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Abstract. This paper investigates a basic model simulatingpathy. The
model is abstracted from recent advances in neolamy, such as the
discovery of “mirror neurons” or of neurons codifog both visual recognition
and connected action plans. In a very simplifieghpotational environment, we
define agents which associate action plans withafistimuli, and are also able
to “feel” such action plans when they observe a@othgent in a similar
situation. We propose a first set of experimentsliving only a pair of agents,
with different action abilities.
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1 Introduction

The simplest definition of empathy is “the ability put oneself in the place of
someone else”. There are a lot of debates abou¢ meEcise definitions. Several
authors distinguish empathy from sympathy, considethat the latter is reduced to
emotion contagion. Different theories (theory of gimulation, theory of the theory)
back different hypotheses on the mechanism.

Whatever the precise mechanism or definition, adbtconsiderable thinkers
stressed the importance of empathy to understaedifigally human behaviours and
social dynamics. For instance, Max Scheler (192%) &dith Stein (1917) see
empathy at the root of religious experience (sse Bleffuant 1998). Charles Darwin
has stressed that empathy was the evolutionarg bésil social behaviours (see also
Hoffman 2000). Adam Smith (1759) and Jean-Pierrgouyu(1992) suggest that
empathy can be intimately related with the autolzippic consciousness of human
beings.

In the last decades of the 20th century, the sfieabmmunity showed a renewed
interest for empathy. In psychology, a large pafelesults is now available, often
involving comparative tests between children ofimas ages, with or without
deficiencies (Hill et al. 2000, Baron-Cohen 1988)large variety of results is also
available for different species of primates. Difet theoretical models, in particular
the “theory of the theory”, and the “theory of thienulation” are in competition to
interpret the results (Davies 1994). In economy &odiology, the concept of
convention is related on multiple levels of empathgtween the members of a



community. Game theory and computer simulation a@giies begin to address the
problem of multi-level empathy. Several philosophand thinkers turned back to A.
Smith or J.J. Rousseau, and revisited their ideaiing them with recent
developments on complex systems.

Spectacular advances in neurobiology, which gavepatimy its first neural
evidences, played a major role in renewing thengiie interest for empathy. Indeed,
the “mirror neurons”, discovered in the 90ies, sedwhat putting oneself in the place
of someone else is deeply wired in our neural systnd partly unconscious (see for
instance, Gallese et al. 1996, 1998, Decety et987, Rizzolati et al. 2001, among
the numerous publications on the subject). Prelyousmpathy tended to be
considered only as the effect of an imaginatiorgffthus depending on conscious
and high level cognitive functions. Moreover, therkwon mirror neurons is deeply
linked with a new view of perception / action ndwsgstem. This new view reminds
the concept of “affordance” introduced by Gibsomg & grounded on the discovery
of neurons coding jointly for shape and action plag. In other words, the
perception of objects is intimately related witk #ictions they suggest.

As far as we know, agent based social simulatidmdi attempt to integrate these
advances yet. Researches on trust and reputatimme@t al. 2008, Di Tosto et al.
20007) often include some aspects related to empatthe agents, but they do not
ground them on perception. Other agent based madelsagents which are inspired
by game theory, including the prediction of theesthnext moves. But again, these
models do not take into account the recent knovdedg have on the relations
between perception and empathy. Hence definingtageith an abstract mechanism
mimicking mirror neurons is a completely new lifeesearch.

Yet, agent based approaches could provide vergrasting complementary
evidences about the role of the low level empatbdities on social dynamics.
Indeed, such models require to formalize clearlyv hempathy works, and its
interactions with other cognitive functions, anerhto test these hypotheses in a
virtual laboratory. Ideally such tests would bringw arguments in the debate about
the role of empathy in social dynamics as wellnasame aspects of consciousness.

We propose a very first attempt in this directiavith artificial agents called
“empathons”, reminding Rosenblatt’s “perceptron§&) which was seen by its
author as a first artificial perceptive system. iy, we aim at defining first
artificial empathic systems. We tried to keep theded as simple as possible, but not
more than this. One needs to define the perceptimhaction plans connected with
objects first, and then to define the recognitibsuch situations in other individuals.

We first define the individual perception of emg@thand then the model using
the observed state of others. Then we describe siimdation results, and finally,
we propose a discussion.



2 Individual level: agents seeking targets and aiding obstacles

2.1 Overview of the setting

We chose a quite common 2D environment with modgents which must reach
targets and avoid obstacles. To simplify, all tHgeots (agent body, obstacles,
targets) are circular. But the agents have a ftottere are located the perceptive
captors) and a back. The position of objects arehisgis defined by continuous
values. Agents can move only forward, thus, wheay tlvant to go in one direction,
they need to turn first to aim the direction, ahdrnt they move. The movements of
agents are confined inside a given 2D area bea#fuseset of obstacles displayed in
its boundary (see Fig.1). The obstacles are fixettheir number is constant over the
simulation. There is also a set of targets, whioh lacated at random. A target
disappears when it is reached by an empathon, anewaone is created with a
random position (not too close to the obstaclah®empathons).

