Defining Abstraction

Bentley Oakes, Ahsan Qamar, Pieter Mosterman, Hans Vangheluwe

February 1, 2015

MOTIVATION

- To understand the many guises of abstraction
- To relate the notions of abstraction in many domains

WHAT DO WE GAIN

- Enable correct communication between modellers about abstraction
- Enables one to enhance modelling tools to support correct reasoning about abstraction
 - Handle element approximations
 - Make explicit the assumptions made
 - Get insights into how effects of approximations and abstractions propagate during compositions

PROCESS

- Terminology
- ② Taxonomy
- Ontology
- Systematic literature review
- Use above to enhance tools

Examples of Abstraction

- Measuring current over a piece of metal in the real world
 - How is this transformed into a model?
- Approximation of a model
 - How does this change the properties we can prove on the model?

Examples of Abstraction

- Creating a Modelica class that represents a resistor
 - Does this accurately represent the real world?
- Creating an AND symbol which represents a circuit diagram
 - Is information hidden or lost?
 - How do the properties of this model change when we change domains/paradigms

Examples of Abstraction

- Classifying a model using linguistic/ontological relationship
 - Is abstraction the same on the linguistic side as the ontological side?

Defining Underlying Terms

- We want to classify abstraction along the following dimensions
 - Formalism
 - 2 Representation
 - Operation

FORMALISM

- Change in formalism and change in abstraction level are often found combined
- How to decouple these?

Properties

Key to our understanding of abstraction Based on the *information* contained in a model M.

Different *questions* (properties) P = I(M) which can be asked concerning the model.

These questions either result in true or false.

Abstraction and its opposite, refinement are relative to a non-empty set of questions (properties) P.

- M_1 is an abstraction of M_2 with respect to P if for all $p \in P$: $M_1 \models p \Rightarrow M_2 \models p$. This is written $M_1 \sqsupseteq_P M_2$.
- M_1 is said to be a *refinement* of M_2 with respect to P if M_2 is an *abstraction* of M_1 with respect to P. This is written $M_1 \sqsubseteq_P M_2$.

Properties

- When we abstract, we can still satisfy some properties
- We might be able to satisfy new properties
- Some properties cannot be satisfied any more
- Of course, we have to select the 'interesting' properties

FUTURE WORK

- Connect terms like:
 - System
 - Environment
 - Properties
 - Experiments
 - Process
 - Change of domain, multi-domain
 - Change of formalisms
 - Concept
 - Feature
- Define the intention of the abstractions on the formalism, representation, and properties of the model