strict situation

In LSCs, the message types that appear in a scenario are forbidden where they are

not explicitly allowed. This behavior, which is useful to enfore strict orderings

between situations, can be emulated by placing a forbidden guard for every situ-

ation on every connector within the scenario that is not coming from or leading
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to a pseudostate. As explicitly specifying this would result in an excessive num-

ber of guards, however, it is possible to express this property by simply placing

an additional slightly bolder dashed dark red border around the situation without

connecting the border to any connectors, which basically says ’required here, for-

bidden elsewhere’. Such a situation is called strict. In the example in Figure 4.23,

the resource may only be used, exactly once, between acquiring and releasing it

(for each acquisition).

Initialize System

Figure 4.24: Globally strict situation

Strict situations do not constrain the connectors from and to pseudostates in order

to allow the scenario to match repeatedly during the same run of the system, pro-

vided that the instances do not overlap. If the intention is to actually express that

the scenario appears only once, the scope of a strict situation can be extended to

the connectors either coming from inital nodes, leading to
⊙• nodes, or both, by

placing the corresponding symbol on the node border. The situation then becomes

globally strict. Figure 4.24 encodes the requirement that the system is initialized

exactly once.

An important point to note for any strict situation is that situations are structural

properties, not events, and may depend on bindings from previous observations.

The guards can therefore only be violated on a connector where all the situation’s

bound variables are already bound, as these will otherwise be bound to ⊥ and

never match. Implicitly quantifying these variables does not yield the expected

behavior, as the guards would then no longer differentiate between traces. In the

above example, only the first one among all the users who acquire resources would

be allowed to use a resource, which is hardly the intended behavior.

Time constraints. While the temporal connectors constrain the temporal ordering

of observations, they place no restriction on the elapsed time, making it impossible

to prove that a finite trace will not eventually fulfill the scenario. While we can say

that a required scenario has not occured yet, there is no specific point where we can

stop waiting for eventual completion. In particular, we lack a means of requiring

a practically relevant notion of progress as any finite period of inactivity would be

acceptable.

However, by means of time constraints, we can specify an interval defining the

permitted delay between two observations for two situations A and B within the

same trace or related traces. The interval is defined by an lower bound l and an

upper bound u and may be either open or closed at both ends. A time constraint can

either be placed directly on a temporal connector (A [l...u]� B) or on a dedicated
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constraint edge (A · · · [l . . . u] · · ·B). Note that in connection with a constraint

edge, the time constraint does not imply an ordering, i.e. that A has to precede B
or vice versa – the situations do not even need to be on the same branch of the

TSSD.

[5..10]
Acquire Task Complete Task

Figure 4.25: Basic time constraint

Figure 4.25 shows a simple time constraint bounding an eventually connector.

Acquire Task Execute Task Complete Task
(0..4] [5.. )

[2..10]

Figure 4.26: Multiple time constraint edges

Figure 4.26 presents an example with multiple constraints. As all constraints need

to hold, the more restrictive bounds dominate the less restrictive ones. Time bounds

need to be consistent, i.e. not mutually exclusive and thus contradictory.

Execute Task

Reached Destination

Notify Recipient

Complete Task [0..15]

Figure 4.27: Constraint across branches

In the example in Figure 4.27, the maximum delay between reaching the destina-

tion and notifying the recipient is constraint, even though the two situations do not

have to occur in any particular order.

Acquire
Task

Execute
Subtask1

Execute 
Subtask2

Complete
Subtask1

Complete
Subtask2

Complete 
Task

[8..20]

Figure 4.28: Constraint on the first/last observation in a set

There are two dedicated pseudostates, the first of and the last of node. The for-

mer matches when the first of the attached situations is observerd, while the latter

matches when the last of the attached situations is observed. Using these nodes, it
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is possible to specify a constraint on the time that elapses between the first obser-

vation for one set of situations and the last observation for another set of situations

on multiple branches indicating a partial order between observations as illustrated

in Figure 4.28: The subtasks may not be executed independently of each other, but

need to respect a time constraint for the delay between the begin of the first subtask

and the end of the last subtask.

Homomorphism. If the same situation appears multiple times in the same TSSD

(by reference), its quantified variables need to be renamed internally in order to

avoid binding the same variable twice. As graph isomorphisms are used for match-

ing and different variables are thus not bound to the same graph element, the second

situation will not match the same subgraph as the first. While homomorphism for

the affected variables can be permitted at the SDD level, this defeats the purpose of

using situation references. We therefore allow placing a homomorphism constraint
at the TSSD level as a shortcut for the corresponding expansion at the level of the

contained SDDs.

Perform ServicePerform Service
(0.. )

Figure 4.29: Allowing homomorphism across multiple instances of a situation

Figure 4.29 provides an example: Two different services may be performed, but the

same service may also be performed twice (note the time constraint that prevents

the second situation from simply matching the same observation as the first).

4.1.3 Quantification

TSSDs provide quantification on several different levels, both with respect to struc-

ture and time. As observations are generated by SDDs, a situation can be observed

as structurally equivalent but distinct instances of the same pattern. This is quite

different from typical event- or message-based approaches that do not consider

structure and cannot differentiate between multiple (concurrent) instances of the

same event.

Consider, e.g., a scenario encoding a – rather easy – undergraduate program, requir-

ing that students sign up for, attend, and eventually complete at least one course.

Students may then sign up for any number of courses and still fulfill the scenario

by completing just one of them. This means that we have to relate the right obser-

vations to each other, i.e. keep track of which student is completing which course,

and that he or she had actually signed up for it.
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The example also illustrates why TSSDs are unlike statecharts. When trying to rec-

ognize all conformant sequences, we need to keep checking for new students. But

even for a single student who is already attending one course, we still need to check

whether he or she has signed up for another one, or we might miss the one that is

actually completed. This means that a situation, once enabled, will keep generating

additional observations, which means that a TSSD, which is representing a set of

(potential) scenarios, can ’be’ in many states at once.

Situation level quantification. As we have seen, universal quantifiers in SDDs

have made it necessary to introduce candidate sets. While it is much more com-

mon to only use existential quantifiers in TSSDs (or at least use universal quantifi-

cation for local properties inside of ESDDs or scoped nodes only), it is possible to

use universal quantification. When evaluating the TSSD, we then have to propa-

gate candidate sets as well. All subsequent situations have to match based on the

generated candidate set, i.e. for every single witness, just like the child nodes of

universally quantified nodes in an SDD. Consider the property ’If all tasks are ap-

proved (at the same time), then eventually all (these) tasks have to be completed

(at the same time)’, which could be written by universally quantifying over all

approved tasks in the first situation.

Scenario level quantification. A more typical requirement would be ’Every indi-
vidual task that is approved eventually needs to be completed’. Here, the involved

SDDs are existentially quantified, describing a single task and its states. However,

we want this scenario to hold every single time an approved task is observed.

Triggers. This is achieved by means of trigger blocks. Whenever the sequence

within the trigger block has been observed in its entirety,7 the corresponding trace

becomes a root trace. The TSSD is then only fulfilled if an extension of each

root trace successfully completes the triggered scenario. On the other hand, if the

trigger is never completed, there is no root trace and the TSSD places no constraints

on the system behavior.

Triggers perform a function similar to precharts in Live Sequence Charts [21].

Adopting the corresponding terminology, we distinguish between universal
TSSDs, which possess a trigger and need to be fulfilled every time it matches,

and existential TSSDs, which do not have a trigger and need to match just once

during the execution of the system. Existential TSSDs can be seen as a special

case of triggered TSSDs – they are implicitly triggered by their initial node, which

matches immediately, but only once.

In Figure 4.1, we wanted the scenario to be triggered and successfully completed

7In order to allow branches inside the trigger, the trigger is completed as soon as a situation inside

the trigger block that does not have a successor inside the trigger block is observed.



4.1 Timed Story Scenario Diagrams 107

Bid for Task Acquire Task Execute Task Complete Task

Figure 4.30: A complex trigger block

for all cases when a matching shuttle-controller-pair is detected. Here, a trigger con-

sisting of a single situation is sufficient. However, arbitrarily long initial sections

of a TSSD can be placed inside a trigger. Figure 4.30 provides an example with

a non-trivial trigger block containing a sequence of two situations. A root trace is

only created once the task is acquired.

Enter Service Receive Request Accept Task Complete Task

Figure 4.31: Multiple trigger blocks

It is possible to have multiple triggers in the same TSSD. In Figure 4.31, each shut-
tle entering service needs to complete every task it accepts. Note that the scenario

fails if a shuttle does not accept any task at all because the first trigger has already

created a root trace.

Acquire 
Resource

Release 
Resource

User 
Authenticated

Figure 4.32: Antecedent triggered scenario

As a powerful feature, triggers can require the presence of antecedent observations.

In Figure 4.32, we require that a user acquiring a resource eventually releases it and
was previously authenticated.

Likewise, the scenario that is defined in Figure 4.33 requires that a route was re-

served sometime between being planned and actually being used (but only if it is

actually used).

The ability to express past and intervening triggered scenarios requires a slight ex-

tension of the syntax. Without the trigger block, Acquire Resource would never

match without a compatible observation for User Authenticated, nor would Use
Route ever match without Reserve Route. A violation would thus not be recog-
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Plan Route Use Route

Reserve Route

Figure 4.33: Intervening triggered scenario

nized. We therefore define that when evaluating whether a trigger block is com-

pleted, only those previous situations that are directly connected to an initial node

are considered as preconditions, not those without predecessors or only with pre-

decessors from the trigger block itself. When defining the formal semantics, we

present a way to rewrite past and intervening triggered scenarios in a way that

makes this explicit.

1 Stable

Figure 4.34: Globally triggered scenario

A global trigger can be used to express properties that need to hold in every state

(i.e. of the form AG ϕ) such as fairness (i.e. AG(AFP )). The example in Figure

4.34 expresses the requirement that the system always reaches a stable state again,

which is expressed by means of a trigger block containing a node marked with

1, which represents a trivial situation that is trivially true and matches every time

compatible traces for all its predecessors are present. The trivially true situation

thus generates a new root trace in every system state.

Sequence labels. We allow attaching labels to a sequence in a TSSD by connecting

the first and last element of the sequence with a special blue dotted arrow. This can

be used to structure the diagram and may be useful for monitoring, e.g. for listing

all currently triggered instances of the sequence. In Figure 4.35, the scenario is

structured into a selection phase and an execution phase.

Bid for Task Acquire Task Execute Task Complete Task

Task ExecutionTask Selection

Figure 4.35: Sequence labels on a simple scenario



4.1 Timed Story Scenario Diagrams 109

4.1.4 Subscenarios

Modularity is again of paramount importance for practical scalability. We therefore

provide the ability to invoke a previously defined subscenario as part of a TSSD.

Subscenarios perform a similar function in TSSDs as ESDDs do in SDDs.

Register Shuttle

Request Registration

 registry, m1

location : Track vehicle : Shuttle
on

m1 : RequestMsg

registry : Controller

monitor
fromto

Registration Granted

 m2

location : Track vehicle : Shuttle
on

m2 : AcceptMsg

registry : Controller

monitor

from
to

Shuttle is properly registered

 _

location : Track

vehicle : Shuttleon

registry : Controllermonitor

manage

 location, vehicle

location : Track

vehicle : Shuttle

on

a. Definition of the subscenario

Shuttle Registration Process

 c1

(Example) Shuttle on some Track

Shuttle : 

(Example) Shuttle registered

Registered : 

t1 : Track

s1 : Shuttle

on

t1 : Track

s1 : Shuttleon

c1 : Controller

monitor manage

location
vehicle

registry

t1 : Track

s1 : Shuttleon

c1 : Controller

monitor
manage

Register Shuttle

b. Invocation of the subscenario

Figure 4.36: Subscenario

Definition. A subscenario definition begins with a special λ situation which, just

like an ESDD’s λ node, binds roles and parameters. Other than that, a subscenario

is just a regular TSSD. As in parametrized ESDDs, the parameters in subscenarios

may appear anywhere where constants would be allow, e.g. as part of guards. A

subscenario may also reference other subscenarios. As a TSSD needs to be acyclic,
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recursive subscenarios are the only way to specify loops. A subscenario can also be

used to encode an∨-join by encapsulating the alternative branches in a subscenario.

The subscenario in Figure 4.36a describes how a shuttle registers with a controller.

Invocation. Invocation works just like ESDD invocation, with one notable differ-

ence. In the context of scenarios, we will often need to access the bindings that are

created by the subscenario in subsequent situations of the invoking scenario. If we

want an ESDD to ’bind’ a variable, we can simply assign all possible bindings to it

in the host node, letting the ESDD confirm those bindings that match it. Using this

approach for subscenarios would not only be inefficient, but potentially impossible,

as the bound element may not have existed yet at the time of invocation.

Therefore, the invocation itself takes place inside a λ-node that allows exporting

arbitrary bindings (e.g. registry→ c1) back from the subscenario. In Figure 4.36b,

we see how the shuttle is not registered beforehand, the subscenario is invoked, and

the shuttle is registered afterwards.

