
Events and Constraints:
A Graphical Editor for Capturing Logic Requirements of Programs

Margaret H. Smith
Bell Laboratories

Rm. 2C-407
600 Mountain Avenue
Murray Hill, NJ 07974

mhs@research.bell-labs.com

Gerard J. Holzmann
Bell Laboratories

Rm. 2C-522
600 Mountain Avenue
Murray Hill, NJ 07974

gerard@research.bell-labs.com

Kousha Etessami
Bell Laboratories

Rm. 2C-472
600 Mountain Avenue
Murray Hill, NJ 07974

kousha@research.bell-labs.com
Abstract
A logic model checker can be an effective tool for
debugging software applications. A stumbling block can be
that model checking tools expect the user to supply a
formal statement of the correctness requirements to be
checked in temporal logic. Expressing non-trivial
requirements in logic, however, can be challenging.

To address this problem, we developed a graphical tool, the
TimeLine Editor, that simplifies the formalization of certain
kinds of requirements. A series of events and required
system responses are placed on a timeline. The user
converts the timeline specification automatically into a test
automaton, that can be used directly by a logic model
checker, or for traditional test-sequence generation.

We have used the TimeLine Editor to verify the call
processing code for Lucent’s PathStar Access Server
against the TelCordia LSSGR standards. The TimeLine
editor simplified the task of converting a large body of
English prose requirements into formal, yet readable, logic
requirements.

Keywords
model checking, software verification, testing,

requirements.

1. Introduction

Logic model checkers are gaining in popularity as tools
for debugging concurrent, distributed software. While they
cannot completely replace traditional testing tools, for
certain types of software bugs, namely control logic and
communications errors, model checkers are unequalled in
their speed and coverage [5].

The basic steps involved in the application of a model
checker to a software application, shown in Figure 1 are:

1. obtain a model of the source code.

2. obtain the requirements to be checked.

3. perform model checking step (automated).

4. evaluate any error traces that the model checker gen-
erates, determine if the error is in the code or the
requirements, and repeat the process if needed.

Defining the requirements to be checked (step 2.) can be
an optional step. In the absence of specific requirements to
be checked, a model checker will check for some generally
desirable program requirements such as: absence of
deadlock, livelock, and unreachable code. However, if one
wants to check specific requirements, or in other words,
check that the source code satisfies application-specific
requirements, then some requirements must be defined.

Source
Code

Model

Requirements

Model
CheckingFix

Source

New
Version of

Source
Code

Error No Error

Passed
Test

Figure 1. Model checking process

The telephone system is by its very nature a distributed
application, and therefore telephony software is a natural
candidate for model checking applications. These systems
typically support hundreds of distinct and potentially
interacting features, which makes their complexity far
exceed human reasoning abilities.

If we want to determine, for instance, that a telephone
switch satisfies the simple requirement:

when user goes offhook the system provides dialtone

a model checker can exhaustively test whether there is any
possible interleaving of events that can lead to an error
(i.e., a violation of the stated requirement).

We might attempt to test the same requirement using
traditional testing. To do so, we could try to alter the state
of the switch in as many ways as possible and go offhook
(i.e., pick up the handset) to determine whether we get
dialtone in every case. At best such a method samples the
possible behavior of the switch. A lucky tester will
discover an exception to the requirement, but many bugs
pass through, to be discovered in the field by users.

The benefits of model checking for exhaustively testing
distributed code should be clear, however, one of the
hurdles that practitioners of model checking face is that the
requirements must be stated strictly formally. A necessary
step is to restate informal requirements, such as our
example requirement regarding dialtone, in a formal
notation. When the requirement is stated formally, we call
it a requirement.

The formal notation of choice for specifying
requirements of software applications is Linear Temporal
Logic (LTL) [12]. LTL allows one to describe how a
system’s events and states are related over time, which is
exactly what we need for expressing logic control and
communications requirements. For example, we can use an
LTL formula to formally state the simple requirement
above, but also more complex requirements about required
causality in the system.

A strength of LTL is that it is expressive, allowing the
formalization of vastly more complex requirements than
the one we expressed. A drawback of LTL is that it is hard
to debug an LTL formula, even for experts. In an industrial
application of model checking to the Lucent PathStar
Access Server, we were faced with the challenge of
specifying and checking the code for conformance with
117 distinct feature requirements. We had two alternatives
for overcoming this hurdle. The first was to capture all
requirements in logic, and to reserve adequate time for
debugging the LTL formulas. The second was to find a
more natural way to generate the required formal
requirements without writing LTL formulas.

To support the second approach, we built a graphical
TimeLine Editor that can generate formal requirements
from a visual representation of required causal relations.

While not as expressive as LTL, the TimeLine Editor
allowed us to specify a large fraction of the feature
requirements of interest in the verification of the PathStar
Access Server [9]. The time spent building the editor was
well rewarded by the time savings realized.

The TimeLine Editor is well suited for expressing the
types of requirements encountered in the PathStar
application. Specifically the TimeLine Editor can express
requirements with a preamble (a sequence of events that
act as a pattern to be matched against execution sequences)
and a response. Other visual notations [1][13] have been
developed to address the expressive needs of different
applications, or to express a broader set of requirements.
Other related work [7] has been to classify and codify
certain frequently observed requirement types.

