FURTHER DEFINITION OF ABSTRACTION

Bentley Oakes, Ahsan Qamar, Pieter Mosterman, Hans Vangheluwe

February 2, 2015

MOTIVATION

- To understand the many guises of abstraction
- To relate the notions of abstraction in many domains

WHAT DO WE GAIN

- Enable correct communication between modellers about abstraction
- Enables one to enhance modelling tools to support correct reasoning about abstraction
 - Handle element approximations
 - Make explicit the assumptions made
 - Get insights into how effects of approximations and abstractions propagate during compositions

WHAT IS A MODEL?

- Mapping feature A model is based on an original.
- **Reduction feature** A model only reflects a (relevant) selection of the originals properties.
- **Pragmatic feature** A model needs to usable in place of the original with respect to some purpose.

Herbert Stachowiak. *Allgemeine Modelltheorie*. Springer-Verlag, Wien and New York, 1973.

WHAT IS ABSTRACTION?

- Mapping feature An abstracted model is based on a model
- Reduction feature An abstraction includes a (relevant) selection of the original model's properties.
- Pragmatic feature An abstraction needs to be more usable in place of the original.
 - Notion of 'difficulty/effort to reason about properties'

WHAT IS DIFFICULTY?

- Two categories:
 - Cognitive difficulty or effort
 - Difficulty in (human) reasoning about a property
 - Example: Aggregating transistors to an AND gate to reason about behaviour
 - Technical/Computational difficulty
 - Difficulty in (computational) reasoning about a property
 - Example: Transforming statecharts to Petri net to check for deadlocks
- Example of both: Fourier transform of signal to find periodicity
- Reasoning about properties can be made less difficult, or made possible

EFFECT OF ASSUMPTIONS

- How effective user's reasoning is will be dependent upon the assumptions made in their abstraction
- Assumptions may make the abstraction no longer valid
 - For the same input, the abstraction and the system produce different behaviour or properties
 - Notion of tolerance and approximation fits in here
 - Again, behaviour and properties must be relevant
 - Loss of correspondence between the abstraction and system
- Therefore, it would be beneficial to make assumptions explicit in abstractions
 - Need to select 'relevant' assumptions

DIFFICULTY PERCEPTION

- Abstraction user thinks that using an abstraction will reduce cognitive or computational difficulty/effort
- This perception of difficulty/effort may vary widely between users
- As well, this difficulty may change over time as new algorithms or methodologies become available

THREE TYPES OF ABSTRACTION

- Physical world to physical world
 - Systems as models for other systems
 - Example: A thrown ball as a model of a fired cannon shell
 - An example of a metaphor
 - Reduction in cognitive effort to understand behaviour

THREE TYPES OF ABSTRACTION

- Physical world to virtual world
 - Creation of models to reflect physical world
 - Example: Building a model of a resistor
 - Enables simulation of properties
 - Example: Can now determine behaviour in isolation or within a connected system
 - Note that reasoning is based on validity of model (assumptions made)

THREE TYPES OF ABSTRACTION

- Virtual world to virtual world
 - Creating new versions of our models
 - Example: Changing formalisms or level of abstraction
 - · Affects both cognitive effort and computational effort
 - Tradeoff could happen based on intent
 - Example: Transformation to Petri nets may produce unreadable model, but enables detection of deadlocks