Scenario situations are the equivalent of scoped nodes in SDDs. They are situ-

ations, drawn with a bold border, that may contain a sequence of situations and

pseudostates. Again, they mostly serve as parentheses and can be defined using

the existing mechanism for modularity, i.e. subscenarios. The most typical exam-

ple for the use of scenario situations is the explicit ∨-join (see Figure 4.37), which

saves the need to specify the following suffix twice (or at least use two identical

subscenario invocations).

A B
D

C
E

Figure 4.37: Explicit ∨-join

The embedded scenario is evaluated in its given context in the surrounding sce-

nario. A possible initial node cannot match earlier than any situation preceding

the scenario situation in the surrounding scenario, and a
⊙• node may and need not

match later than any subsequent situation. Nonetheless, they still match as early re-

spectively late as possible within the given constraints. A ’global’ property inside a

scenario situation (see Figure 4.38) thus constrains exactly the interval between the

surrounding situations (e.g. A and C (and is thus equivalent to a required guard).

Choosing a different semantics, i.e. interpreting the
⊙• node inside the scenario

situation as the end of the surrounding scenario, would break the monotonicity of

the scenario interpretation, i.e. a valid observation for C could later be invalidated

because B ceases to be valid.
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A B C

Figure 4.38: A globally required property inside a scenario situation is limited to

the surrounding interval

Loops. For convenience, TSSDs provide a dedicated syntactical construct for spec-

ifying loops based on scenario situations. Internally, these loops can be represented

as recursively defined subscenarios.

A
B

C

+

Figure 4.39: A loop that needs to match at least once

A loop is marked with � or �+ as in Figure 4.39. It is required to be observed only

once, but, as connectors allow generating additional extensions of the same trace

as long as they are enabled, also greedily matches as many iterations of the loop as

possible.

A
B

C

Figure 4.40: A loop that is matched zero or more times

An optional loop is marked with �∗ as in Figure 4.40. It is equivalent to a regu-

lar loop and an additional connector bypassing the loop, i.e. does not need to be

observed at all, but may be observed any number of times.

A
B

C
[1..3]

Figure 4.41: A loop that is matched a bounded number of times (1 to 3)

Finally, a bounded loop is marked with � [l..u] as in Figure 4.41. It needs to be

observed at least l and at most u times. �+ is thus equivalent to � [1..∞], while

�∗ is equivalent to � [0..∞]. Internally, the bounded loop can simply be unrolled

or, more compactly, be represented by a parametrized recursive subscenario that is

decreasing the bounds in each iteration.

Figure 4.42 illustrates two idioms that are relevant in connection with loops: An
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[0..5]

Use 
Service

Figure 4.42: The user uses services, no more than 5 times altogether

upper bound is really only meaningful if the TSSD contains guards forbidding

’unobserved’ iterations, e.g. by making one situation in the loop globally strict.

Secondly, if the user does not have to use five different services, but may use the

same service several times, we need to include a self-referential homomorphism

constraint that is expanded when the loop is unrolled.
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4.2 Syntax Reference

4.2.1 Situations

[Label]

[SDD]

[Label]

[SDD]

Situation. Defines a situation, i.e. a set of states, by means

of an SDD. The label is optional. As most elements, situa-

tions can be required or forbidden. Required elements are

drawn with dark greena solid lines, forbidden elements are

drawn with dark redb dashed lines.

aAs dark green, we define rgb(64, 140, 36).
bAs dark red, we define rgb(164, 0, 0).

Label Label Situation reference. References a previously defined sit-

uation in order to save space. The label is required.

[Label]

[TSSD]

[Label]

[TSSD]
Scenario situation. Defines a scope that may contain other

states and situations.

Label Label

Scenario situation reference. References a previously de-

fined scenario situation in order to save space. The label is

required.

1 0
Trivial situation. Defines a situation that trivially matches

whenever its preconditions are fulfilled, respectively never

matches.

4.2.2 Pseudostates

Initial node. Marks the starting point(s) of the evaluation.

Termination node. Marks the end of a trace.

Situation

Situation

First of node. Matches when the first of the attached situ-

ations is observed.

Situation

Situation

Last of node. Matches when the last of the attached situa-

tions is observed.
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4.2.3 Temporal connectors

Eventually connector. Points to a situation that must fol-

low eventually or finally.

Immediately connector. Points to a situation that must

follow immediately, i.e in the same system state. Exists for

convenience, equivalent to a [0..0] time constraint.

Until connector. The source situation must match until the

target situation matches.

4.2.4 Constraints

Constraint edge. Allows specifying constraints between

arbitrary situations of a diagram.

Label Label
Forbidden situation. The forbidden situation must not

match between the source and target situation of the at-

tached connector. Drawn using dark red dashed lines.

Label Label Required situation. The required situation must match

between the source and target situation of the attached con-

nector. Drawn using dark green solid lines.

Label Label Strictly next situation. The situation only accepts the first

matching observation (per distinct trace).

Label Label Strictly previous situation. The situation only accepts the

last matching observation (per distinct trace).

Label Label

Strict situation. The situation is part of a branch, but an

identical observation must not appear elsewhere between

any two situations of the scenario. As all bindings that are

reused by the strict situation need to be previously bound,

the restriction only operates per distinct trace.

U U U

Globally strict situation. While strict situations only con-

strain connectors between situations, placing the corre-

sponding symbol on the border of the strict situation indi-

cates that the situation is equally forbidden on connectors

either from initial nodes, to termination nodes, or both.
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Situation Situation

[lower..upper]

Situation Situation
[lower..upper]

Time bound. Constrains the time that may pass between

observations of the connected situations. The situations do

not have to be on the same branch.

Situation
Situation

Situation

Homomorphism constraint. Allows several situation ref-

erences in the same TSSD to match the exact same in-

stances by adding the appropriate elements and homomor-

phism constraints in the corresponding SDDs. The self ref-

erence is only meaningful in loop definitions. Drawn in

red, as the constraint refers to the SDD level.

4.2.5 Quantification

[TSSD]

[Label:]

[TSSD]

Trigger. The dashed grey box marked with >>> desig-

nates a set of situations as the trigger of a universal TSSD.

The trigger ∀-quantifies over the indicated variables.

Name Sequence label. Used to label a set of situations as a logi-

cal unit.

4.2.6 Subsequences

Subsequence

[SDD]

Subscenario situation. Represents the intial situation of a

subscenario definition, corresponds to an ESDD’s λ node.

Likewise accepts roles and parameters.

Subsequence
Subscenario reference. Used to invoke a subscenario in

the invoking λ situation of a scenario.

role Role rebinding. Used to rebind roles to variables in the

invoking λ situation of a scenario.

Label (par+)

Parametrized reference. Used to invoke a subscenario

with parameters as defined by the λ situation of the sub-

scenario.

+
[1.. ]

Loop. The subscenario in the qualified scenario situation is

matched at least once. Internally translated into a recursive

subscenario definition.
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[0.. ]

Optional loop. The subscenario in the qualified scenario

situation is matched zero or more times. Internally trans-

lated into a recursive subscenario definition.

[l..u]

Bounded loop. The subscenario in the qualified scenario

situation is matched at least l and at most u times. Inter-

nally translated into a parametrized recursive subscenario

definition or unrolled explicitly.
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4.3 Formal Semantics

Clear and intuitive semantics are of paramount importance for temporal proper-

ties. It is well known that temporal logics such as LTL or CTL [11] are hard to

understand and even harder to write for any non-trivial property (cf. [13]).

As the temporal properties we specify constrain the structural evolution of a sys-

tem, we are not concerned with individual states, but sequences of states. As be-

fore, we represent each state by a graph – the system can thus be represented by a

graph transformation system (GTS) as defined by Definition 14. In Section 2.2.5,

we have discussed how propositions in the form of state and path formula can be

specified for such systems.

We will first define the semantics of TSSDs, based on the formalization of GTS

and of SDDs, and then discuss how they relate to LTL and extensions of LTL with

time constraints.

4.3.1 Definitions

System. The system the TSSD is monitoring or verifying is given as a typed GTS

Y . While for SDDs, we checked whether a particular state satisfied the specified

structural property, we are now interested in the question whether a particular path

π (as defined in Section 2.2.4) that has been generated by Y (or is currently being

generated by Y ) satisfies the TSSD. The states of the path π are π[i] and occur at

time T (π, i). Additionally, we define

T−1(π, t) := i | T (π, i) ≤ t < T (π, i + 1) (4.1)

as the inverse of T that returns the index of the current state for a time t. We write

π−1[t] as a shortcut for π[T−1(π, t)].

Diagram structure. A TSSD D consists of a set of situations and pseudostates

UD. A situation U is characterized by its SDD SU . We have var(D) :=⋃
U∈UD

var(SU ) as the free variables of the TSSD. For each situation U ∈ UD,

we define predF (U), predI(U), and predU (U) as the predecessor situations of U
connected to it by F, I, and U connectors. pred(U) := predF (U) ∪ predI(U) ∪
predU (U) is then the set of all direct predecessors of U . prefix(U) is the transitive

closure over pred, i.e. all direct and indirect predecessors. Likewise, we define

succ(U) with its subsets succF (U), succI(U), and succU (U) and the transitive

closure suffix(U) for the successors of U based on pred(U).

The set initD contains the initial pseudostates λD of the TSSD. The set termD

contains all
⊙• nodes of D.
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Trigger Blocks. In order to deal with trigger blocks, we define triggersD as the

set of situations that complete a trigger block of the TSSD, i.e. are inside a trigger

block but have no successors inside the trigger block. If D is universal, those are

the situations U inside a trigger block where all successors U ′ ∈ succ(U) are not

inside the trigger block. If D is existential, we have triggersD := initD.

In order to be able to evaluate past and intervening triggered scenarios without hav-

ing to change the standard evaluation semantics (situations can only be observed

when all predecessors have been observed), such scenarios are internally encoded

using additional trivially true situations. The trivially true situation preceded or

followed by an immediately connector represents a neutral element that can be

added between any two situations without changing the semantics. This is used to

move the references to past or intervening events outside of the trigger.

A B

P

a. Syntax

1
A B

P

b. Internal Encoding

Figure 4.43: Past triggered scenario (end of trigger block)

Figure 4.43 illustrates how the past triggered scenario (Figure 4.43a) is rewritten

(Figure 4.43bso that A can match without P, but the scenario will not complete

unless, immediately, a P that was observed before A is found.

A B

P

C

a. Syntax

A B

P

C

1
b. Internal Encoding

Figure 4.44: Past triggered scenario (inside trigger block)

Figure 4.44 illustrates that this also works if the past triggered scenario is connected

to an element of the trigger block other than the last.

A B

P

C

a. Syntax

A B

P

C

11

b. Internal Encoding

Figure 4.45: Intervening triggered scenario
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In Figure 4.45, an intervening triggered scenario is encoded. The first trivially

true node is redundant, but is useful because it provides a simple procedure for

encoding any triggered scenario (a sequence of trivially true situations, one for

every situation inside the trigger block that has outside connections), even if past

and intermediate scenarios occur simultaneously as in Figure 4.46.

A B

Q

C

P

a. Syntax

A B

Q

C

1
P

1

b. Internal Encoding

Figure 4.46: Intervening and past triggered scenario

SDD adaptation. The SDDs in a TSSD are not independent of each other, but

extend the candidate sets generated by their predecessors. Given an SDD S and its

predecessor S′, we define

λS [CS′ ] := {(λS , ξ) | ∃(n, ξ) ∈ CS′ ∧ eval(CS′)} (4.2)

which takes the bindings of a valid final candidate set CS′ for S′ and creates a

corresponding candidate set at the initial node λS of S.

λS [AS′ ] := {λS [CS′ ] | CS′ ∈ AS′} (4.3)

performs this for a whole result set. We accordingly extend parent(n) so that the λ
node of SU has all the (1) (and transformation) nodes of the SDDs of all situations

in pred(U) as parents in order to make the evolved from relation C � C′ applicable

accross situations.

Situation references allow reusing the same situation definition and, in particular,

the same contained SDD. In order to make sure that all quantified variable names

are unique, we define a relabeling function �U which, when applied to the SDD

SU , relabels all variables in free(SU ) with globally unique variable names. �U is

then also applied to the SDDs of all situations in suffix(U) so that variable names

on the same branch are consistent.

While this allows multiple references to the same situation definition to appear on

the same branch, the graph isomorphisms used for matching ensure that the subse-

quent instances will never generate observations of an identical structure, even if

the structure becomes invalid and valid again and the first situation generates a new

observation. If a different behavior is desired, this has to be made explicit by using

homomorphism constraints. Internally, this will add the original variables to the

SDD definitions of the subsequent situations and connect them to their renamed

counterparts with homomorphism links.