To explore the TimeLine Editor further we will look at
how we can discover requirements, typical forms of
requirements, the timeline notation and graphical interface,
how to convert a timeline to a test automaton, the types of
requirements that can and can not be expressed using
timelines, global requirement constraints, and an example
error that was found using the TimeLine Editor and the
Feaver/Spin model checking framework.

2. Discovering requirements

Many efforts have been made to apply various
requirements modeling tools in systems engineering.
Despite this, the practical reality is that most requirements
are today still expressed in English prose. Such was the
case for the Bellcore (now TelCordia) LSSGR standards
[9] that served as requirements for the PathStar Access
Server. In these documents, the requirements are not
enumerated, or marked, but described in a white paper
format.

We thoroughly explored the standard for each feature to
find requirements that were amenable to model checking.
Such requirements must be testable and they must describe
the required temporal behavior of the system. To be
testable, a requirement must describe some aspect of the
system that is observable and the outcome of the
requirement must be measurable. Not every requirement
will meet this criterion. For instance, in the LSSGR
standard for Call Waiting (CW), this requirement appears:

“The number of special circuits (if any) that are
used by a switching system in providing CW should
be an engineered quantity.”

How do we test this requirement? From this requirement
we learn that a switching system may or may not have
‘special circuits’. We can guess that traffic measurement
and application of formulas are involved in determining
exactly how many special circuits, if any, are needed, but
this requirement doesn’t give us data or the necessary
formulas. Therefore, we conclude that this requirement

cannot be tested with model checking because there is no
measurable outcome.

To be amenable to model checking, a requirement must
also specify the temporal behavior of a system; that is, how
the system acts in response to external stimuli and internal
conditions over time. Even if the ‘special circuit’
requirement had described an observable and measurable
aspect of the system, it clearly does not pass the second
criteria because it does not describe temporal behavior.

Some of the features we tested were two user features
and many were three or more user features. The number of
users was the greatest determinant in the complexity of the
feature because as the number of users increased the
possible combinations of user events increased
exponentially. For instance, at any given point in feature
processing, any party on the call can go onhook, and for the
requirements to be complete, there must be a specific
system response requirement for each user’s onhook event
at each state of feature processing.

For the less complex features, such as Call Forwarding
(forwarding an incoming call to an alternate destination
under certain circumstances -- i.e. no answer, busy, etc.) or
Denied Originating Service (denying the subscriber the
ability to initiate calls), it was straightforward to
understand the temporal behavior and the requirements
could be written directly. For features with more than two
users: Call Waiting, N-Way Calling, Hold, Transfer, in
order to understand the behavior of the feature it was
necessary to build an informal model of the intended
feature behavior, e.g., in a graphical editor. An informal
model, such as the one for a portion of the Call Hold
feature shown in Figure 2, can be used to make sure that
one has captured all the possible events that can occur and
is useful for identifying relevant constraints on
requirements (as will be described in Section 4.).

When the informal model is complete, we can select
paths through the graph that reflect the critical aspects of
the intended behavior. Each path becomes a requirement
that can be checked in detail against the source code. A
path in the informal model is a sequence of events, where
an event is either generated by the system or by a test
harness. In Figure 2, the system events are shown on a gray
background. The cp refers to the controlling party, and the
hp refers to the held party.

In the verification of the PathStar Access Server we
devised a mechanism that allowed us to automatically
generate a formal model directly from the source code of
the application (which was written in C) [6]. The model
extraction tool converts C source code into the input
language of an efficient software model checking tool,
Spin [5]. Spin uses the formal requirements (expressed in
temporal logic or with the help of the TimeLine Editor
tool) to fine-tune the program model with a slicing
technique. The slicing algorithm in Spin uses data
dependency analysis and control flow analysis to

automatically abstract away details of the model that are
not relevant to the requirement being checked, while
retaining the parts of the model that are relevant to the
requirement. The abstraction that is employed here has the
important property that it is logically conservative, which
means that if the abstracted model can be shown to satisfy
the correctness requirement, then the original source
program necessarily also satisfies that requirement.

Using the requirements to guide the generation of the
abstract model of the source code helps to ensure that the
levels of abstractions in the requirement and the model
match. For instance, if the requirements are concerned with
the fact that a full digit string has been entered rather than
the particular digits in the digit string, then in the model
extraction step we can automatically abstract away most of
the details of the digit analysis code so that we only retain
the possible outcomes: invalid digits, partial digits or full
digit string.

In total we analyzed 17 Telcordia LSSGR feature
standards. On average we identified seven requirements to
test per feature. The feature with the largest number of test
requirements identified was Call Waiting, with 13 test
requirements. The large number of testable requirements
for Call Waiting reflects the complexity of the feature, and
the thorough and complete requirements for Call Waiting,
as compared to the other features we analyzed.

stable
call state

cp flash system places call on hold,
applies recall dialtone, &

starts permanent signal timing

cp enters
CHD code

system applies recall dialtone,
& starts 4 second permanent

signal timing

hp
onhook

outgoing
call

cp onhook
ring
back

hp
onhook

idle

cp offhook
connect
cp & hp

cp enters
digits

valid
address

cp flash

cp enters
CHD code

switch non-
hp & hp

answer

Figure 2. A partial model of the Call Hold feature,
with a requirement, depicted as a path

KEY:
cp controlling party

hp held party

CHD call hold code
code

3. Typical forms of requirements

As in traditional testing, when applying model checking
of distributed software, it is necessary to configure the
system and the test driver elements before a test can be
performed. In traditional testing one would drive the
system into a particular state of interest by feeding it a
sequence of events, called the preamble. After the
preamble, the tester awaits the expected response. In model
checking the preamble becomes a pattern that is matched
against the executions of the system.

