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Abstract 
Agent-based simulation is widely used to simulate pedestrian crowd behavior. These simulations 
typically are implemented in a discrete time manner, where each agent decides its movement in 
every time step, independent of the fact that agents may move in different speeds. The non-
uniform movements of agents result in a crowd system’s spatial and temporal heterogeneity, 
which can be better exploited using a discrete event model where an agent’s decision making is 
triggered by the changes of its external environment and/or its internal states. Motivated by the 
above observation, this paper systematically studies the discrete time and discrete event models 
of agent-based crowd behavior simulation and compares their performance results. The 
experiment results show that the discrete event model is able to track the crowd system’s 
“activities” in both space and time, and thus leads to more computation efficient simulations. 
This work builds a ground for performance analysis for large scale agent-based crowd behavior 
simulations.   
Keywords: Crowd behavior simulation, Spatial-temporal heterogeneity, space resolution, discrete 
event modeling, discrete time modeling.  
 
1. Introduction 
Agent based simulation has been widely used in simulating complex social phenomena [1], like 
the crowd behaviors. Many pedestrian crowd models have been developed, see, e.g., [2]-[7]. All 
of them are discrete time models and featured with a virtual environment and multiple pedestrian 
agents. The simulations proceed in a discrete time manner, where each agent performs a decision 
making to decide its next movement in each time step. Such a discrete time approach makes it 
difficult to exploit the crowd system’s spatial and temporal heterogeneity resulting from agents’ 
non-uniform movements. To give an example, consider two agents situated in a large 
environment where one agent moves 10 times slower than the other. In a discrete time simulation, 
both agents make a movement decision in every time step. This is independent of the agent’s 
speed. However, since one agent moves much slower than the other, intuitively one would think 
that the slower agent does not need to make movement decisions as frequently as the fast one. 
Thus a more computation efficient way of simulating the two agents is to allow the fast agent to 
make movement decisions more frequently and the slow agent to make movement decisions less 
frequently. In pedestrian crowd behavior simulations with realistic human-like behaviors, agents 
typically have non-uniform movements due to different individual characteristics such as moving 
speed, personality, the psychological states (e.g., panic, non-panic),  and other factors. These 
non-uniform movements result in spatial and temporal heterogeneity in terms of agents’ 
movement and decision making. Thus it is desirable to explore such heterogeneity for more 
computation efficient simulations.  

In this paper, we present a discrete event approach to model and simulate pedestrian crowd 
and compare it with the discrete time model. The discrete event model uses a concept of “space 



resolution”, which defines the threshold of an agent’s position change in the environment, to 
decide the frequency of an agent’s decision making. With the space resolution, an agent’s 
position change less than the space resolution threshold does not trigger its decision making. Nor 
does it trigger the message passing from the agent to others. As a result, agents that move slowly 
make movement decisions less frequently than the fast agents. This concept of “space resolution” 
is derived directly from the quantization and activity concepts presented in [15]. The value of the 
space resolution has significant impacts on the crowd behavior simulation. On one hand, the 
larger the space resolution is, the less frequently agents make decisions, and thus the more 
efficient the simulation is. On the other hand, the space resolution means that an agent does not 
update its position until its position change bypasses the space resolution threshold. This 
introduces position errors in the crowd simulation. The larger the space resolution is, the larger 
the position errors are, and thus the less accuracy the simulation is. We point out that similar 
kind of relationships also exists in a discrete time model, whose efficiency and precision depend 
on the value of the time step. A main effort of this work is to establish a formal “fair-
comparison” rule that quantifies the position errors of both the discrete time and discrete event 
models, and conduct experiments from different aspects to compare the two. Note that both the 
space resolution in the discrete event model and the time step in the discrete time model are 
global variables shared by all agents. In this work, we use the number of decision making as an 
indicator of simulation performance. This is based on the observation that an agent’s decision 
making usually involves complex logics, and thus accounts for the most significant part of 
computation in a simulation. We carry out this work based on the DEVS [10] modeling and 
simulation framework, in particular the DEVSJAVA environment [16]. The DEVS framework 
was chosen due to its formal formalism and its capability of modeling both the discrete time and 
discrete event models. Nevertheless, we note that the model design and the conclusions drawn in 
this research are general and do not rely on the DEVS framework.  

The remainder of this paper is organized as follows. Section 2 introduces some related work 
of the pedestrian crowd simulation, and discrete event models. Section 3 presents the crowd 
system, the discrete event agent and discrete time agent models of the crowd system. Section 4 
presents a quantitative analysis of the two models. Section 5 shows experiment results from three 
experiments. Section 6 concludes this work and proposes some future works.  
  
2. Related work 
Pedestrian crowd simulation has been studied for a long time. A well known model is Helbing’s 
physics and social force model [2] where the behavior is described as the vector addition of the 
separate force terms reflecting different environmental influences. This model has successfully 
simulated several important features of crowd behavior, such as lane formation in crowds with 
opposite walking direction, oscillations of the crowd passing direction at a bottleneck, alternating 
collective patterns of motion at intersections and so on. Kaup’s work [3] extends Helbing’s 
model to produce more realistic behavior of an individual pedestrian under panic or non-panic 
conditions.  