120 4 Temporal Properties

Forbidden Scenarios. Basically, there is no such thing as a forbidden scenario at

the semantical level, only inhibitors. Inhibitors are connectors that keep the situa-

tion they point to from matching when they are enabled, whereas regular connec-

tors need to be enabled in order to allow their target to match. For every situation

U , we identify the inhibitors by means of the set inhibit(U) ⊆ pred(U), consisting

of the situations U ′ connected to U by inhibitors. Only the last connector in a for-

bidden scenario is an inhibitor; all other situations and connectors of the forbidden

scenario are just normal elements of UD. The TSSD in Figure 4.47a is thus inter-

nally represented as Figure 4.47b. Only for convenience, situations from which all

paths to a
⊙• node lead across an inhibitor, and the connectors leading to them,

are displayed as forbidden elements to make the undesirable parts of the scenario

stand out.8

Given a situation U , UI ∈ inhibit(U), and UT as the last node in prefix(UI) that is

not part of the forbidden scenario, or λD, we add UT to predF (U), i.e. a connector

as shown in Figure 4.47c.9

A

B

D

C

E

D

a. TSSD

A

B

D

C

E

D

b. Internal representation

A

B

D

C

E

D

c. Encoding

Figure 4.47: Encoding a forbidden scenario

This expansion eliminates the need for a special treatment of TSSDs that only con-

sist of forbidden elements. While the intended semantics are not obvious from

Figure 4.48a respectively 4.48b, the expanded version in Figure 4.48c directly en-

sures that the TSSD succeeds unless an A is found.

SDD restriction. In order to verify the requirement imposed on a situation U with

SDD SU by a U connector, we need to derive an SDD S′
U that verifies for a valid

candidate set C generated by SU whether it continues to be valid in the present

state. S′
U can be obtained by eliminating the quantifiers for the free variables in

8In the – rather theoretical – case that we explicitly want to specify a forbidden scenario within a

forbidden scenario, the tool will automatically turn the coloring off so that the actual inhibitors can

be identified.
9As an optimization to accelerate matching, we can also choose to add a trivially true situation

U1 as padding between UI and U as part of predI(U) and transfer all guards and constraints between

UI and U to the connector between UI and U1, as this will speed up evaluation of Equation 4.18.
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A

a. TSSD

A

b. Internal representation

A

c. Encoding

Figure 4.48: Encoding of a forbidden property

free(SU ) from SU .

We introduce S|V as notation for the SDD S′ that removes the quantifiers for all

variables V ∈ V from S but is otherwise identical to S. We define

S|V := S′ | NS′ = NS ∧ free(S′) = free(S) \ V (4.4)

S|S′ := S|V | V = free(S′) (4.5)

S|C := S|V | V = {V | ∃ξ | (n, ξ) ∈ C : ξ(V ) = ⊥}. (4.6)

We can then define S′
U := SU |SU

.

Guards. The specified guards and strictness conditions are stored in a function

guard : UD × UD → ℘(UD), mapping pairs of situations to a set of situations

that are forbidden between them. A required situation U with SDD SU is treated

as a forbidden situation with guard SU , the negation of the SDD, so that all guards

represent forbidden situations. No guard for a pair of situations may thus match

for any state between the observations for the pair (but may match in conjunction

with the second observation).

U connectors are reduced to F connectors with an additional guard ensuring that

the generated candidate set has not ceased to satisfy the structural constraint. We

require that

∀U ′ ∈ predU (U) : ∃UG ∈ guard(U ′, U) : SUG
:= SU ′ |SU′ ). (4.7)

Time constraints. The time constraints are encoded by a function

delay : ℘(UD)× ℘(UD) → I, (4.8)

where I is the set of all intervals [l, u], (l, u], [l, u), and (l, u) with l ∈ IR and

u ∈ IR ∪ ∞. delay assigns an interval constraining the permitted delay between

the earliest element of the first and latest element of the second set. The function is

total: Unless defined otherwise, delay returns [0,∞). For simple time constraints,

the two sets simply contain just a single element. We further require that

∀U ′ ∈ predI(U) : delay({U ′}, {U}) = [0, 0], (4.9)

thus reducing the I connectors to F connectors with time constraints.
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Observations. Provided a TSSD D and a path π, we define an observation o as

a tuple (U, C, t) of a situation U , a candidate set C, and a time t. Note that this

implies an extension of the codomain of the binding functions ξ contained in C
from the nodes and edges of a single graph G to the nodes and edges of all type

conformant graphs G[TY ] for Y ’s type graph TY . We use OD(π) to denote the set

of all possible observations for D and π with

OD(π) := {o = (U, C, t) | C ∈ [[SU ]]π
−1[t]}. (4.10)

Traces. A trace ρ ∈ OD(π)∗ is a valid sequence of observations. The question

whether or not a sequence of observations is valid is central to the semantics of

TSSDs and discussed in the next subsection. Note the difference between a path

and a trace: as the scenario defined by a TSSD can occur multiple times during the

same run of the system, i.e. in the same path, there can be many traces within a

single path.

In an analogous manner to our definitions for a path π, we define ρ[i] as the ith

observation, T (ρ, i) := t |∃U, C : (U, C, t) = ρ[i] as the time of the ith observation,

ρ−1[t] as the last observation before time t, and l(ρ) as the length of ρ. The set of all

observations on a trace ρ is denoted by Oρ. We write ρ[U ] := (o = (Uo, Co, to) ∈
Oρ | Uo = U) for the unique observation for U in ρ.

For observations on a trace ρ, we define

pred(o) := {o′ | o = (U, C, t) ∈ Oρ∧
o′ = (U ′, C′, t′) ∈ Oρ ∧ U ′ ∈ pred(U)} (4.11)

and, analogously, prefix(o), succ(o), and suffix(o).

For two traces ρ and ρ′, we write ρ � ρ′ if ρ is a prefix of ρ′.

Trace trees. The set of traces generated by a TSSD D for path π is stored in a trace
tree R. Each tree node represents an observation, every path from the root node

represents a trace. The tree is simply built from the set by reusing common prefixes;

all set operations are thus defined for the tree. The set of all observations in R is

denoted by OR. If there are multiple initial nodes due to a parallel composition,

the trace tree becomes a trace forest.

The trace tree is a tree rather than a DAG because when the two branches of a TSSD

reunite in an ∧-join, we combine the traces for the branches into a new single trace.

For that purpose, we define the notion of observation compatible traces. We define

ρ1 � ρ2 := (∃ρ′ :ρ′ � ρ1 ∧ ρ′ � ρ2 ∧ ∀(U1, C1, t1) ∈ Oρ1 \ Oρ′ ,

(U2, C2, t2) ∈ Oρ2 \ Oρ′ : U1 = U2), (4.12)
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i.e. the two traces have a common prefix and afterwards contain no competing

observations for the same situation. We then define the combination of two com-

patible traces

ρ1 ∪ ρ2 := ρ′ | Oρ′ = Oρ1 ∪ Oρ2∧
∀i | 0 < i < l(ρ′) : T (ρ′, i− 1) ≤ T (ρ′, i). (4.13)

Comparing SDDs and TSSDs, an observation can be likened to a binding, whereas

a trace corresponds to a witness. There is a small difference, however — a witness

is a binding that has arrived at a node, whereas a trace ends at the last situation that

has already been matched. Trace trees play the role of result sets.

4.3.2 Situation Semantics

We can now proceed to define the semantics [[U ]]πt of a situation U at time t as the

trace tree generated by U until t, containing the valid traces. We can exploit the

fact that a TSSD is a directed acyclic graph to recursively derive this trace tree. A

situation’s semantics depend on the semantics of all previous situations that – both

structurally and temporally – came before it, i.e. ∀t′, U ′ : t′ < t, U ′ ∈ prefix(U).

As we use a continuous notion of time, there would be infinitely many points in

time t′ for which we would have to compute the semantics. However, as the states

generated by a GTS are discrete and there is only a finite number, namely i, of

states that have occured before π[i], we can restrict our attention to a finite number

of observation points in time. We therefore define [[U ]]πt := [[U ]]πT−1(π,t), i.e. the

semantics for the last state of π reached before t.

We thus have to define the semantics of [[U ]]πi . They are computed using a four step

process: (1) We need to identify the sets of traces that satisfy all preconditions for

U (structural recursion), (2) we need to match U for the candidate sets generated

by those traces and compute a result set, (3) we need verify which elements of the

result set represent original observations for state π[i] (temporal recursion), and (4)

we need to generate the appropriate extended traces using the new observations.

We now present each of these steps in detail.

Computing valid prefixes. Determining which sets of traces satisfy all precondi-

tions is probably the most complex step, as most syntactical features (connectors,

guards, time constraints, forbidden scenarios) need to be treated at this point.

In the following, we treat D, U , π, i, and t = T (π, i) as given. In order to be able

to match U , there first of all needs to be a set of compatible traces containing a

valid trace for every situation U ′ ∈ pred(U) \ inhibit(U). We combine each such

set into a new combined trace. The unfiltered set (I) of these combined traces is
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then

RU,i
(I) := {ρ | (ρ =

⋃
ρj∈R′

ρj) ∧ R′ ∈ {{ρ1, . . . , ρm} | (∀ 1 ≤ j, k ≤ m : ρj � ρk)

∧ ∀U ′ ∈ pred(U) \ inhibit(U) : (∃j : ρj ∈ [[U ′]]πi )}}. (4.14)

We first validate the time constraints of the TSSD. We consider the observations

in the traces ρ, plus the observation (U, ∅, t) serving as a placeholder for any new

observation we might make for U at time t to ensure that time constraints for

the current situations are also considered. We then require that the maximal time

difference between any two subsets of this observation set observe the bounds set

by the delay function. The time-filtered set (II) is then

RU,i
(II) := {ρ | ρ ∈ RU,i

(I) ∧ ∀O1,O2 ∈ ℘(Oρ ∪ (U, ∅, t)) : Δt ∈ delay(UO1 ,UO2)|
Δt := |max({t|(U, C, t)∈O2})−min({t|(U, C, t)∈O1})|}. (4.15)

We then check whether the traces respect all guards. First of all, we need to check

whether any guards involving U and any other Uo in the trace have matched before

π[i]:

RU,i
(IIIa) := {ρ | ρ ∈ RU,i

(II)∧
∀(Uo, Co, to) ∈ Oρ : (∀UG ∈ guard(Uo, U) :

(∀j | T−1(π, to) ≤ j < i : [[SUG
]]π[j]
λUG

[Co] = ∅))}. (4.16)

The guards for any two observations in the trace that are on the same branch have

already been verified earlier, before the second observation was generated. How-

ever, we need to check the guards for observations that originate from separate

branches that are joined at U , because these have not previously been verified. The

guard-filtered set (III) is then

RU,i
(III) := {ρ | ρ ∈ RU,i

(IIIa) ∧ ∀(U1, C1, t1), (U2, C2, t2) ∈ Oρ |
(suffix(U1) ∩ suffix(U2) ∩ prefix(U) = ∅) :

(∀UG ∈ guard(U1, U2) : (∀j | T−1(π,min(t1, t2)) ≤ j

< T−1(π,max(t1, t2)) : [[SUG
]]π[j]
λUG

[Co] = ∅))}. (4.17)

Finally, we have check for fulfilled forbidden scenarios that could inhibit new ob-

servations. If inhibit(U) = ∅, we define Û := U but set inhibit(Û) := ∅ and

computeRÛ ,i
(III) using Equations 4.14–4.17. As we are not excluding the inhibitors

this time, the traces in RÛ ,i
(III) also need to extend the forbidden scenarios. If a
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trace is valid for Û , it therefore contains a forbidden trace. The corresponding

trace inRU,i
(III), which is the trace for Û without the observations for the forbidden

scenarios, is then not valid for U . The inhibition-filtered set (IV) is then

RU,i
(IV ) := {ρ | ρ ∈ RU,i

(III) ∧ �ρ̂ ∈ RÛ ,i
(III) : Oρ ⊆ Oρ̂}. (4.18)

We then have RU,i
λ := RU,i

(IV ) as the set of valid prefixes, i.e. traces for which an

observation for U and the ith state at time t might exist that is a valid extension of

the trace.

Generating candidate sets. We now need to compute the observations for U in the

ith state. Each valid prefix ρ ∈ RU,i
λ defines a candidate set that an observation for

U could extend. If U has only one predecessor, this candidate set is just the candi-

date set of the latest observation in ρ. However, if U is at an ∧-join, there are multi-

ple observations with multiple candidate sets that we need to combine. As we have

already ensured that the traces for the different branches are compatible, we already

know that these candidate sets do not contain conflicting bindings. If the situations

in the branches contain only existential quantifiers, there is also just one candidate

set as there is just one way to combine the different extensions of each originial

witness into a new witness (if {(a1), (a2)} was extended into {(a1, b3), (a2, b4)}
and {(a1, c8), (a2, c9)}, the only combination is {{(a1, b3, c8), (a2, b4, c9)}}). If

there are universal quantifiers, the result is a set of several alternatives that merely

need to contain each required witness at least once in some combination (if {(a1)}
was extended into {(a1, d1), (a1, d2), (a1, d3)} and {(a1, e1), (a1, e2)}, one possi-

bility would be {(a1, d1, e2), (a1, d2, e1), (a1, d3, e1)}). We define the set of these

combinations as

combine+(ρ, U) := {C | ∀Ui ∈ pred(U) : ((Ui, Ci, ti) = ρ[Ui] ∧
(∀(n, ξ) ∈ C : ∃(ni, ξi) ∈ Ci : ξi ≤ ξ) ∧
(∀(ni, ξi) ∈ Ci : ∃(n, ξ) ∈ C : ξi ≤ ξ))}. (4.19)

This definition includes some unnecessarily restrictive candidate sets (e.g.