In model checking it is also possible to make use of
known, well defined system states in order to reduce the
number of events in the preamble. In a telephone switch,
for instance there are well-defined so-called stable call-
states such as busy, idle, dial, and 3-way call. There may be
many different system executions that lead into one of
these states, so using the well-defined state as the first
element to be matched in the preamble, as opposed to a
specific execution that leads to that state, has the effect of
generalizing the requirement, thereby broadening and
strengthening the check.

We can see how a system state is used in formulating a
requirement by selecting a path through the fragment of the
Call Hold model. The Call Hold feature allows its
subscriber to place an active (non-held) party on hold in
order to initiate a call to yet another party. The path we are
interested in begins at a stable call state, which is defined
as a call consisting of the controlling party (the party who
subscribes to the Call Hold feature) and another party, in
which no change to the state of the call’s connection is
imminent. The cp refers to the controlling party, or the
party that is using Call Hold to initiate a new call, and the
CHD code is the Call Hold Code, an assigned sequence of
digits that invokes the Call Hold feature. For the path
through the Call Hold model, the preamble consists of
these events:

cp flash, cp enters CHD code, cp enters digits, cp flash,
cp enters CHD code

The initial event of the preamble: cp flash, occurs during
the stable call state, and the required system response is
that the non-held and held parties should be switched.

The requirement defined by the highlighted path should
pass the check. This means that if the model checker can
find any execution where the initial state and preamble
occur, but the required event does not, this will be reported
as a violation of the requirement.

Just as in traditional testing, in model checking the
requirement is not useful if the preamble is not correct. In
model checking an incorrect preamble could give a
vacuously positive result because it might not match any
execution in the system. We can debug the preamble by
asking the model checker to find at least one sequence that
matches the preamble. If the model checker finds a match,

then we know that our preamble is not vacuous. If the
model checker does not find such an execution, the
preamble is likely to be incorrect and we can reconsider its
definition.

Describing an accurate preamble can be cumbersome in
temporal logic. In LTL, chains of events are most naturally
expressed by a continued functional nesting of Until sub
formulae. For instance, the simple requirement correlating
offhook and dialtone, without intervening onhook events,
shown graphically in Figure 3, is stated in LTL as:

!(!offhook U (offhook /\ X [](!dialtone /\ !onhook)))

If we wanted to add additional events between the
offhook event and the response, dialtone, each event i
would require the inclusion of an additional nested Until
subformula of the following form:

X((!event i /\ !onhook) U (event i /\ !onhook))

The addition of events quickly makes the LTL version
of the requirement long and difficult to understand.

The operators used in this LTL formula are as follows. []
: always, X: next, U: strong until, !: logical NOT, /\: logical
AND.

4. Description of timeline notation

The timeline notation arose during the early phases of
the project when the verification team members were
writing and debugging LTL requirements for the
verification effort. To clarify what was meant by a certain
LTL requirement, a timeline diagram would be drawn on
the board. Once it was observed that the timeline diagram
could express the requirements of interest to the
application, and that it was possible to automatically
convert the timeline diagrams directly to Büchi automata, a
decision was made to build the TimeLine Editor tool.

A timeline is represented by a wide horizontal bar, as
illustrated in Figure 3, with time progressing from left to
right. Descending from the timeline bar are vertical bars,
called marks, which mark the interesting event
occurrences, ordered in time. The events can be generated

TIME

e r

offhook dialtone

! onhook

Figure 3. Timeline requirement: ‘when the user
goes offhook the system should provide dialtone’

START

! offhook

0 1 2

anywhere in the system, by any one of many concurrent
processes in the distributed system. Therefore, no fixed
time-interval can be assumed between subsequent marks
(there is no hidden assumption of a “global clock”). There
are three types of system events that can be indicated on
the timeline.

Regular events - denoted by the letter e. These are
optional events, that are used to identify the precise
executions of the system that we are interested in. For a
switch, a regular event could be the user going offhook,
flashing the hook, or the arrival of an incoming call.
Most regular events are generated by test harness com-
ponents, that is, the stubs of components external to the
system under test.

Required events - denoted by the letter r. These are
events that are required to occur if all previous events
(regular and required) on the timeline have occurred,
under the applicable constraints (more about constraints
later). It is an error if is possible for a required event to
be absent from an execution under these circumstances.
For a switch, a required event might be the generation
of dialtone, or the forwarding of a call.

Fail events - denoted by the letter f and a red X. These

are events that should not occur if all previous events
(regular and required) on the timeline have occurred,
under the applicable constraints. It is an error if a fail
event occurs. For a switch, a fail event might be genera-
tion of reorder tone when the user goes offhook

Since it is an error for the system to give reorder tone
(fast busy) in response to the user going offhook, we can
add reorder as a fail event between the offhook and
dialtone events, to strengthen the requirement, as shown in
Figure 5. Now this requirement states that after we detect
offhook, and while we are waiting for dialtone, if we detect
reorder tone, an error has occurred

In addition to events, there are also constraints, which
are black horizontal lines positioned beneath the timeline
bar. We can use constraints to specify that we are not
interested in the occurrence of particular events over
certain intervals of the requirement. For instance, if there is
a requirement that the system must respond to an offhook
by providing dialtone, we can specify the constraint
!onhook for the interval between the offhook and the
dialtone event.