Fig. 1. Example of setting with 10 obstacles and 10 tatgehe empathon is in blue, and its
local perceptive area is shown. Obstacles areaickbtargets in brown.

2.2 Surrounding percept and action plans

At this level, the global algorithm ruling the agénvery simple:
» While no target in sight, explore and avoid obstadktate: ‘exploring’).



» When a target is in sight, reach it, while avoidotgstacles (state: ‘reaching target'
or 'avoiding obstacle").
We now describe the model of percept and tempornagynory, and then the
actions plans.

Surrounding percept.

We suppose that an agent has a perception ofvytsoement which is wider than its
strict captor area. This corresponds to the idate have some perception of what
is in our back, when we know the place where westaading. To model this, we
define a percept of the agent. This percept coscarzone around the agent of size 3
times its vision length. This local zone is dividetb a grid, and the agent keeps a
temporary memory of whether it has watched thig pezently or not (see Fig: 2).
Moreover, it keeps the memory of the local positadrtargets, even if the agent is
watching in another direction.

R

Fig. 2. On the left, the global setting. On the right, theresentation of the agent’s percept.
The agent is located in the center (local coorésiatThe pink dots are in zones that the agent
has not seen for long, whereas the green dotaesavhich have been recently seen. We note
that the obstacles appear in the percept, becamiseippose the agent has a good knowledge of
this permanent environment. However, the targetvwhrdot) does not appear because this part
of the space has not been explored yet (pink dots).

In practice, the table of the dots associated thighsurrounding percept is updated
as follows:

The time step after the visit of the site, its atsted value is 1,

Then, at each time step, it is decreased of a vBlyek being the time span (in
number of steps) of the temporary memory. ARkesteps, the agent has forgotten it
has seen this zone.

Exploration and obstacle avoidance.
While it perceives no target, the agent implemeaisaction plan to explore its
environment and find a target. The principle ispgnat each time step:



1. the agent chooses at random a zone where it hasepatfor long (pink dot)
as a direction of exploration.

2. The agent goes in this direction for one time steith the maximum move
allowed.

3. If an obstacle in on the path, then it stops befeaehing the obstacle.

Target reaching and obstacle avoidance.

The agent records the location of the targetssirsitrrounding percept, while it has
not eaten them. When several targets are perceivedltaneously, it chooses the
closest as a goal to reach.

The obstacle avoidance process is necessarily mooraplicated than in the
exploration. Indeed, in the exploration mode, tlgerd forgets about its initial
direction as soon as it encounters an obstaclenWlgang to reach a target, the agent
must keep this goal. Moreover, it must determinteagectory that goes around the
obstacle and allows it to reach the target. We &tbp simple approach where the
agent follows a tangent trajectory to the obstadide the target cannot be reached
directly. We skip the details, because this prodigswt at the core of our research
guestions.

If the avoidance action plan fails (the agent tcked by the obstacles) then the target
is abandoned. The agent puts itself in exploratimue or chooses another target if it
has one in its surrounding percept.

Interactions with other agents.

At this level, others agents are simply consideasdobstacles, except that their
location is not fixed, and an agent tries to avoidy the agents which are visible.
Therefore, agents can occasionally overlap eachroth this case, we simulate a
shock, and each agent is pulled back a littlehendirection defined by both centers
of the agents.

2.3 Results

As expected, a single agent manages to reachaf smtgets rather easily, when all
targets are accessible (not confined in a positibere the obstacles prevent the agent
to go). It alternates periods of exploration andasfiet reaching. When there are two
agents in the same setting, each one behaves amdst was alone, except when it
has to avoid the other, which is not so frequent.



3 First level of empathy: using the observed statof the other

3.1 Principles of the model

As a first attempt, we consider only two agents] are suppose that one agent
(called Ag) remains as in the first setting (considering otlgents as simple
obstacles), while the other agent (called has some access to the stateApfind
uses this knowledge to get more targets. The midfarehce betweer; and Aq
agents is thaf\; agents evaluate if there is another agent aimirtheasame target,
which is better placed. In this case they givehip target and choose another or get
back to the state ‘exploring’. The main hypotheseanake are as follows:

« AgentA; has a perfect access to the state (exploringhieg¢arget, avoiding
an obstacle...) of agemt,, if Ay is directly visible. Indeed, we suppose that
this state is directly visible (like emotion expsEss in humans for instance).
Moreover, we suppose that the direction of moveAgfis also directly
accessible téy, as well as its vision length and width.