{(a1, d1, e2), (a1, d2, e1), (a1, d3, e1), (a1, d3, e2} containing a fourth required

witness where three would be sufficient). We thus remove those candidate sets

for which there already is a less restrictive equivalent and define

combine(ρ, U) := {C | C ∈ combine+(ρ, U)∧
�C′ ∈ combine+(ρ, U) : C′ ⊂ C. (4.20)

We can now define the set of valid input candidate sets as

AU,i
λ :=

⋃
ρ∈RU,i

λ

combine(ρ, U). (4.21)
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We can then evaluate the SDD SU and have

AU
i := {C | C ∈ [[SU ]]π[i]

AU,i
λ

} (4.22)

as the result set containing those candidate sets that match U in π[i].

Generating observations. Classic events (like messages) occur at a particular

time. Situations, however, may have a duration that spans multiple states, which

means that the same instance of a situation could be observed multiple times. If

we kept generating observations, this would defeat the purpose of time constraints,

in most cases. We therefore use the convention that we generate only one obser-

vation per distinct match and do so at the earliest possible time. Two matches are

either distinct if they are characterized by different candidate sets or if they first

occurred at different times — i.e., if a situation (e.g., constraining some attribute)

matches, does not match, and matches again, we generate a second observation.

We therefore require that a candidate set matches U in π[i], but did not match U in

π[i− 1]:
AU+

i := AU
i \ AU

i−1. (4.23)

In state π[0], there can be no previous matches; we therefore define AU−1 := ∅.

The generated observations are then

OU+
i := {(U, C, t) | C ∈ AU+

i }. (4.24)

Generating traces. We finally need to extend the prefix traces inRU,i
λ with the ap-

propriate new observations. As we treated all prefix traces together in the previous

step (which was required to be able to properly compare AU
i and AU

i−1), we now

need to pick those observations for each prefix trace which actually evolved from

it. We thus have

RU+
i := {ρ.o | ρ ∈ RU,i

λ ∧ o = (U, C+, t) ∈ OU+
i ∧

∃C ∈ combine(ρ, U) : C � C+} (4.25)

as the new traces generated by U in π[i]. As the semantics of the situation, we can

now define the trace tree of all traces generated by U until T (π, i), which is

[[U ]]πi := [[U ]]πi−1 ∪RU+
i . (4.26)

We define [[U ]]π−1 := ∅ so that [[U ]]π0 is properly computed.

Special situations. Initial nodes match once and immediately and thus do not

require complex computations. As the semantics of an initial node λD of D, we

define

[[λD]]πi := ((λD, {{((1), τ)}}, 0)) (4.27)
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for any i.

For a
⊙• node Ω, the result set AΩ

i computed in step (2) simply contains all can-

didate sets AΩ,i
λ generated in step (1).

⊙• nodes are special because they match as

late as possible, which means that they maintain no history and discard previously

generated traces as no longer pertinent. This entails two significant changes: The

set of generated candidate sets is not filtered for
⊙• nodes so that

AΩ+
i := AΩ

i , (4.28)

and the semantics of a
⊙• node are defined as the freshly generated traces only:

[[Ω]]πi := RΩ+
i . (4.29)

Unlike the semantics [[U ]]πi of regular situations, the semantics [[Ω]]πi of a
⊙• node

can thus shrink, e.g. because a forbidden scenario is completed or a guard is vio-

lated.

The trivially true situation is similar to
⊙• nodes in that the result set contains

all candidate sets in A1,i
λ and that the result set is not filtered against the result

set for the previous state, i.e. the trivially true matches in every state where its

preconditions are fulfilled. For the trivially false situation, [[0]]πi is always empty.

4.3.3 Scenario Semantics

TSSD semantics. In SDDs, witnesses from the same candidate set can end up at

different leaf nodes. In TSSDs, there is no analogon to a candidate set, and the

validity of each trace can be decided independently.

As the semantics of a TSSD D, we can therefore simply define the union of the

trace trees for all situations of D, i.e.

[[D]]πi :=
⋃

U∈UD

[[U ]]πi . (4.30)

Completeness and uniqueness. The semantics of a TSSD is defined for arbitrary

finite prefixes of any given path π. As the diagram only contains a finite number of

nodes and thus the suffix of any initial node is finite (suffix(λD) ⊂ UD), and as the

number of states in the considered prefix of π is, by definition, finite, the recursive

definition of the semantics always has a natural end point, both in the structural (at

some λD) and temporal (at state i = 0) domain.

The semantics is also unambiguous and unique as there are no non-deterministic

choices in the definition. All possible alternative observations are explicitly con-

sidered and represented by separate traces.



128 4 Temporal Properties

Root traces. Whenever we extend a trace with an observation for a situation in

triggersD, i.e. a situation that completes a trigger block of D, we add the extended

trace to the set of root tracesRrt[D]
i . We can thus define the set of root traces as

Rrt[D]
i :=

⋃
U∈triggersD

[[U ]]πi .

TSSD satisfaction. We can now finally define satisfaction of a TSSD. A TSSD D
is satisfied by a path π at time t, i.e., we have eval(D,π, t) = true if

∀ρrt ∈ Rrt[D]
i : (∃ρs ∈ [[D]]πi : (ρrt � ρs ∧ ρ−1

s [t] = (Us, Cs, ts) ∧ Us ∈ termD)),

i.e. for each trace in the set of root traces, there needs to be an extension reaching a⊙• node. This definition covers both existential and universal TSSDs. For existen-

tial TSSDs, there will only be one root trace – the root of the trace tree, generated

by the initial pseudostate. For universal TSSDs, there will be a root trace for ev-

ery time a trigger block was completed. Additionally, a checkpoint can double the

number of root traces by turning one extension of each original root trace into an

extended root trace.

In our evaluation, we are pessimistic: When the satisfaction condition is not ful-

filled, we set eval(D,π, t) = false, not ⊥, even if there are traces that still might

be completed to satisfaction at a later time.

Negation. The negation D of a TSSD D can be computed by inverting (1) all

triggers, (2) all inhibitors, and (3) conjunction and disjunction.

In order to deal with triggers (1), two preliminary expansion steps are necessary:

We have to add a new
⊙• node, connect it directly to an initial node, and add

an inhibitor from each situation completing a trigger to pointing it. This makes

the semantics that the scenario is satisfied if no trigger is ever completed explicit.

We also need to add all trivial trigger blocks, which consist of (a) trigger blocks

containing only a single situation for which all U ′ ∈ succ(U) are
⊙• nodes and

(b) trigger blocks containing all elements of a forbidden scenario except those that

actually have outgoing inhibitors, to the diagram. We can then simply invert the

triggers by placing each consecutive sequence that is not inside a trigger block into

a trigger block and deleting the existing triggers.

Inverting the inhibitors (2) is effected by simply turning all regular connectors lead-

ing to
⊙• nodes into inhibitors and all inhibitors into regular connectors. Note that

this has to be performed on the internal, expanded representation.

To achieve (3), all
⊙• nodes of the diagram are joined into a single node. All ∧ join

points are then split up by duplicating the suffix, creating new alternatives.
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This algorithm for negation does not produce the minimal TSSD for expressing

the negated property. The negated scenario contains gratuituous trivial triggers,⊙• nodes connected to an intial state by an inhibitor which can never match, and

tautological statements, which can be removed. Figure 4.49 iterates through an

example.

Negation can also trivially be expressed by placing the whole scenario into a single

forbidden scenario node.

Example. We now present a small example that illustrates the idea of traces, trace

trees, and root traces. Figure 4.50 specifies the property that any process that is

ready, i.e. not waiting for any external resources, must eventually be running until

it is terminated. To keep the candidate sets simple, there are no quantors in the

SDDs — the bindings generated by the trigger block never change, while the state

is encoded as an attribute.

Figure 4.51 shows the states of a path representing a run of the system that we

would like to analyze. As is apparent in state π[5], both processes enventually

terminate. Figure 4.52 presents the trace trees Rt generated by D when evaluated

on π. The nodes represent observations, a trace is a path from the tree root to an

observation. The root traces are marked by a bold border around the triggering

observation. Their border is drawn dotted and orange while their satisfaction is

undecided, solid green once they are satisfied, and dashed red once they have failed.

In the tree at t = 30, we also use a dashed red border to indicate that this particular

trace will never be extended again because the UNTIL requirement was violated as

pa had stopped running. Eventually, an extension of each root trace reaches the
⊙•

node so that the TSSD is satisfied.

4.3.4 Subscenario Semantics

Even though they play a similar role, subscenarios are conceptually simpler than

ESDDs. The three main differences are that trace trees are propagated in a linear

fashion through the subscenario, that TSSDs already have a mechanism for moving

candidate sets between TSSDs, and that termination is not a practical issue.

Invoking a subscenario. As a subscenario may export generated bindings, its in-

vocation in the host scenario D occurs in a specific λ situation UD.10 A subscenario

B can basically be seen as a macro that adds its situations between UD and its pre-

decessors pred(UD). The subscenario’s λ situation UB than extends the witnesses

in the candidate sets AUB ,i
λ arriving at UB with bindings for the roles of B. These

10Note that this has nothing to do with D’s intial pseudostate λD; UD is a λ-type situation.
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A B C D

a. D, the original TSSD

A B C D

b. D′, the equivalent expansion of D

A
B

C D

c. D′, the negation of D′

A B

C D

d. D, the equivalent reduction of D′, negation

of D

A
B

C D

e. D
′
, the equivalent expansion of D

A B
C D

f. D
′
, the negation of D

′

A B C D

g. D, reduction of D
′
, negation of D, equiva-

lent to D

Figure 4.49: Double negation of a universal TSSD
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RDY: Process Ready

 p 

- state = ready

p: Process

RUN: Process Running

- state = running

p: Process

TRM: Process Terminated

- state = terminated

p: Process

    Process Termination

Figure 4.50: Example 1: The TSSD D

- state = waiting

pa : Process

- state = waiting

pb : Process

a. π at t = 0

- state = ready

pa : Process

- state = waiting

pb : Process

b. π at t =
10

- state = running

pa : Process

- state = ready

pb : Process

c. π at t =
20

- state = waiting

pa : Process

- state = running

pb : Process

d. π at t =
30

- state = running

pa : Process

- state = term.

pb : Process

e. π at t =
40

- state = term.

pa : Process

- state = term.

pb : Process

f. π at t = 50

Figure 4.51: Example 1: The path π

bindings are generated from the existing bindings in accordance with the specifica-

tion of UD using a rebinding function �B (from var(D) to var(B)), which works

exactly like the rebinding function of the λ node of an ESDD. Likewise, subsce-

nario parameters are added to the bindings and can be used in constraints, e.g., as

attribute guards in SDDs or as time constraints.

Returning from a subscenario. The extended candidate sets then progress

through B normally. When they complete the subscenario and reach UD, another

rebinding function �D (from var(B) to var(D)) is used to extend the witnesses

in the candidate sets in AUD,i
λ with the new bindings that are exported from the

subscenario. �D also erases the bindings for all variables v ∈ var(B) from the

candidate sets, i.e. resets them to ⊥.

Subscenario instances. When a subscenario is inserted into a TSSD, its situations

and roles are qualified with a unique identifier so that multiple instances of the

same subscenario are distinct. Qualifying the situations is necessary to ensure that

there are no multiple observations for the same situation in the same trace, and to

avoid attempts to rebind variables. Qualifying the roles allows a subscenario B to

contain recursive references to itself. Recursive definitions can, of course, not be

expanded statically, but need to be expanded on the fly as required.

Loops, which represent the most frequent application of recursive subscenarios,

can be expressed as tail recursions. The
⊙• node of an iteration is merged with the

first situation of the next iteration, while the initial node of a subsequent iteration



132 4 Temporal Properties

t = 0

INIT

1 [p ]

a. t = 0

t = 10

RDY

1 [p pa]

t = 0

INIT

1 [p ]

b. t = 10

t = 10

RDY

1 [p pa]

t = 0

INIT

1 [p ]

t = 20

RDY

1 [p pb]

t = 20

RUN

1 [p pa]

c. t = 20

t = 10

RDY

1 [p pa]

t = 0

INIT

1 [p ]

t = 20

RDY

1 [p pb]

t = 20

RUN

1 [p pa]

t = 30

RUN

1 [p pb]

t = 30

! RUN

1 [p pa]

d. t = 30

t = 10

RDY

1 [p pa]

t = 0

INIT

1 [p ]

t = 20

RDY

1 [p pb]

t = 20

RUN

1 [p pa]

t = 30

RUN

1 [p pb]

t = 30

! RUN

1 [p pa]

t = 40

RUN

1 [p pa]

t = 40

TRM

1 [p pb]

t = 40

OK

1 [p pb]

e. t = 40

t = 10

RDY

1 [p pa]

t = 0

INIT

1 [p ]

t = 20

RDY

1 [p pb]

t = 20

RUN

1 [p pa]

t = 30

RUN

1 [p pb]

t = 30

! RUN

1 [p pa]

t = 40

RUN

1 [p pa]

t = 40

TRM

1 [p pb]

t = 40

OK

1 [p pb]

t = 50

TRM

1 [p pa]

t = 50

OK

1 [p pa]

f. t = 50

Figure 4.52: Example 1: The trace trees generated by D over π
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is merged with the last situation of the previous iteration. As a consequence, the

guards on both corresponding connectors need to hold between the two situations.