A constraint begins at one mark and ends at the same or
at a subsequent mark. A constraint can include or exclude
the marks where it begins or ends. Figure 4 shows a

TIME

e e

incoming
call

incoming
call

! flash

e

answer

e

flash

idle

r

active
call put
on hold

e

answer

e

0 or more events, all of
which are not a flash and

not an incoming call

! flash

adjacent
steps

Figure 4. Exclusion of endpoints in a constraint.

START

0 1 2 3 4 5

incoming
call

e

flash

0 or more events, all
of which are not a
‘disconnect active

party’ and not a flash

! disconnect active party

adjacent
steps

! disconnect
active party

2 3 4

constraint, ! flash, that excludes its end mark, and another
constraint ! disconnect active call that excludes its
begin mark. If a constraint endpoint includes a mark, this is
indicated by a filled circle. If a constraint excludes a mark
the end point of the constraint will not overlap the mark but
will terminate with a short vertical bar near the mark.

If a constraint includes its begin mark then the
constraint applies from the moment that the event attached
to this mark occurs. If a constraint excludes its begin mark,
then the constraint does not apply when the event attached
to this mark occurs (but it still may hold unless expressly
stated otherwise by another constraint) but it applies at the
event immediately following the event attached to the
begin mark. Likewise with a constraint that excludes its
end mark; the constraint applies until the event
immediately preceding the event attached to the
constraint’s end mark. If the constraint includes its end
mark, then the constraint applies before the event attached
to its end mark occurs and when the event attached to its
end mark occurs.

A constraint that is indicated by a single filled circle
with no horizontal line, such as the idle constraint in
Figure 4, holds only for the event to which the constraint is
attached.

A constraint that begins at the START mark, such as
constraint c5 in Figure 6, applies from the beginning of the
execution. Constraints c1, c2, c3, and c4 of Figure 6 show
the constraint variations that may apply between and
before two non-fail timeline events e1 and e2, and the
corresponding automata. A constraint may not begin or end
at a fail event, unless the fail event is the first event or last
event of the timeline. A constraint may intersect a fail
event as in the case of constraint ! onhook, that intersects
the fail event recall tone on Figure 5.

In the requirement shown in Figure 4 for the Call
Waiting feature, the first four events serve as the preamble;
the part of the requirement that in effect drives the system
into the state of interest. The initial step of interest in the
requirement is that the subscriber is in the idle state (a

stable call state) when an incoming call arrives. The
subscriber then optionally answers the incoming call. If
this occurs, and a second incoming call arrives, the
subscriber can optionally respond by flashing the hook to
invoke the Call Waiting feature. The system is then
required to respond by putting the active call on hold.

Because we want to check the Call Waiting feature in
particular, we may want to avoid checking executions that
include a flash before the second incoming call arrives. The
reason for this is that if the user flashes before the second
call arrives, the system can consider the flash to be an
invocation of another feature such as Call Hold or Three-
Way Calling. By excluding the end mark from the
constraint we restrict the exploration to those executions
where the flash occurs only after the second incoming call
has arrived.

In the interval between the arrival of the second
incoming call and the flash, or between any two adjacent
marks, there may be zero or more unspecified events. If
there are zero intervening events, the flash is the very next
execution step after the arrival of the second incoming call.

TIME

e r

offhook dialtone

! onhook

Figure 5. The requirement in Figure 3 is
strengthened by the addition of the fail event,

“recall tone”‘

f

recall tone

0 1 2 3

! offhook

Figure 6. Additional constraint variations

TIME

e

e1

r

e2

START

0 1 2

c1

c2

c3

c4

c5

A system constraint can be more complicated condition
than a simple event. The example requirement in Figure 4,
for instance, uses the condition idle in a constraint. Idle is
not an event but rather expresses a condition on the system
state, which is defined separately in terms of, e.g., values of
variables at the state. Idle is a fairly general condition that
includes both execution sequences where the user has
never gone offhook and those in which the user has gone
onhook since the last offhook. In our system, Idle requires
that there are no active or held parties.

A single timeline can contain multiple regular, required
and fail events. Each required or fail event in essence
defines a sub-requirement, as shown in Figure 7. If any
sub-requirement is violated, that is if any required event in
the specification does not occur while its preamble does, or
if any fail event occurs after its preamble, it is an error.

In general, a timeline must contain at least one required
or fail event. Normally, the final event on the timeline will
be a required or fail event. A timeline need not contain
constraints.

5. Timelines as test automata

In this and the next section we describe how a timeline
specification is to be converted mechanically into an
equivalent test automaton that can be used in a logic model
checking process, e.g., with the model checker Spin [5].
This description will also serve as our formal semantics for
what a timeline really means. A more formal description of
the translation is provided in the appendix as pseudocode.

The test automaton produced from the timeline
specification is a kind of automaton called a Büchi
automaton, as will be explained shortly. Consider this
requirement from the LSSGR for the Call Waiting (CW)
feature:

CW tone should be applied to the called party as an
indication of a waiting call. It may be applied twice
to the line with CW, once when the incoming call

arrives, and then again approximately 10 seconds
later if the CW line has not yet responded to the CW
call.