* WhenA; perceived\ is aiming at a target (states ‘reaching’ or ‘aviodd), A;
puts itself virtually in the place @, tries to identifyAy's target. IfA; is itself
aiming at a target, it checksA§ is better placed for this target, and if it is the
case, it drops for another one or for the statpl@ing’. Indeed, there is no
point spending time pursuing it, because finally tither will get it.

3.2 Implementation

We describe now in more details the functions guigentA;. When it has no direct
sight onA,, its behavior is the same Ag Hence we focus only on the case whige
is in A; direct vision zone.

The empathized agent, a “virtual” agent to anticipae the moves of the other
WhenA; perceivesh,, it creates an agent replicatidg (with the same position and
state), and uses it to anticipate the move®pfWe call this “virtual” agent the
empathized of\q by A;, and note itE;(Ag). Ei(Ag) replicates the characteristics A&f
which are accessible #y. It may also include some a priori hypotheseg\@rin this
case, the main hypothesis is tiAgtis of Ay type.

Setting the empathized agent’s target
WhenAy is in the state ‘reachingh; gets the location ofy's target by testing if each
target currently present in its surrounding perdsgocated on the direction pointed
by A. The target satisfying this test becoriggAy)’s target. If none satisfies the test,
it means thaf\y's target is not present iy’'s surrounding percept, ams considers
that the target df;(Ap) is “unknown”.

WhenAyis in the state ‘avoiding’, Al first considers thlestacles closer th, than
twice its radius, and selects the one for whichtthgctory ofA, is tangent. Then it



tests if each of the targets present in its sudogpercept, is behind the obstacle for
Aq. If several satisfy the test, it selects the dbssE;(Ag)’s target. If none, then the
target ofE; (Ag) is set unknown.

Dropping the current target?

OnceA; determineds;(Ag)’s target, it decides whether it is worth keepitsggown

target or not. The decision depends on the resestates of the agents:

« If Ajs state is ‘reaching’ andy's state is ‘avoiding’ then if the target is less
than twice closer téy, A; drops it, if the targets are the same. Indeezhritbe
expected that avoiding an obstacle takes longer tha movement in right
line.

< If both are in state ‘reaching’ then:

o Ifthe targets are the same, and if the distandg td target is smaller
than the distance &; to target, thed; drops the target

o If the targets are different, thenA§ is on the way to thé, target,
thenA; drops it.

WhenA, drops a target, it is ignored in its surroundirggept for a given number

of times steps. If after this time, for some reaggnhas not caught the target, and if
A; has it in its direct vision zone, it will considiéagain.

Examples
In the following figures, we illustrate the rulegpdied byA; to drop or not its target.
Fig. 3 shows a case where both agents share the waget and are in ‘reaching
state’. Fig. 4 and 5 show a case where the agbats she same target, and whage
drops the target and switches to the state ‘exugariOn Fig. 4, both agents are in
reaching state, whereas on FigASs in ‘avoiding’ state.
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Fig. 3. Example of configuration where ageft (blue disc with a green dot at its centre)
keeps its target. On the left, the global settany] on the right the surrounding percepfef
The empathized ageft;(Ag) is represented in cyan color. Both agents sharsdhee target,
but it is closer tdA;, henceA, keeps its target.
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Fig. 4. Example of configuration where agehi (blue disc with a green dot at its centre) drops
its target. On the left, the global setting, andtloa right the surrounding percept &f. The
empathized ageri;(A) is represented in cyan color. Both agents sharsahe target, but it
is closer toA, hence Al drops its target. It will switch to ttate ‘exploring’
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Fig. 5. Example of configuration where ageht (blue disc with a green dot at its centre) drops

its target. On the left, the global setting, andtloa right the surrounding percept &f. The
empathized agerft;(A) is represented in cyan color. Both agents sharsdhe target, it is
closer toAy, butA; is currently avoiding an obstacle. It judges tAghas better chances to get
the target and thus drops it. It will switch to #tate ‘exploring’

3.3 Simulation results

The graph of Fig. 6 shows the averaged number ofltatargets after 1000 time
steps for agemy; andA,, over 50 replicas. Remember that the targetsesyenerated
automatically when caught by an agent: each time tanget is caught another is
added at random in the setting. Hence, the numbewailable targets is constant.
Moreover, to simplify, we made this first test wath any obstacle.



We note that in this configuration (vision lengtls Gand moving speed 0.005),
agentA; performs better thaA,. The advantage is of a few percents, but it isisbb
It is due mainly to the cases whekgfollows A; on targets tha#, has no chances to
get the targetd, looses then a precious tinfg. avoids this mistake with its strategies
for dropping bad targets.
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Fig. 6. Percentage of targets caughtfylevel 1) andA, (level 0), during 1000 time steps, for
different numbers of targets in the setting (thgets are constantly regenerated, and located at
random in the setting, when caught by the age®s)the left graph, the vision angle is 45°, on
the right graph, it is 30°. The vision length i§ Qfor a square setting of size 1), the maximum
speed is 0.005, and the number of obstacles irs¢lteng is 0. The confidence intervals are
standard deviations computed on 50 replicas.