Bounded loops can be realized by explicitly unrolling them (for sufficiently small

bounds) or by means of parameters that are decreased during each iteration and

used as guards in the appropriate situations.

Completeness and uniqueness. On any finite prefix of a given path π, the seman-

tics of a TSSD containing invocations of non-recursive subscenarios are uniquely

defined as the number of contained situations is guaranteed to be finite. The se-

mantics of a TSSD containing an invocation of a recursively defined subscenario

are equally uniquely defined if the subscenario encodes any kind of progress, i.e.,

if the definition requires a state change (e.g. because two of its situations are mu-

tually exclusive) or includes a time constraint with a non-zero lower bound, as the

subscenario can only be observed on a finite prefix of π a finite number of times.

In order to ensure that the semantics definition still holds for a subscenario defi-

nition that contains no such constraints and could thus endlessly match the same

state (e.g. by defining only a single non-λ situation), we have to automatically

insert such a non-zero time constraint between iterations that will prevent the re-

cursive definition of the semantics from evaluating the same state more than once.

This does not reduce the expressiveness of the notation, as the specified property

is actually structural if no progress is required and can therefore be specified us-

ing a single situation containing an invocation of a recursive ESDD, for which we

guarantee termination.

While such a semantics could be defined, we do not define a semantics for infinite

paths on which a recursive subscenario loops forever as the corresponding situa-

tions are actually observed over and over infinitely often.11 As a trace is currently

only considered valid if it has reached a
⊙• node, only finitely many iterations of

any subscenario are possible in a valid trace. As a consequence, a well-formed

subscenario needs to contain at least one branch without a recursive invocation to

ensure that termination is at all possible.

4.3.5 Expressiveness

In Section 2.2.5, we have discussed how temporal properties of graph transforma-

tion systems can be specified based on CTL∗. The discussion in [16] proves that

it is possible to define a sound propositional calculus whose elementary proposi-

tions are based on graph patterns. However, in order to discuss the expressiveness

of TSSDs, we additionally need a calculus that includes a concept of time and, in

particular, intervals.

11Note, however, that it is nonetheless possible to specify that some finite scenario should occur

infinitely often using appropriate triggers.
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Linear Temporal Logic (LTL). Linear Temporal Logic (LTL) is a subset of CTL∗

that is restricted to a single path quantor, an implied initial A. Given a GTS Y , a set

of graph patterns P and a set of possible bindings XP [G[TY ]], with pattern P ∈ P ,

binding ξ ∈ XP [G[TY ]], and G ∈ G[TY ], we define LTL for GTS as follows:

• A graph predicate P |ξ � G and the constants true and false are valid LTL

formulas,
• if ϕ is a valid LTL formula, so is ¬ϕ,
• for two valid LTL formulas ϕ and ϕ′, ϕ ∧ ϕ′ is a valid LTL formula,
• for a valid LTL formula ϕ, X ϕ is a valid LTL formula,
• for two valid LTL formulas ϕ and ϕ′, ϕ U ϕ′ is a valid LTL formula.
• For convenience, the derived operators F, G, and R are also provided so

that for two valid LTL formulas ϕ and ϕ′, F ϕ, G ϕ, and ϕ R ϕ′ are valid

LTL formulas.

The semantics of LTL for GTS are then defined as:

• Y, G |= ϕ iff ϕ is true.
• Y, G |= ϕ iff ϕ is a graph predicate and P |ξ � G.
• Y, G |= ¬ϕ iff Y, G |= ϕ.
• Y, G |= ϕ ∨ ψ iff Y, G |= ϕ ∨ Y, G |= ϕ.
• Y, G |= ϕ ∧ ψ iff Y, G |= ϕ ∧ Y, G |= ϕ.
• Y, π |= ϕ iff G = π[0] ∧ Y, G |= ϕ.
• Y, π |= ¬ϕ iff Y, G |= ϕ.
• Y, π |= ϕ ∨ ψ iff Y, π |= ϕ ∨ Y, π |= ϕ.
• Y, π |= ϕ ∧ ψ iff Y, π |= ϕ ∧ Y, π |= ϕ.
• Y, π |= Xϕ iff Y, π1 |= ϕ.
• Y, π |= ϕUψ iff ∃k | k ≥ 0 : Y, πk |= ψ ∧ ∀j | 0 ≤ j < k : Y, πk |= ϕ
• Y, π |= Fϕ iff Y, π |= trueUϕ.
• Y, π |= Gϕ iff ¬Y, π |= F¬ϕ.
• Y, π |= ϕRψ iff ¬Y, π |= ¬ϕU¬ψ.

TSSDs and LTL. We can now compare the expressiveness of LTL for GTS and

TSSDs. 12

Theorem 4.1 Timed Story Scenario Diagrams over a given path π are at least as
expressive as Linear Temporal Logic for GTS over π.

12As various theorems proving that any LTL formula can be expressed by first-order logic exist,

we could conjecture based on Section 3.3.6 that any LTL formula could already be expressed by

a single SDD. However, this is not possible because an SDD is limited to a single graph G as its

argument, i.e. all nodes are implicitly evaluated on the same graph. To overcome this, we could, for

each state graph of a path, add an attribute indicating the corresponding state to each node and join

the state graphs into a single graph. However, such an abuse of notation would forfeit all claims to

intuitiveness.
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Proof. We again prove this constructively by showing that for any LTL formula,

there exists an equivalent TSSD. This construction is mostly trivial, as there is

an equivalent for each of the fundamental concepts of LTL in TSSDs, with the

exception of the X operator. As TSSDs are designed for use with a dense time

model, time constraints are typically of the much greater practical relevance then a

concept of a next state.

• P |ξ � G: As any graph predicate can be encoded by means of an SDD,

P |ξ � G, true, or false can be encoded as a situation containing the corre-

sponding SDD.

• ¬ϕ: If ϕ is encoded by D, ¬ϕ is encoded by D.

• ϕ ∧ ϕ′: If ϕ1 and ϕ2 are encoded by D1 and D2, ϕ1 ∧ ϕ2 can be written

using two scenario situations containing D1 and D2 that are connected to the

same
⊙• node.

• Xϕ: As the temporal operators are expressed as connectors in TSSDs, there

are no unary operators. However, if ϕ is encoded by D, Xϕ can be expressed

by connecting a strictly previous trivially true situation that serves as the

first operand to D using an eventually connector (which yields the classic

encoding of X as false U ϕ).

• ϕ U ϕ′: If ϕ1 and ϕ2 are encoded by D1 and D2, ϕ1 U ϕ2 can be written

using two scenario situations containing D1 and D2 that are connected by an

until connector.

• Fϕ, Gϕ, and ϕRϕ′: Using the above defintions, the derived operators can

be defined in the same way as for LTL. F ϕ does not need to be derived, as

it is supported directly by means of the eventually connector. G ϕ can also

be written as � ϕ ��
⊙• . �

Metric Temporal Logic (MTL). An extension of LTL that allows time constraints

in the form of intervals for temoral operators is MTL (cf. [29],[2]). All tempo-

ral operators in MTL are defined in terms of the U operator. The X operator is

subsumed by the F operator as the concept of a next state is not meaningful on

dense time domains. MTL is very expressive and, e.g., allows encoding the halting

problem. Satisfiability of MTL formula is undecidable.

TSSDs and MTL. Any valid MTL formula can be written as an equivalent TSSD:

Theorem 4.2 Timed Story Scenario Diagrams over a given path π are at least as
expressive as Metric Temporal Logic for GTS over π.

Proof. As any LTL formula can be written as a TSSD, we only need to show

that the extensions introduced by MTL, namely time constraints on operators, can
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be expressed using TSSDs. As TSSDs directly support time constraints on the

temporal connectors that encode the temporal operators, this is trivial. �

Time Point Temporal Logic (TPTL). Another extension of LTL with time con-

straints is TPTL (cf. [3]). TPTL introduces the concept of clocks which, in a given

state, can be defined (and set to 0) or compared with the a given interval. TPTL is

strictly more expressive than MTL (cf. [7]).

TSSDs and TPTL. Any valid TPTL formula can be written as an equivalent TSSD:

Theorem 4.3 Timed Story Scenario Diagrams over a given path π are at least as
expressive as Time Point Temporal Logic for GTS over π.

Proof. Again, we only need to show that the extensions introduced by TPTL can

be expressed using TSSDs. TPTL can only compare times for temporally ordered

states, which corresponds to situations on the same branch in a TSSD. Defining a

clock in a state can then be represented by attaching one end of a constraint edge to

the corresponding situation, while a reference to the clock in a subsequent situation

is encoded by attaching the other end of the constraint edge to it. The interval for

comparison is than placed on the constraint edge as a time constraint. �

Conclusion. We have shown that TSSDs are very expressive in the temporal do-

main. They also meet the criteria for a temporal logic for real-time system specifi-

cation proposed in [5]: They are based on first-order logic, prohibit quantification

on time variables, have a metric for time, use the interval as the fundamental time

entity, support a time model that is based on relative time (though absolute time is

also available as the time relative to the initial node), and provide a limited number

of basic operators that can be composed into reusable specialized building blocks

by means of subscenarios.

Finally, with their integrated support for structural properties and their quantifica-

ton, TSSDs go beyond the scope of other existing temporal logics in this respect.

4.4 Property Detectors

As for structural properties, we would like to derive a property detector for mon-

itoring the specified temporal properties. Again, we have the option of using a

model checker or generating source code.
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4.4.1 GROOVE

While implementing runtime monitors supporting the full TSSD semantics is pos-

sible using GROOVE, the size of the resulting GTS is significant and prohibitive

for a manual prototype implementation. In particular, as GROOVE neither supports

time nor attributes which could have been used to encode time directly, auxiliary

constructs would have been needed to cover these aspects.

Runtime monitor prototype. In principle, verifying temporal properties is re-

markably similar to verifying structural properties with ESDDs at the operational

level. Based on our prototype SDD detector, we can implement an approximation

of the intended semantics. It is only an approximation because we do not generate

the entire result set for each situation, but only one candidate set. We also exclude

time constraints.

Even though we do not deal with time explicitly, we have to introduce a marker

representing a time step or state that inhibits all SDD and TSSD rules in order to

give the system the opportunity to actually evolve between subsequent matching

attempts of the evaluation rules. For each state of the system, we start evaluation

at the initial pseudostate of the TSSD and progress down the diagram. As we only

match one alternative, the prototype only works properly for existential TSSDs.

The only root trace marker is thus placed at the initial node. Whenever a valid

candidate set has been propagated down to a situation’s SDD root marker by the

corresponding SDD detector, an observation is generated. New root markers are

then created for all enabled subsequent situations (connected by edges labeled with

F, I, and U representing connectors) and the candidate set is copied to the new root

markers. The detector signals satisfaction as soon as a trace reaches a termination

node; the result is then propagated back down the F, I, or U edges to the root trace

marker, and all root markers are deleted.

Figure 4.53 shows the evaluation for the scenario in Figure 4.1 at the time when

the evaluation has just reached the success node.

Verification. Apart from the technical limitations of the prototype, the underlying

approach is only suited for monitoring the conformance of a single execution path

of the system, but not for model checking an entire GTS with respect to a spec-

ification. As GROOVE was designed to perform CTL model checking (cf. [35])

with a focus on reachability, there is no inherent support for the verification of path

formulas as encoded by TSSDs. In [38], a different approach is chosen: GTS are

mapped to the input format of a standard LTL model checker, which might provide

a viable option for verifying diagrams that are restricted to the subset of the TSSD

syntax that can be mapped to LTL.

Graph model checking is faced with the general problem that the reachable state
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Figure 4.53: Register Shuttle: Scenario matched

space of a GTS is typically infinite as new elements can be added to the system

by transitions. While there are approaches for verifying certain invariants of such

infinite systems (e.g. [4]), there is no general solution. In any case, the inclusion of

structural aspects will always greatly increase the size of the state space and thus

limit the size of problems that can be treated efficiently with current technology.

The support for dense time domains also increases the size of the state space. In-

stead of a single path consisting of a countable number of discrete states as for

runtime monitoring, verification needs to account for infinitely many possible dif-

ferent timings for the same sequence of states.