The corresponding timeline for this requirement is
shown in Figure 8. This timeline states that when the call
waiting subscriber (the cp) receives an incoming call, the
call waiting tone (cw tone) should be given twice. The
subscriber response that is awaited is a flash, so the
timeline is constrained so that no calling party flash (! cp
flash) occurs between the first and second occurrence of
the call waiting tone. A flowchart diagram that appears at
the end of the requirement document further illustrates that
if the incoming call disconnects no further call waiting
tones should be given. Therefore, the constraint that the
incoming call does not disconnect (! disconnect incoming
call) also applies. For this requirement to apply, the CW
subscriber must be in a stable call state or on hold when the
incoming call arrives. The subscriber is said to be in a
stable call state if no change to the current connection is
anticipated. The subscriber is said to be ‘on hold’ if another
party has placed the subscriber on hold.

Interpreting this timeline, the TimeLine Editor generates
the test automaton illustrated in Figure 9. Event names are
replaced by a propositional symbol, in this case the
symbols p 1 through p 5 shown in the KEY of Figure 9.
The states of the automaton are the nodes in the graph,
represented by circles. The events, represented by arrows,
drive the transitions between states.

When the check begins we start out in state s0 in the
test automaton. At each step in the execution of the system
a transition in the test automaton is made. As long as event
p1 together with constraint p3 does not occur, the
automaton remains in its initial state, by traversing the self-
loop on state s0 at each execution step of the system. If
and when p1 and p3 occurs, the test automaton can move
to state s1. State s1 is called an accepting state, indicated
by the double circle. If we find an execution where the test
automaton can remain in such an accepting state

TIME

re e f r e r

sub-

sub-

sub-

main requirement

Figure 7. There is a sub-requirement for each
required event included in a requirement.

START

TIME

e r

incoming
call to cp cw tone

! disconnect incoming call

r

cw tone

Figure 8. Timeline for a Call Waiting requirement

cp in stable call state || cp on hold

! cp flash

START

0 1 2 3

indefinitely, that execution constitutes a violation of our
timeline requirement, and the model checker will report it
as an error. If, however, we see a p2 together with the
corresponding constraints p4 and p5, the test automaton
moves to state s2. State s2 is also marked as an accepting
state, which means it is an error if a system execution
causes the test automaton to remain in this state
indefinitely. So, another occurrence of, p2 && p4 && p5,
must be observed to avoid an error report from the model
checker.

The interpretation of accepting states is what
differentiates a Büchi automaton from a standard finite
automaton. A Büchi automaton is used to trap infinite
execution sequences that violate a requirement, whereas a
standard automaton can only trap finite execution
sequences. The graphical test automaton in Figure 9 is
produced to aid the user in visually inspecting the test
automata. The Spin model checker uses the Never Claim
version of the automata, also produced by the TimeLine
Editor, and depicted in Figure 10.

6. Mechanical conversion of timelines to
automata

The TimeLine Editor converts timeline specifications to
test automata using a straight-forward algorithm. The

number of states we will need in the test automaton is equal
to the number of events on the timeline plus one. In the
case of the Call Waiting specification shown in Figure 9,
there are three events, hence four states in the automaton.
In each state we are waiting for the next successive event
on the timeline. For instance, for the automaton in Figure 9
and Figure 10, we start out in state s0 and we are waiting
for p1 (incoming call). While we wait for p1 we may detect
other events (outgoing call, flash, onhook, etc.) and on
each of these events we traverse the self loop true. In state
s1 we wait for p2 and in state s2 we wait for the second
instance of p2. If we just consider the events on the
timeline specification and ignore the constraints for now,
we derive the test automata shown in Figure 11.

Both s1 and s2 have a double circle, indicating that
they are special states, called accepting states. These states
are accepting because if we can remain in these states
indefinitely for a particular system execution under
consideration, the execution is flagged as an error by the
model checker. Hence, for this example, if we can remain
in state s1 indefinitely, waiting for the first required call
waiting tone, this execution will be flagged as an error.

Likewise, if we can remain in state s2 indefinitely,
waiting for the second required call waiting tone, this will
also be an error. In general, each required event will have
an associated accepting state where we wait for that event
to occur. The accepting state for a required event labeled r
will have a self loop labeled !r. The states, like s0,
associated with regular events, p1 in the case of s0, will
also have a self loop labeled true.

Once the events have been used to form the structure of
the automata, and the event types (normal versus required)

Figure 9. An automaton for timeline in Figure 8

Figure 10. Never claim for automaton in Figure 9

have been used to identify normal and accepting states and
transition labels, we can add the constraints. To do this we
first construct a list of the constraints that overlap each
event. These are summarized in Table 1.

Overlapping constraints are added via conjunction to the
label of the transition coming out of the waiting state
associated with an event. Thus, since p4 and p5 overlap
event p2 at mark 2, p4 && p5 is added to the transition
labeled p2 out of state s1.

In addition, a constraint that applies in the interval
immediately prior to an event labeled e and subsequent to
the event preceding e (or starting at the initial START mark
if e is the first event) on the timeline is added by
conjunction to the self loop of the waiting state of event e.
Constraints that apply in the intervals between events are
summarized in Table 2.

In the case of event p2 at mark 2, the constraint p4
applies in the interval between p1 at mark 1 and p2 at
mark 2, so the constraint p4 is added to the self loop at

state s1. Using the algorithm outlined above, we generate
the final test automaton shown in Figure 12.