Note that this advantage is not always significu instance, when the vision
length is smaller (0.3) and the moving is fastef28), the advantage @f; is not
significant (see Fig. 7). Indeed, when the visiength is small, the cases of sharing
targets are less frequent, and the path possilligled by dropping a target is smaller.
This path is also relatively smaller when the mgvsiep is higher. Therefore, the
advantage to avoid useless moving for a bad té&sgehaller.

These results suggest that the capacity to exphbier's state is not always a
decisive advantage in such games where one must taets before the other.
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Fig. 7. Percentage of targets caughtAylevel 1) andA, (level 0), during 1000 time steps, for
different numbers of targets in the setting (thhgets are constantly regenerated, and located at
random in the setting, when caught by the age®ts)he left graph, the vision angle is 45°, on
the right graph, it is 30°. The vision length i8 Qfor a square setting of size 1), the maximum
speed is 0.025, and the number of obstacles irs¢lteng is 0. The confidence intervals are
standard deviations computed on 50 replicas.

4 Discussion

The reported experiment should be considered aspretiminary. Indeed, in our
view, its main interest is to illustrate an apptoadich opens a large set of possible
experiments on abstract hypotheses on empathy.cGuid wonder to which extent
this approach brings something different from eémgtones. We first briefly discuss
these differences with a few potentially competapproaches, and then we draw
some perspectives.

Taking into account the likely move of an oppon&nt typical problem of the
theory of games (Von Neumann & Morgenstern 1944shiNB950, Maynard-Smith
1982), which is common to our approach. The maffeidince is that we set this
problem for an agent model with connected percapiod action, taking place in a
geometric space, whereas game theory agents haeeatjg no perception of their
opponents. To relate the perception of others &ees@nd geometric shapes, and their
likely moves, demands different mechanisms. Themdation of the likely aimed
target is a very preliminary example, mimickingairsimplistic way the dynamics of
shared attention.

Similarly, one could consider that the empathoa &mple particular case of the
general “belief, desire, intention” (BDI) architeo¢ (Bratman 1987, Wooldridge
2000), because this agent has some belief abowtdHd (its surrounding percept), a
desire (to reach targets), and an intention (toeraknove toward a target, to keep or
drop it as a goal). However, BDI architecture gafigrdoes not address how to



integrate the representation of others. And whedogs, this is not related with a
model of perception/ action embedded in a geomeioidd.

Of course, a lot of other agent models evolve geametric world, which grounds
their perception mechanism. “Sugarscape” (Epsteidxll 1996), or social insect
models (Dussutour et al. 2004, Deneubourg 1986)die populations of agents with
a limited perception of the geometric territoryvitnich they evolve, and choosing
actions according to this perception. Hence, theathon could be seen as yet
another model of this type. In many respects,. iTe difference is also to include in
the agent a representation of the perception obther. Such a feature is generally
not included in the models we cited.

This problem of representing the representatiothefother brings immediately
new questions and new difficulties that we onlyibhe uncover in this paper. We
would like to conclude this discussion by mentignisome developments that we
envisage in the future.

Our preliminary results tend to show that empatiaipacities are not so important
in the competition for reaching external targetse Wkpect them to be much more
important in a game where the agents play togetbee can imagine different
settings, where some agents are seeking contattie ofhers, and others are escaping
them on the contrary. In this case, the mutual mas®n becomes crucial to manage
to reach or to avoid the other.

We expect that agents will have to spend a patheif time to actively observe
each other, in order to get information about tiséates and intentions. This implies
that the representation of the other gets someaspemse on several time steps, even if
it is not actually in the direct vision zone, amdssthe problem of modeling the other's
moves while it's not directly perceived.

We intend to investigate more carefully a particustuation in these future
experiments: when an agent conceives itself inrépeesentation of the other. For
instance, we can imagine games in which the agenidweed to assess how it is
seen by another agent (for instance as a threahnoropportunity). Such an
investigation appears particularly important toligrage different theories about the
role of the others in the design of a self (seer@oh993).

This approach will certainly progressively add mérections and variables to the
agents. For instance, it will be interesting todduice a more sophisticated memory,
connected with a variable coding for ‘pleasure’ gpain’. It is indeed difficult to
investigate the constitution of a self without somere complete treatment of the
perception of time, and how this perception is rfiediby the presence of others.

Nevertheless, we consider important to begin witle simplest settings, to
understand very well the role of each added featarehis progress to higher
cognitive capacities.
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