On the other hand, the ability to specify real time constraints also helps to limit

the size of the problem. When a TSSD is evaluated on an infinite path, an en-

abled situation may keep generating inifinitely many new alternative observations.

Meanwhile, a subsequent situation connected by means of an eventually connec-

tor may not yet been observed – and may never be observed at all. A similar

problem occurs when the termination condition of a recursive subscenario is never

observed, as the subscenario continues to generate new observations for each iter-

ation. Only if the scenario is bounded, i.e. there is a time bound constraining the

eventually connector respectively the subscenario, the question becomes decidable

using finite resources.

4.4.2 Code Generation

In order to generate proper code for TSSD runtime monitoring, we need to build

on the extended version of the SDD detector that actually generates result sets. We
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have therefore not yet implemented a TSSD detector in code. When building such

a detector, we can closely build on the formal semantics, but need to introduce

some optimizations in order to make actual runtime monitoring feasible.

Evaluation frequency. The first question is when to evaluate the TSSD. In prac-

tice, we can only observe the system in intervals Δt, which can lead to many un-

necessary computations if Δt is too small, and to missing intermediate states if Δt
is too large. The optimal sampling rate will depend on the available computational

resources and the specific application. However, we can only ever approximate the

formal semantics, which do not face such problems.

The ideal solution would be if some type of property change mechanism was avail-

able that could trigger the evaluation every time the system state changes. We

would then be able to exactly reproduce the formal semantics, evaluating the TSSD

exactly once per distinct system state.

Evaluation order. The semantics of a situation were defined recursively. In an

implementation, we would, for each step, start evaluation at the initial pseudostate

and progress down the TSSD graph in a depth first traversal. There would be one

shared trace tree that is extended by all situations in turn. The situation matches

AU
i would be stored, used to compute the new matches in the next step, and then

overwritten by the then current matches, i.e. we would keep a match history that is

one step deep.

Dead traces. In the formal semantics, we always consider all previous traces as

potential prefixes. This is obviously inefficient in practice, as there are many traces

that cannot possibly be extended ever again. If in a trace ρ ending in observation

ρ[U ] at time t, there is some observation ρ[U ′] and some situation U ′′ ∈ suffix(U)
so that the upper bound of delay({U ′}, {U ′′} is less than the time elapsed between

ρ[U ′] and t, any extension of this trace leading towards U ′′ is already dead as it

can never be completed. If there is no alternative to passing through U ′′, the whole

trace is dead. Likewise, once a guard or an until-requirement has been violated, a

trace can never be extended again. A trace reaching a strict situation also dies for all

situations between the strict situation U and the last branching point in prefix(U),
as no alternative observation of the strict situation is permitted.

We therefore mark traces as dead as soon as we have determined that they can

never be extended again. As there may be alternative possible extensions, we need

to mark the traces as dead in the next required situation, not its current situation.

Only if a trace at situation U is dead in all situations in succ(U), we can mark it as

dead in U .

Dead trace subtrees. If a trace ρ is dead and all its extensions ρ′  ρ are dead
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as well, the whole trace subtree is dead. If the subtree for a root trace is dead, the

TSSD can never be successfully completed, and we can stop the evaluation and

signal failure.

Time constraints. It is not feasible to check the time constraints on any two sub-

sets of a trace’s observations. For one, it is not necessary to check constraints for

linear sequences of observations that are all in the past, as those constraints already

need to hold. Furthermore, we will restrict evaluation to those constraints that are

actually defined.

Branches. In the formal semantics, we merge concurrent branches first before

determining whether they constitute a valid prefix. In practice, we can greatly

reduce the number of potential prefixes by checking whether each branch by itself

is already dead. In the presence of a first of / last of time constraint, we can run a

preliminary check to see whether the branch by itself already violates the specified

upper bound (though not the lower bound).

Guards. Checking guards should be performed last, as it is computationally more

expensive than validating time constraints, which already may eliminate a large

number of traces. As we mark a trace as dead as soon as a guard is violated, we

can assume that the guards for every live trace hold for all previous states and

thus only have to evaluate them for the current state, plus all guards spanning two

branches that are merged in the current situation.

Root traces. Once an extension of a root trace has reached a
⊙• pseudostate and

there are no guards or forbidden scenarios that might still invalidate the trace, the

whole subtree can be marked as dead, as additional observations will no longer

affect the satisfaction condition for the trace.

Outlook. Using these optimizations, evaluation of TSSDs will still be computa-

tionally expensive (considering that matching each situation by itself can already

require extensive computations, even though most contained SDDs will be rather

simple), but should be feasible in practice — if not in real-time for production sys-

tems, then at least for verification and run-time monitoring of simulated prototypes.
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5 Specification of Structural and Temporal Properties

After defining the syntax and semantics of our visual languages for the descrip-

tion of structural and temporal properties, we now focus on their usefulness for

encoding informally specified requirements. While we have already provided sev-

eral examples when introducing the syntax, we discuss the systematic process of

deriving such specifications from informal textual requirements in the following

section.

5.1 Specification Pattern System

The Property Specification Pattern System presented in [12] and extended in [13]

was proposed to address the problem of making formal specification techniques

and thus formal verification accessible to practitioners, as even experts face prob-

lems encoding moderately complex real-life properties using temporal logics such

as LTL. The intention behind the Specification Pattern System is to allow users to

construct more complex properties from basic, assuredly correct building blocks

by providing generic specification patterns encoding certain elementary properties

(existence, absence, universality, bounded existence, precedence (chains), and re-

sponse (chains)), each specialized for a set of different scopes (globally, before R,

after Q, between Q and R, after Q until R).

In the following, we demonstrate how the patterns of the Specification Pattern Sys-

tem can be encoded using Timed Story Scenario Diagrams. A convenient quality

of TSSDs is that they allow us to define the scopes and the properties separately as

orthogonal concepts and then simply plug the appropriate property into the desired

scope.

Scopes. In Table 5.1, we define the scopes as TSSDs. The original textual specifi-

cation of the patterns is somewhat ambiguous – ϕ exists before R could be inter-

preted in two ways: ϕ needs to exist before (possibly) R is observed (putting the

emphasis on exists ϕ), or ϕ needs to exist whenever R is observed afterwards (em-

phasizing before R). The latter is the interpretation that is encoded by the provided

LTL pattern. The scopes before, after, between, and until are thus encoded using

trigger blocks where ϕ is the triggered scenario. As the table shows, all definitions

except the definition of until are very compact. The last case requires an additional⊙• node because TSSDs provide no direct encoding of for the operator Ũ (weak

until) so that the property that R may occur or not needs to be encoded explicitly.

This omission is intentional as we believe that, in the context of a scenario notation,

it is more intuitive to explicitly specify that the scenario might be successfully com-

pleted in an earlier situation using the standard syntax for completion (
⊙• ) instead

of introducing a dedicated syntax for a Ũ connector.
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Scopes

globally
�

before R

R

�

after Q
Q �

between Q and R

Q R

�

after Q until R

Q

R

�

Table 5.1: The scopes encoded as TSSDs (for a property ϕ)
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Properties

Existence exists P
P

Absence no P
P

Universality always P
P

Bounded Existence exist at most 2 P
P P

Precedence S precedes P
S

P

Precendence Chain 1 → 2 P precedes S, T
P

S T

Precedence Chain 2 → 1 S, T precedes P
T

P

S

Response S responds to P
P S

Response Chain 1 → 2 S, T responds to P
P S T

Response Chain 2 → 1 P responds to S, T
S T P

Table 5.2: The properties ϕ encoded as TSSDs)
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Properties. In Table 5.2, we define the ten different properties listed by the Spec-

ification Pattern System. Inbound connectors link to possible preconditions, out-

bound connectors encode success and lead to possible postconditions. Existence,

absence, and universality are trivially encoded using the standard syntax for re-

quired and forbidden scenarios. Bounded existence is encoded by enumerating the

acceptable sequences, i.e. 0, 1, or 2 occurences. As the number of occurences is

relevant, all situations are strict so that no additional occurences are permitted be-

tween the observations of a trace. Again, the weak progress (no occurence of P
is also acceptable) is encoded by additional outbound connectors. When it comes

to encoding response and precedence chains, the notation excels – quite unsurpris-

ingly, as this is the use case for which it was designed. Triggers are designed for

expressing response (and its dual, precedence), while sequences such as S, T are

the basic concept in TSSDs.

Derivation. These property definitions can now simply be substituted for ϕ by

completing them with an intial node as their precondition and
⊙• nodes as their

postcondition(s). The following tables list the trivial form of each combined pat-

tern, whose size and complexity is already at an acceptable level, in the center col-

umn in order to prove that this very systematic and mechanistic approach already

yields useable results. In the right column, we also provide a simplified version

that can be derived using two simple transformations that basically correspond to

the elimination of redundant parentheses in mathematical expressions: A scenario

situation with a single
⊙• node can be eliminated by connecting each situation in-

side the scope whose predecessor is the scope’s intial node to each of the scope’s

predecessor nodes, and by connecting each situation inside the scope whose suc-

cessor is the scope’s
⊙• node to each of the scope’s successor nodes. Secondly,

if both the surrounding scenario and the scenario situation contain trigger blocks,

these blocks are merged.

Existence. Table 5.3 contains the encodings for existence.

Absence. Table 5.4 contains the encodings for absence.

Universality. Table 5.5 contains the encodings for universality. The scenario sit-

uation in the before case cannot be eliminated (unless the past triggered scenario

is rewritten using the less elegant internal encoding) as the immediately connector

is required to indicate that P should hold from the very beginning, but there is no

predecessor of the scenario situation to connect it to (connecting it to the scenario’s

initial node would turn P from a triggered past scenario into a precondition of R).

Bounded existence. Table 5.6 contains the encodings for bounded existence. As

we actually want to constrain the total number of occurences of P , the strict situ-

ations of the property need to be globally strict so that the interval before the first
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Existence
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Table 5.3: Existence, trivial and simplified patterns

Absence
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Table 5.4: Absence, trivial and simplified patterns
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Universality
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Table 5.5: Universality, trivial and simplified patterns

and after the last occurence is also constrained. Eliminating the scenario situations

is not trivial in this case as they contain alternative
⊙• nodes. For the subsequent

scenario, this corresponds to an ∨-join, which is not directly supported by the syn-

tax. The only trivial way to eliminate the scenario situation is thus to replicate the

suffix. There is an alternative, however. While we generally believe that writing

positive scenarios (what should be) comes more naturally than writing forbidden

scenarios (what should not be) for most properties, it is rather straight-forward

to encode ’at most two instances’ as ’not three or more instances’. Using this ap-

proach (which again employs a very direct encoding of what should not be, namely

three times P in a row), we can obtain more compact encodings. Another option

that does not eliminate the scenario situation but may greatly reduce the size of the

diagram, in particular for bounds larger than 2, is to place the bounded property

inside a bounded loop with constraints [0..2]. Table 5.7 lists the corresponding

encodings.

Precedence. Table 5.8 contains the encodings for precedence. Table 5.9 contains

the encodings for precedence (1,2), i.e. a sequence S, T preceded by P . Table 5.10

contains the encodings for precedence (2,1), i.e. P preceded by a sequence S,T .

Response. Table 5.11 contains the encodings for response, i.e. S responds to P .

Table 5.12 contains the encodings for response (1,2), i.e. the sequence S, T re-

sponds to P . Table 5.13 contains the encodings for response (2,1), i.e. P responds

to the sequence S,T .
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Bounded Existence
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Table 5.6: Bounded Existence, trivial and simplified patterns
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Bounded Existence (Loop)
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Table 5.7: Bounded Existence expressed using a loop
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Precedence
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Table 5.8: Precedence, trivial and simplified patterns
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Precedence (1,2)
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Table 5.9: Precedence (1,2), trivial and simplified patterns
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Precedence (2,1)
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Table 5.10: Precedence (2,1), trivial and simplified patterns
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Response
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Table 5.11: Response, trivial and simplified patterns
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Response (1,2)
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Table 5.12: Response (1,2), trivial and simplified patterns

Response (2,1)
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Table 5.13: Response (2,1), trivial and simplified patterns
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Conclusion. Note how for response and precedence, the simplified forms are quite

natural expressions of the original requirements. Disregarding the Specification

Pattern System’s distinction between scopes and properties, e.g. P responds to

S, T after Q actually translates to ’after the sequence Q,S, T , there needs to follow

P ’, which is exactly what the TSSD says. In general, the resulting diagrams are

compact and can be interpreted in a straight-forward manner without the context of

the original specification pattern. TSSDs thus avoid the problem faced by the LTL

that a correct formula may be derived using the appropriate patterns, but is still

very hard to parse for any reader that does not know how it was originally derived.