So far our description of automated automata generation
has not addressed fail events. First we will discuss the
general case of a fail event, that is, a fail event that is an
intermediate event. Then we will discuss a special case,
when the fail event is the last event.

We will define the progress path of a generated
automaton to be the path consisting of those states where
we wait for required or regular events and those transitions
that we take upon the reception of required or regular
events. States in the progress path are labeled S{N}, where
N is the progress state number. Transitions in the progress
path are labelled with the normal and required events and
constraints that apply, as described previously. An
automata generated by the Timeline Editor will contain a
single progress path and one fail path corresponding to
each fail event in the timeline. A fail path is a path leading
out of the progress path and terminating in an accepting
state, called a fail state. Fail states are labeled F{N} where
N is the fail state number. Hence, the automata for a
timeline with no fail events will contain only a progress
path, and an automata for a timeline with N fail events will
contain a progress path and N fail paths.

Each fail event will have an associated accepting state
that we transition to if the fail event occurs in the specified
interval. The transition to the fail state is made from the
wait state associated with the regular or required event
directly following the fail event. So for the requirement in

Table 1. Constraints overlapping events for timeline in
Figure 8

Event at Marker Constraints

p1 1 p3

p2 2 p4 & p5

p2 3 p4 & p5

Table 2. Constraints that apply between events for the
timeline in Figure 8

Between Events Between Markers Constraints

p1 & p2 1 & 2 p4

p2 & p2 2 & 3 p4 & p5

TIME

e r

p1 p2

r
p2

Figure 11. Test automata for timeline specification
shown in Figure 8, including events only

S0 S1 S2 S3
p1 p2p2

true ! p2! p2

START

0 1 2 3

p1 p2p2

Key:

p1 incoming call to cp
p2 cw tone

e r
p1 p2

r

p2

Figure 12. Test automata for timeline specification
shown in Figure 8, including events and constraints

S0 S1 S2 S3

p3 p4 &&
p5

p4 &&
p5

true !p2 && p4

p4
p3

p5

1 32

p1 && p3 p2 && p4
&& p5

p2 && p4
&& p5

!p2 && p4
&& p5

p4 &&

p5
p4

TIME
START

0

Key:

p1 incoming call to cp
p2 cw tone

Figure 13, the transition to the fail state F0 is made from
the wait state associated with required event p3 (cw
tone). The fail state has a self loop labeled true because
once in the fail state, we remain there for the remainder of
the execution.

Constraints that apply on the transition to the fail state
are added via conjunction to the fail transition.
Determining which constraints apply on the transition to
the fail state is done in the same manner as for regular and
required events; by inspecting which constraints overlap
the fail event and which constraints apply between the
mark preceding the fail event and the mark to which the
fail event is attached.

A special case is a timeline that has a fail event as the
last event, as in Figure 14. This variation on the call
waiting requirement states that it is an error if a third call
waiting tone is given. The automaton for a timeline with a
fail event as the last event is created by a adding a fail
transition from the last progress state to a fail state. Any
constraints that overlap the mark to which the final fail
event is attached are added via conjunction to the fail
transition.

Timelines are restricted to have at most one consecutive
fail event. To express that more than one event can cause a
transition to the fail state while waiting for the next regular
or required event, the names of the fail events may be

joined via a logical or (||) on a single fail event label.
Constraints must be contiguous between non-fail events.

7. Expressiveness of timelines

Test automata generated from timeline specifications
constitute a limited fragment of the properties expressible
in Linear Temporal Logic. In particular, timelines without
fail events correspond to certain liveness properties. The
formal definition of liveness [8],[10] requires that any
finite system execution must be extendable into an infinite
execution that satisfies the given requirement (i.e., that
does not produce a violation). From any state in the
automaton we can build a finite sequence of events that
leads us to the final rejecting state (state s3 in Figure 9).
This means that every timeline that generates such an
automaton satisfies the definition of a liveness requirement.
It can also be shown that a timeline with k+1 events
minimally requires an LTL formula with a, so-called,
Until-depth of k [2]. This means that we would have to use
k nested formulas to represent the same requirement, which
makes the LTL requirement hard to read if more than two
or three events are used in sequence.

TIME

e r
p1 p3

f
p2

Figure 13. Test automata for timeline containing
intermediate fail event, including events only

S0 S1 S3
p1 p3

true ! p2 && !p3

START

0 1 2 3

p1
p3p2

F0

Key:

p1 incoming call to cp
p2 busy tone to cp
p3 cw tone

p1

true

S0 S1 S2 S3

p3 p4

&& p5

true !p2 &&
p4

p1 && p3 p2 &&
p4 &&

p5

p2 &&
p4 &&

p4 &&

p5p4

TIME

START r
p2

p4

r
p2

Figure 14. The call waiting requirement in Figure 8
is strengthened by adding a third call waiting tone

as a fail event at the end of the timeline

p3

p5

0 32

f
p2

4

Key:

p1 incoming call to cp
p2 cw tone
p3 cp in stable call state || cp on hold
p4 ! disconnect
p5 ! cp flash

e
p1

1

p4

&& p5
F0

p4 &&

p5

p2 &&
p4 &&

p5
!p2 &&
p4 &&

p5

!p2 &&
p4 &&

p5

true

When fail events are present, we can express more than
just liveness properties. For example we can express the
simple safely property that a particular (fail) event should
never occur.