While TSSDs provide a very suitable way of encoding the patterns of the Specifi-

cation Pattern System, we believe that TSSDs would not greatly benefit from using

the Specification Pattern System in order to derive them. This is not due to any flaw

or lack of usefullness in the pattern system itself, but to the fact that the intuitions

it provides to designers are already directly integrated into the TSSD language.
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5.2 Deriving Properties from Textual Requirements

We now discuss how structural and temporal property specifications can be derived

from informal textual requirements in a systematic manner. As our case study, we

use an elevator system. The application is in part inspired by an example property

given in [13], but extends the system from a single elevator to a large building

with an arbitrary number of floors and elevators. The following requirements are

provided for the system:

1. Safety: Whenever an elevator is not at a floor, its doors may not be open.

2. Responsive: Every request for an elevator is assigned to exactly one elevator

by the central dispatcher.

3. Progress: An elevator may not stay between floors for more than 30 seconds.

4. Progress: If requests have been assigned to an elevator, it may not be idle

for more than 22 seconds.

5. Purposeful: An elevator may only move towards some assigned request.

6. Fairness: Concurrent requests must be fulfilled within 300 seconds of each

other.

7. Fairness: When a request for a specific floor has been assigned to an eleva-

tor, it may only arrive at this floor at most twice before opening its doors.

Using standard OOA techniques, we extract the class diagram in Figure 5.1 from

the requirements.

contains

is at

for

has

0..1 0..n

1

n

0..1

0..1

next

n

n

manages

assigned
0..n

0..1

1

- number : integer

Floor

- doors : {open|closed}

Elevator

Building

n
Request

Dispatcher

Figure 5.1: Elevator class diagram

(1) As the safety property (1) is a structural requirement, we encode it as an SDD.

In order to derive the SDD structure, we decompose the textual requirement into the

semantically relevant blocks, which we delimit with vertical lines in the following.

The first requirement then becomes |For every elevator | not at a floor | the doors
must not be open |, which can be directly translated into SDD nodes | ∀ elevator | ∃
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at a floor | • door = open |. After switching the connectors where negation is re-

quired, this results in the SDD in Figure 5.2.

Doors safe:  e

0 1

 f

1

then 

then

then else

else

e : Elevator

e : Elevator

f : Floor is at

- doors = open

e : Elevator

Figure 5.2: Property (1) encoded as an SDD

(2) Property (2) is not purely structural, unless requests are created with an as-

signment. We therefore interpret it as |Every time | a request is (created) | it
then | afterwards | is assigned to one elevator | exactly |. We first encode the two

structural terms ∃ request (Figure 5.3a), and ∃ elevator assigned to request with

a cardinality of [1..1] (Figure 5.3b).|Every time | ... | then | becomes a trigger

block around ∃ request, while | afterwards | becomes an eventually connector and

| exactly | makes the situation globally strict (Figure 5.3c), resulting in the TSSD

in Figure 5.4.

 r r : Request

a. Request created

 e r : Request

e : Elevator assigned

1 0
then
[1..1]

else

b. Request assigned

Request created Request assigned

c. Scenario Structure

Figure 5.3: Deriving Property (2)

(3) Property (3) is encoded using the same schema (Figures 5.5a and 5.5b), but

additionally introduces a time constraint [0..30] between the two situations (Figure
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 e r : Request

e : Elevator assigned

1 0
then 
[1..1]

else

 r r : Request

Figure 5.4: Property (2) encoded as a TSSD

5.5d). Combined with a guard (Figure 5.5c) enforcing requirement (1), this yields

Figure 5.6.

then

0
then else

1

 f e : Elevator

f : Floor is at

 e e : Elevator

a. Elevator not at floor

 f e : Elevator

f : Floor is at

b. Elevator at floor

- doors = open

e : Elevator

c. Doors open

Elevator
not at floor

Elevator
at floor

Doors open

(0..30]

d. Scenario Structure

Figure 5.5: Deriving Property (3)

(0..30]

 f e : Elevator

f : Floor is at

- doors = open

e : Elevator

then

0
then else 

1

 f e : Elevator

f : Floor is at

 e e : Elevator

Figure 5.6: Property (3) encoded as a TSSD

(4) For property (4), we interpret idleness as |Every time | an elevator with assigned

requests | is at a floor | then | it needs to move within [0..22] |. Whether an elevator is
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requested (Figure 5.8a) is determined by an ESDD (Figure 5.7). The trigger block

includes the first two situations (Figure 5.8d), i.e. that there are requests and that

the elevator is at a floor (Figure 5.8c). It has moved if it is not at a floor anymore

(Figure 5.8b). Combined, this yields the TSSD in Figure 5.9.

requested:  to, agent

 b, r

to : Floor agent : Elevator

agent : Elevatorr : Request

b : Buildingcontains

for has

then

assigned

to : Floor

Figure 5.7: Was the elevator requested on the floor?

 e, f

e : Elevatorf : Floor

requested
to agent

a. Elevator requested

e : Elevator

k : Floor is at

0
then else

1
b. Elevator not at floor

 k e : Elevator

k : Floor is at

c. Elevator at floor

Elevator 
requested

(0..22] Elevator 
not at floor

Elevator 
at floor

d. Scenario Structure

Figure 5.8: Deriving Property (4)

 e, f

e : Elevatorf : Floor

requested
to agent

 k e : Elevator

k : Floor is at

e : Elevator

k : Floor is at

0
then else 

1
(0..22]

Figure 5.9: Property (4) encoded as a TSSD

(5) The difficulty in encoding property (5) is in detecting the direction of the move-

ment from a sequence of states in the trigger, which is achieved by the sequence

elevator at floor (Figure 5.11a), eventually elevator at next floor for the up-direction

(Figure 5.11b) or down direction (Figure 5.11d). These two branches make up the

trigger of the scenario (Figure 5.11f). When the trigger is completed, it immedi-

ately needs to be acceptable for the elevator to move in the given direction justified
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by a request. The two situations in Figure 5.11c and 5.11e only reference the

ESDD definitions (Figure 5.10a and 5.10b), which recursively determine whether

a request exists by traversing the floors in the indicated direction until they find a

request or fail. Together, this results in the TSSD in Figure 5.12.

move up e, f

then then 

move up
e f

n : Floor

next

f : Floor e : Elevator

e : Elevator

f : Floor

e : Elevatorf : Floor

to agent
requested  n

a. Upwards

move down e, f

then then 

move down
e f

n : Floor
next

f : Floor e : Elevator

e : Elevator

f : Floor

e : Elevatorf : Floor

to agent
requested  n

b. Downwards

Figure 5.10: ESDD definitions: is there a request in the indicated direction

 e, f e : Elevator

f : Floor is at

a. Elevator at floor

 h e : Elevator

h : Floor

is atf : Floor

next

b. Elevator at higher floor

move up
e f

h : Floore : Elevator

c. Purposeful to move up

 l e : Elevator

l : Floor

is atf : Floor

next

d. Elevator at lower floor

move down
e f

l : Floore : Elevator

e. Purposeful to move down

Elevator 
at floor

Elevator at 
lower floor

Elevator at 
higher floor

Moving down 
is purposeful

Moving up
is purposeful

f. Scenario Structure

Figure 5.11: Deriving Property (5)
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 e, f e : Elevator

f : Floor is at

 h e : Elevator

h : Floor

is atf : Floor

next

 l e : Elevator

l : Floor

is atf : Floor

next

move down
e f

l : Floore : Elevator

move up
e f

h : Floore : Elevator

Figure 5.12: Property (5) encoded as a TSSD

(6) Property (6) becomes |Every time | two concurrent requests exist (Figure

5.13a) | then | each | is eventually | completed (Figure 5.13b and 5.13c) |within 300

seconds of the other |. After the trigger block, the | each | introduces two ∨-

branches. The |within | time constraint results in a constraint edge across the two

branches (Figure 5.13d). Combined, this yields the TSSD in Figure 5.14.

 e, a, b

e : Elevatora : Floor

requested

to agent

requested

b : Floor
toagent

a. Concurrent requests a and b

a : Floor is at

- doors = open

e : Elevator

b. Completed request a

b : Floor is at

- doors = open

e : Elevator

c. Completed request b

Concurrent 
Requests A, B

Request A 
fulfilled

Request B 
fulfilled

[0..300]

d. Scenario Structure

Figure 5.13: Deriving Property (6)

[0..300]

 e, a, b

e : Elevatora : Floor

requested

to agent

requested

b : Floor
toagent

a : Floor is at

- doors = open

e : Elevator

b : Floor is at

- doors = open

e : Elevator

Figure 5.14: Property (6) encoded as a TSSD

(7) Property (7) is the famous example that results in a rather unwieldy LTL for-

mula (cf. [13]). The exact meaning of that formula can be expressed using the
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bounded-existence-between pattern from Table 5.7. However, we believe that a

slightly stronger interpretation of the requirement better reflects what is expected of

an elevator, namely that it eventually opens its door where it was requested (i.e. as

a strong instead of a weak until). We therefore encode the requirement as |Every

time | an elevator is requested for a floor (Figure 5.15a) | then | it eventually | is at
the floor (Figure 5.15b) | for the first time | and eventually | opens its doors (Figure

5.15c) | or | eventually | is at the floor | for the second time | and eventually | opens

its doors |. It is the explicit requirement | for the first/second time | that turns being

at the floor into a strict situation (Figure 5.15d). The case that | is at the floor | never

matches is omitted here as it is a necessary precondition for opening the doors at

the floor. The corresponding SDDs clearly indicate this property, thus illustrating

the fact that the ability to integrate the modeling of structural properties into a sce-

nario definition helps to make the dependencies between the different properties

explicit. The first structural property is again encoded by the ESDD in Figure 5.7.

Property (7) is then encoded by the TSSD in Figure 5.16.

 e, f

e : Elevatorf : Floor

requested
to agent

a. The elevator was requested

at floor f

 _ e : Elevator

f : Floor is at

b. The elevator is at

floor f

- doors = open

e : Elevator

f : Floor

is at

c. The elevator’s doors are

open at floor f

Elevator at 
floor f

Elevator at 
floor f

Request for 
elevator at floor f

Doors open 
at floor f

Doors open 
at floor f

d. Scenario Structure

Figure 5.15: Deriving Property (7)

- doors = open

e : Elevator

f : Floor

is at _ e : Elevator

f : Floor is at

 e, f

e : Elevatorf : Floor

requested
to agent

- doors = open

e : Elevator

f : Floor

is at _ e : Elevator

f : Floor is at

Figure 5.16: Property (7) encoded as a TSSD



162 6 Conclusion and Future Work

6 Conclusion and Future Work

We have presented a visual approach for the specification of temporal and structural

properties. We have shown how UML object diagrams as a widely accepted type

of visual diagram can be extended for the description of complex structural condi-

tions. The resulting Story Decision Diagrams have then further been employed in

the context of timed scenarios as a natural way of specifying the temporal order and

time constraints for a sequence of observations. The approach thus combines the

specification of detailed structural properties and requirements concerning struc-

tural dynamics using a clear and intuitive visual notation.

The presented formalization provides the required solid foundation for the sound-

ness of the approach. The prototypical operational realization as property detectors

that detect satisfaction of the specified properties based on the GTS model checker

GROOVE show that the approach even works, in principle, under the restricted

conditions of a model checking engine.

As future work, we will develop full tool support for the approach. We are currently

working on plugins for Fujaba4Eclipse that allow using SDDs as an alternative

to Story Patterns and specifying TSSDs. Based on these specifications, we will

then allow the export of SDDs and TSSDs into GROOVE and the generation of

optimized run-time monitors in Java and C++. Additionally, we plan to look into

the extension of our symbolic invariant checking approach [4], as the underlying

BDDs should provide support for many of the powerful features of SDDs.
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A Alternative ESDD Semantics Definition

In this appendix, we present a different though equivalent approach to defining the

semantics of recursive ESDDs. The approach differs from the definition in Section

3.3.4 in the way the fixed point is computed: The ESDD is evaluated only once

and the fixed point is computed on the derived result set, as opposed to computing

a new result set in every step. While the alternative definition is more complex and

may consume more memory during computation, it should take significantly less

time to compute, which prompted its inclusion in this appendix.

We compute the fixed point in two steps: First, we compute the potential result set

of F using function fapply, which is an extension of the regular apply function.

In a second step, we then use the fixed point operator −�� to derive the actual result

set of F , defining its semantics.

In order to compute the potential result set, an existential node αF quantifying all

roles of the ESDD F is added before the λ node λF . The existential node will then

generate all possible combinations of bindings for the roles and pass them on as

input to the λ node.

The modified propagation functions fapplyn will not try to evaluate recursive

ESDD invocations, but basically considers both possible results of the invocation at

the same time. If for ξζ , the two extended bindings ξ′a and ξ′b have been generated

in the existential node n containing an invocation of the recursive ESDD F , we

would send two candidate sets containing {(n′, ξ′a), F (ξ′a)} and {(n′, ξ′b), F (ξ′b)}
down the then connector and a candidate set {(n′′, ξζ), F (ξ′a), F (ξ′b)} down the

else connector, where ζ is a forbidden witness, i.e., eval(ζ) := ¬eval(ζ). The

additional witnesses ensure that each of the candidate sets will only satisfy the

diagram if the ESDD invocation has the appropriate result.

Recursive and non-recursive ESDDs can be distinguished by means of their invo-

cation graphs. We accordingly divide Fn into the non-recursive ESDDs FNR
n and

the recursive ESDDs FR
n with Fn := FNR

n ! FR
n .

For each node n where FR
n = ∅, fapplyn is identical to applyn. For nodes where

FR
n = ∅, the modified propagation function fapplyn performs the following steps

on each selected witness ζ:

1. The possible extensions of the binding ξζ are computed as above, but con-

sidering only the non-recursive ESDD invocations:



171

X 1
ζ := {ξ′ζ | Pn[ξ′ζ ] ≤ G ∧ ∀F ∈ FNR

n : {F ((n, ξ′ζ))} � [[F ]]G ∧
ξζ ≤ ξ′ζ ∧ ∀v : ξ′ζ(v) = ξζ(v) ⇒ v ∈ free(n, ξζ)}. (A.1)

Differently from above, X (e)
ζ is never empty:

X (e)
ζ := {ξζ}. (A.2)

2. We now compute two sets of corresponding witnesses, one for the new bind-

ings travelling down the then connector and one for the original binding,

travelling down the else connector. Cardinalities are not allowed on nodes

containing recursive invocations as they can lead to paradoxical statements

and thus do not need to be considered. We then have:

W(t)
ζ :={(n′, ξ′) | n′ ∈ then(n) ∧ ξ′ ∈ X (t)

ζ (A.3)

W(e)
ζ :={(n′, ξ′) | n′ ∈ else(n) ∧ ξ′ ∈ X (e)

ζ . (A.4)

3. The result set A′ is updated, adding additional required and forbidden wit-

nesses representing the result of the recursive ESDD invocation. Again, we

write F (ζ) and F (ζ) as abbreviations for required and forbidden witnesses

at F ’s λ node. Note that FR
n will typically only have one element, greatly

simplifying many of the following expressions.

The following definitions are declarative, as opposed to the constructive def-

initions in Equations 3.10 and 3.11. We therefore additionally require the

generated result sets to be minimal, i.e.

∀C ∈ A� : (�C′ ∈ A� : C ⊆ C′). (A.5)

For the then branch of existential nodes, we generate a set of candidate sets,

each containing one of the generated extensions and all its required witnesses

representing successful recursive invocations:

A(t)
∃ := {C′ | ∃C ∈ A′ : ζ ∈ C ∧ (∀ζη ∈ C \ ζ : ζη ∈ C′) ∧

(∃ζ(t) ∈ W(t)
ζ : (ζ(t) ∈ C′ ∧ ∀F ∈ FR

n : F (ζ(t)) ∈ C′))}.
(A.6)

For the then branch of universal nodes, we also generate a set of alternative

candidate sets, as each generated extension must either be in the extended
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candidate set along with all its required invocation witnesses or may ’ex-

cuse itself’ by means of a forbidden witness representing a failed invocation.

However, to justify following the then branch, there has to be at least one

valid candidate. We have:

A(t)
∀ := {C′ | ∃C ∈ A′ : ζ ∈ C ∧ (∀ζη ∈ C \ ζ : ζη ∈ C′) ∧

(∃ζ(t) ∈ W(t)
ζ : (ζ(t) ∈ C′)) ∧

(∀ζ(t) ∈ W(t)
ζ : (ζ(t) ∈ C′ ∧ ∀F ∈ FR

n : F (ζ(t)) ∈ C′) ∨
(ζ(t) /∈ C′ ∧ ∃F ∈ FR

n : F (ζ(t)) ∈ C′))}. (A.7)

For the else branch, we extend a candidate set with the single witness from

W(e)
ζ and a forbidden invocation witness for every extended binding inW(t)

ζ :

A(e) := {C′ | ∃C ∈ A′ : ζ ∈ C ∧ (∀ζη ∈ C \ ζ : ζη ∈ C′) ∧ (∃ζ(e) ∈ W(e)
ζ :

(ζ(e) ∈ C′ ∧ ∀ζ(t) ∈ W(t)
ζ : ∃F ∈ FR

n : F (ζ(t)) ∈ C′))}.
(A.8)

(A.9)

Finally, those candidate sets not containing ζ are left unchanged:

Aη := {C′ | ∃C ∈ A′ : (ζ /∈ C ∧ C′ = C)}. (A.10)

If n is existential, we then have

A′
∀ := A(t)

∀ ∪ A(e) ∪ Aη. (A.11)

If n is universal, we have

A′
∃ := A(t)

∃ ∪ A(e) ∪ Aη. (A.12)

The result set for the auxiliary existential node αF is then computed in the usual

fashion using Equations 3.13 – 3.16. We define [[f (0)]]G := [[αF ]]G{{(fF ,τ)}} as the

first appoximation of the semantics [[F ]]G of F . The computed result set contains

candidate sets that are final except for invocation witnesses Fi(ζ) or Fi(ζ), whose

truth value is ⊥.
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For all ESDDs Fi that are part of the same invocation graph, we then apply the

fixed point operator −�� to [[f (0)
i ]]G. We keep applying it, in turn, to compute

[[f (j+1)]]G := −��([[f (j)
i ]]G) (A.13)

until we have −��([[f (j)
i ]]G) = [[f (j)

i ]]G for all of the involved ESDDs Fi. We have

then computed a fixed point [[fi]]G which allows us to define the ESDD semantics

as

[[Fi]]G := {C | C ∈ [[fi]]G ∧ eval(C)}. (A.14)

We define two versions of−��, the least fixed point operator−��μ and the greatest fixed

point operator −��ν . The standard semantics of SDDs are defined by means of −��μ,

i.e. using least fixed points.

The least fixed point operator −��μ works by eliminating those invocation witnesses

which evolve into valid final candidate sets from the candidate sets in [[f (j)
i ]]G. As

more and more undefined invocation witnesses disappear, the number of valid final

candidate sets making up [[Fi]]G increases until no more such invocation witnesses

are left. We define:

−��μ([[f (j)
i ]]G) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⋃
C∈[[f

(j)
i ]]G

C\F (ζ)

∣∣∣∣∣
∃F (ζ) ∈ W

[[f
(j)
i ]]G

:

∃C ∈ [[f (j)
i ]]G : {F (ζ)} � C ∧ eval(C)

⋃
C∈[[f

(j)
i ]]G

C|F (ζ) /∈ C
∣∣∣∣∣
∃F (ζ) ∈ W

[[f
(j)
i ]]G

:

∀C ∈ [[f (j)
i ]]G|{F (ζ)} � C :¬eval(C)

[[f (j)
i ]]G | otherwise.

(A.15)

The greatest fixed point operator −��ν , on the other hand, initially assumes that all

invocation witnesses evaluate to true and then successively eliminates those can-

didate sets that are definitely invalid from [[f (j)
i ]]G.

To keep the definition of −��ν compact, we define the truth value of an invocation

witness inW
[[f

(j)
i ]]G

as

eval(F (ζ)) :=

{
false | �C ∈ [[f (j)

i ]]G : {F (ζ)} � C
true | otherwise,

(A.16)



174 A Alternative ESDD Semantics Definition

i.e. an invocation witness is only false if there are no candidate sets left that

evolved from it. −��ν then eliminates all candidate sets that contain at least one

invalid witness:

−��ν([[f
(j)
i ]]G) :=

{
[[f (j)

i ]]G \ C | ∃C ∈ [[f (j)
i ]]G : ∃ζ ∈ C : ¬eval(ζ)

[[f (j)
i ]]G | otherwise.

(A.17)

As all involved sets (especially the result sets [[f (j)
i ]]G) are finite and the fixed point

operators only change the result sets by eliminating, never adding, witnesses and

candidate sets, they can only be applied to [[f (j)
i ]]G finitely often before a fixed

point is reached. We can therefore guarantee that the fixed points exist and that

their computation terminates.
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B Enhanced Story Patterns (eSP)

While Story Decision Diagrams are expressive and can be interpreted based on a

small number of basic concepts, they are not particularly compact. In the follow-

ing, we define enhanced Story Patterns (eSP) which trade in expressiveness for

compactness while still remedying the main issues plaguing Story Patterns. Inter-

nally, eSPs can be translated to equivalent SDDs which provide them with their

formal semantics.

eSPs are visually closer to normal Story Patterns and should be immediately under-

standable to anyone familiar with Story Patterns. As additional syntax, they merely

introduce several types of UML 2.0 boxes. While they are able to express negation

of substructures, universal quantification, and alternatives, they lack the ability to

compose expressions into more complex expressions.

Negation. eSPs allow the negation of complex structures. Figure B.1 provides

an example. Negation boxes should completely supersede crossed out elements as

the means of expressing negation. Among other advantages, this will finally make

negative edge labels readable.

Implication. eSPs provide implication or conditional requirements. This allows

expressing that a set of elements should be present whenever another set of ele-

ments is present. Figures B.2 and B.3 provide two examples. The intended re-

quirement that the conditional elements be present whenever the trigger is present

implies universal quantification – while it would be possible to introduce a box

expressing existential quantification, this would add no additional expressiveness.

Alternatives. eSPs provide a way to express alternative requirements, which is

perhaps the least intuitive of the extensions. Of all the sets of elements inside the ∨
boxes, at least one needs to be present. Figure B.4 provides an example. It would

also be feasible to define an XOR box.

ESDDs. eSPs allow invoking ESDDs. The ESDDs then have to be defined else-

where, using standard SDD syntax. Figure B.5 provides an example.

Transformations. eSPs allow using standard Story Pattern syntax for specifying

transformations. Figure B.6 provides an example.
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s1 : Shuttle s2 : Shuttle

c1 : ConvoyPattern

follower leader

a. eSP - Negation

 s1, s2

c1

s1 : Shuttle s2 : Shuttle

0
s1 : Shuttle s2 : Shuttle

c1 : ConvoyPattern

follower leader

0 1

then else

elsethen

b. Equivalent SDD

Figure B.1: No pattern exists between the shuttles

s1 : Shuttle

t1 : Track

c1 : Controller

on
supervises

r1 : RegistrationPattern

registryentry

a. eSP - Implication

Registered:  s1, t1

s1 : Shuttle t1 : Track
on

then

 c1, rp1

s1 : Shuttlec1 : Controller

rp1: RegistrationPattern

registry entry

1 0
then else

b. Equivalent SDD

Figure B.2: A pattern exists for each shuttle

s1 : Shuttle

t1 : Track

c1 : Controller

on
supervises

r1 : RegistrationPattern

registryentry

a. eSP - Implication

1 0

Registered:  c1, s1, t1

s1 : Shuttle

t1 : Track

on

c1 : Controller

supervises

 rp1

s1 : Shuttlec1 : Controller

rp1: RegistrationPattern

registry entry

then 

then else

b. Equivalent SDD

Figure B.3: A pattern exists between the shuttle and each controller
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s1 : Shuttle

p1: PassengerModulec1 : CargoModule

cg1 : Cargo

loads

configuredWithconfiguredWith

a. eSP - Disjunction

 s1 s1 : Shuttle

 p1 c1, cg1

c1 : CargoModule

cg1 : Cargo

configuredWith

loads p1: PassengerModule

configuredWith

s1 : Shuttle s1 : Shuttle

1 0
then else

1 0
then else

then then 

else

b. Equivalent SDD

Figure B.4: A shuttle is either a cargo or passenger shuttle

t2 : Trackt1 : Track

reachable
tofrom

a. eSP - Invoking an

ESDD

 t1, t2

t2 : Trackt1 : Track

reachable

1 0
then else

tofrom

b. Equivalent SDD

Figure B.5: Connected tracks

<<destroy>>
on

<<create>>
 on

<<destroy>>
next

s1 : Shuttle

t2 : Trackt1 : Track
successor

a. eSP - Transformation

 s1, t1, t2

 ~ _ ; + _

on next

s1 : Shuttle

t2 : Trackt1 : Track
successor

then 

~ on ++ on~ next

s1 : Shuttle

t2 : Trackt1 : Track
successor

0
else

b. Equivalent SDD

Figure B.6: Moving a shuttle
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C Syntax quick reference

Figure C.1 provides a compact overview of the most important elements of the

TSSD syntax.

1

SDD

Label

Label

TSSDLabel

0

S  NP

[Label:]      

A B cs

ac iv

A

B

C

C

A

B

B1

B2 C2

C1

A B

[l..u]

A B
[l..u]

R
A

B

X

A B

A B A B A B

Situation
Definition

Situation 
Reference

Termination
Node

Initial
Node

Scenario
Situation

Subscenario
Reference / Definition

Trivially
TRUE

Trivially
FALSE

Forbidden
Scenario

X A

EVENTUALLY
Connector

UNTIL
Connector

IMMEDIATELY
Connector

Strictly
previous

Strictly
next

Strict
Situation

G

Globally Strict
Situation

OR - Split AND - Join First Of Last Of

Trigger Block: sequence A, B triggers
antecedent, intervening and consequent triggered scenarios

Forbidden Guard
(Ordered)

Required Guard
(Partial order)

Time Contraint
(Ordered)

Time Contraint
(Partial order)

Parallel
Composition

Figure C.1: TSSD Syntax quick reference