Model checkers such as Spin can optimize the
verification process if it can be guaranteed that correctness
requirements are stutter-invariant [3], meaning that the
requirement is not sensitive to stuttered, or repeated,
individual events. Requirements expressed in the subset of

LTL without a next operator, for instance, have this
desirable requirement. Stutter-invariance cannot be
guaranteed, though, for timeline specifications. However,
fairly simple algorithmic checks on the generated automata
can be used to determine whether or not a timeline
requirement is stutter-invariant [4], [11], so that the
verification process can be adjusted accordingly.

Timeline specifications do not express real-time or
performance requirements. Hence, on the few occasions

Figure 15. Timeline Editor tool interface

that one of these requirements was encountered in the
standards, such as the Call Waiting requirement that the
second call waiting tone must be given within 10 seconds
of the first call waiting tone, we did not test it.

8. Global constraints

In addition to constraints on events, we also
occasionally need to specify constraints of a more general
nature. We call these global constraints.

Global constraints depend on the type of system that is
being checked. For a telephone switch, the set of features
that has been provisioned for a given subscriber form a
global constraint. Certain subsets of features are triggered
by the same events and for these there is generally a
precedence relation in the feature standards that defines
which feature should be invoked when all are provisioned
for a given subscriber. For instance, several features could
be triggered by the arrival of an incoming call. Figure 16
shows the precedence relations for features that are
triggered by the arrival of an incoming call, where higher
precedence features point to lower precedence features.

If we want to test a requirement for the Call Waiting
feature, we will need to: enable CW, and disable the higher
precedence features, otherwise we will not be able to
consider the executions where Call Waiting is invoked. We
do, however, want to explore both the enabled and the
disabled cases of potentially conflicting lower precedence
features (e.g., CFBL) and potentially conflicting features
that are not in Call Waiting’s precedence hierarchy (there
are none in this case), to ensure that these features are not
mistakenly invoked when Call Waiting is enabled

The Timeline Editor allows the user to select from
available global constraints using the interface shown in
Figure 15. Under the Features heading the user can
require that the feature be disabled (an ‘X’), enabled (a
check mark), or that the model checker should consider
both cases (indicated by a blank selection box).

The Settings field defines additional global constraints
that control the behavior of our test harness for verifying
telephony software. The test harness is composed of
abstract models for device behavior, subscriber behavior,
and timers. These environment models are purposely
designed to be hostile to further increase the scope of the
model checking process. For instance, if the subscriber can
generate offhook, onhook, digit, and hook-flash events,
etc., the subscriber model will assume that the subscriber
can generate these for even an erratically behaving
subscriber. Using this approach, the model checker can
verify that under no circumstances will it be possible for
even an erratically behaving subscriber to cause errors in
the behavior of the telephone switch.

The Settings field can be used to fine tune the test
harness behavior by stipulating, for instance, that exactly
two flashes should be generated by the subscriber, that
there should at most 1 incoming call, that the a timer may
expire only if no other events can be processed, etc.

9. Error traces -- an example

An error trace found by the model checker can be
displayed as either a message sequence chart or a series of
concurrent execution steps, interleaved in time. Error traces
reported by the model checker are often sequences with
subtle race conditions, leading to a fault.

AC automatic callback
ACR anonymous call rejection
CFBL call forwarding busy line
CFDA call forwarding don’t answer
CFMB call forwarding make busy
CFV call forwarding variable
CND calling number delivery
CW call waiting
DTS denied terminating service
RDA residential distinctive alerting

DTS

RDA ACR

CND

AC

CFV

CFD

CFM

CW

CFB

Figure 16. Precedence relations for features that
are triggered by the arrival of an incoming call

Subscribe Parent Child1 Caller1 Caller2

ringing

ringing

forward

offhook
done

ringing

reorder

repeat

Figure 17. An example requirement violation

Such is the case with one violation of the dialtone
requirement from Figure 3. A violation of the requirement,
displayed by the model checker as the message sequence
chart in Figure 17, occurs if the subscriber has call
forwarding and happens to pick up the phone precisely
when an incoming call is being forwarded. The call
processing software can delay the generation of dialtone
arbitrarily long while the system is rejecting or forwarding
a stream of incoming calls. When the calls stop, the system
will eventually time out and deliver dialtone (not shown
here).

The Parent and Child processes in the message sequence
chart are system software components, whereas processes
Subscriber, Caller1, and Caller2 are test stubs. In the
software architecture of the system we tested, the Parent
process spawns a Child process for each new call in which
the logical subscriber participates.

The model checker can also present an error scenario as
a trace of C statement executions, so that the developer can
analyze the sequence of executed statements leading to the
error. A scenario such as this one can be extremely hard to
detect with normal testing techniques, yet fairly trivial to
generate with the help of a logic model checking tool

10. Conclusions

.The TimeLine Editor can simplify and speed-up the
capture of formal requirements to be used in both testing
and formal model checking.

The TimeLine Editor software may be downloaded at:

http://www.bell-labs.com/topic/swdist/

Implementing the TimeLine Editor took about one
month, after which we quickly used the tool to express 117
requirements in two months time, which included analysis
of copious standards documents.

Of the 117 requirements we specified using the
TimeLine editor, the average timeline specification
contained 4 to 5 events, and 2 to 3 constraints. The most
complex timeline specification contained 11 events and 7
constraints, and the simplest contained 2 events and one
constraint. Thirty-eight percent of the events were required
events, and the remainder served to provide context for the
requirement.

The TimeLine Editor is one line of work in an ongoing
effort to automate more aspects of the formal verification
process of complex software that we are pursuing. The goal
of the automation is to hide what the model checker does
from the user so that the user does not need special training
in logic to exploit the power of model checking technology
in systems verification. Ultimately, we would like be able
to generate testable requirements directly from a machine
readable requirements model.

Most recently, we have integrated the TimeLine Editor
into our new FeaVer [6] front-end tool, giving the user the
ability to formulate and run tests interactively from a single
interface. There are still many ways in which we may be
able to improve the usefulness of our TimeLine Editor. For
instance, we can extend the tool by supporting a graphical
method for defining coregions of adjacent events on the
timeline, to define groups of events that may occur in
arbitrary order, rather than in strict timeline order. Or, we
can link the TimeLine Editor more directly to the model
checker, to provide feedback about reachable and
unreachable portions of the timeline specification. This
would give the user visual feedback on whether or not the
preamble is correctly stated.

11. Reference

[1] L. K. Dillon, G. Kutty, L.E. Moser, P. M. Melliar-Smith, and
Y. S. Ramakrishna. A Graphical Interval Logic for Specifying
Concurrent Systems. ACM Trans. on Software Engineering
and Methodology, 3(2), pp. 131-165, 1994.

[2] K. Etessami and T. Wilke, An Until hierarchy for temporal
logic. 11th Ann. IEEE Symp. on Logic in Computer Science.
1996, pp. 108-117.

[3] G.J. Holzmann and D. Peled, An improvement in formal veri-
fication. Proc. Formal Description Techniques, Forte94,
Berne, Sw., Chapman&Hall, 1994, pp. 197-211.

[4] G.J. Holzmann and O. Kupferman, Not checking for closure
under stuttering, In: The Spin Verification System, American
Mathematical Society, 1996, pp. 17-22.

[5] G.J. Holzmann, The model checker Spin, IEEE Trans. on
Software Eng., 5(23):279-295, 1997.

[6] G.J. Holzmann and M.H. Smith, Automating software feature
verification, Bell Labs Technical Journal, 5(2):72-87, 2000.

[7] http://www.cis.ksu.edu/santos/spec-patterns/

[8] L. Lamport, Proving the correctness of multiprocess pro-
grams. IEEE Trans. on Software Eng., 3(2):125-143,1977.

[9] LSSGR, LATA Switching Systems Generic Requirements, FR-
NWT-000064, 1992 Edition. Feature requirements, including
SPCS capabilities and features. SR-504, Iss. 1, March 1996,
Telcordia/Bellcore.

[10]Z. Manna, and A. Pnueli, The temporal logic of reactive and
concurrent systems, Vol. 1, Springer-Verlag, 1992.

[11]D. Peled, T. Wilke, and P. Wolper, An algorithmic approach
for checking closure requirements of temporal logic specifica-
tions and w-regular languages. Theoretical Computer Sci-
ences, 195(2):183-203, March, 1998.

[12]A. Pnueli, The temporal logic of programs. Proc. 18th IEEE
Symposium on Foundations of Computer Science, 1977, Prov-
idence, R.I., pp. 46-57.

[13]R. Schlor, and W. Damm. "Specification of System-Level
Hardware Designs Using Timing Diagrams". In Proc. Euro-
pean Design Automation and European Event in ASIC
Design, Feb. 1993, IEEE Press, pp. 518-524.

Appendix

The pseudocode that follows provides a description of
the translation of a timeline to a Büchi automata. The
algorithm keeps track of a set of states state_set, and a set
of labeled transitions between them called transition_set.
Each state in the state set has an associated flag indicating
whether or not it is an accepting state. We process the
timeline one event at a time, from left to right, associating
the variable Event with the current event under
consideration. The following convention is used in the
pseudocode notation below:

C: denotes the conjunction of the labels of those con-
straints that apply to the interval between Event and the
previous event (immediately prior to Event).

C’: conjunction of the labels of those constraints that
overlap Event.

pp: denotes the current “progress point” on the
“progress path”, which is used as a marker during the
translation.

We note that the automaton generated by the
pseudocode below actually omits the extra redundant non-
accepting state at the end of the progress path that has been
depicted in the timelines throughout the paper. The
exclusion does not affect the meaning of the Büchi
automaton.

Pseudocode:

initialize:
state_set = {init} /* intial state set */
transition_set = {}
pp = init /* the initial progress point */

while (more events) {
Event = get_next_event()
if (is_Fail(Event)) {

if (pp = init) {
add transition (pp, TRUE && C, pp)
/* add to transition_set */

} else {
add transition (pp, !Event && C, pp)

}
add new accept state v /*to state_set*/
add transition (pp, C’, v)
add transition (v, TRUE, v)

}
if (is_Required(Event)) {

make pp an accept state
add transition (pp, !Event && C, pp)
add new non-accept state vEvent
add transition (pp, Event && c’,vEvent)

pp = vEvent
}
if (is_Regular(Event)) {

if (pp = init) {

add transition (pp, TRUE && C, pp)
} else {

add transition (pp, C && !Event, pp)
}
add new state vEvent
add transition (pp, C’ && Event, vEvent)
pp = vEvent

}
}