Crowd behavior is also simulated for studying emergency evacuations and safe egress. Pan [4] 
developed a prototype system to study some emergent human and social behaviors, such as 
competitive, queuing, and herding behaviors, during emergency evacuations. The work of [5] 
provided a High-Density Autonomous Crowds (HiDAC) system which can be used to simulate a 
wide variety of emergent behaviors such as lane formation, pushing behavior and so on, by 
applying a set of psychological and geometrical rules with a social and physical forces model. 



S.R. Musse [6] proposed a hierarchy crowd model with three different ways for controlling 
human behaviors. The work of [7] provided a common framework to model the group structures 
in pedestrian crowds and several group structured are demonstrated. Seck, M., C [8] et al 
proposed a dynamic personality filter which is used to model more realistic human behavior.  

Most of these crowd behavior models adopt a discrete time based simulation, which is 
featured with a series of discrete time steps. In each time step, each pedestrian agent makes a 
decision to decide the next movement, based on its internal states and external environment. 
Such a discrete time based approach treats the crowd a uniform entity, which makes it difficult to 
exploit the heterogeneity of the crowd system. Thus, this work proposes a discrete event based 
approach to achieve more computation efficient simulation. To our knowledge, there are several 
works focusing on building agent based social system on the discrete event based paradigm. 
Dubiel’s work [9] integrated ABS with DES to model humans traveling freely through a real-
world problem from the theme park industry. Gordon C. Zaft et al [12] developed a Sugarscape-
style artificial society based on the Discrete Event System Specification (DEVS) formalism.  
However, little literature has been reported about exploring the effect of spatial and temporal 
heterogeneity on the agents’ decision making and communication. This is what we want to 
achieve in this paper. 
 
3. Discrete Event and Discrete Time Model of Crowd Behavior Simulation 
A crowd system contains a simulated virtual world and multiple pedestrian agents. Before 
introducing the details of the discrete event and discrete time agent models studied in this paper, 
we briefly describe the major parameters of agents and the environment. In the following 
sections, to save space, the discrete event based agent model and the discrete time based agent 
model will be stated as DES model and DTS model respectively.  

A crowd consists of a virtual environment, obstacles and multiple pedestrian agents. In this 
paper, the virtual environment is a rectangle area which is measured with a width and length. 
There are two categories of agents, Obstacles and Virtual pedestrians. Obstacles are stationary 
rectangle objects in the environment that block agent’s movement. Virtual pedestrians are a set 
of autonomous pedestrian agents that move in the environment while avoiding collisions with 
obstacles and other agents. Each pedestrian agent is featured with a perception model and 
behavior control model. The perception model defines an elliptical area in front of the agent 
where the agent can perceive obstacles and other nearby agents. The behavior control model uses 
a bio-inspired behavior control architecture which decides the agent’s movement (see [11] for 
more details). In this work, each pedestrian agent has two behaviors: 

1) Move: This behavior is used to simulate the casual movement of each agent. An agent 
moves to pre-defined destinations or randomly generated destinations in a sequential 
order. The moving path is the shortest path from the current position to the destination. 
And when a destination is reached, the agent moves to the next destination. In this work, 
the sequence of destinations is defined explicitly to ensure both the DES and DTS models 
use the same set of destinations for the purpose of fair comparison between them.  

2) Avoid: This behavior is used to simulate the obstacle avoidance in the movement. When 
an agent is within a predefined minimum distance from the nearest neighbor agent or 
obstacle, it will stay away from it. The action of this behavior is as follows: If the agent is 
on the left side of the avoiding object, it turns right with an angle; otherwise, it turns left. 
In this process, a basic “collision prediction” subroutine is used to predict if the current 



computing agent will collide with other agents once the turn is finished. If the subroutine 
returns true, the agent will try other angles recursively.  

Each pedestrian agent has an ID that defines the global unique identification of the agent, and 
Speed that is the agent’s moving speed. Two more important parameters of each agent are 
SpaceResolution and TimeStep. For the DES model, SpaceResolution defines the position change 
threshold of the agents. As described above, the larger the space resolution is, the less frequent 
the agents’ decision making is. For the DTS model, TimeStep defines the time step of the 
simulation. It also affects the decision making frequency of the agents. The larger the time step is, 
the less frequent the agents’ decision making is. As will be discussed later, both the space 
resolution and time step introduce position errors in the crowd simulation.  

  
3.1 The Discrete Time Model 
The DTS model is straightforward to understand. At every time step, each agent checks its 
environment (for example, if a destination is reached or if there are other agents in nearby 
locations), makes a decision to decide its next movement (e.g., move forward, or move sideways 
to avoid collision), and then carries out the movement for this time step.  This will change the 
agent’s position. Thus at the next time step, the agent goes through the same sequence again to 
check its environment, make a decision, and carry out the movement.  

Each agent is implemented as a DEVS atomic model and has two states “decision_making” 
and “update_position”. At the “decision_making” state, the agent checks its environment and 
makes a decision to choose a movement action. After that, the agent transits to the 
“update_position” state where its position is updated. The above procedure is performed for each 
time step. The procedure is implemented in the internal transition function deltint() of an agent. 
The pseudo-code is shown in Fig. 1.    

 
 
 

 
 
 
 
 
 
 
 
 

Fig. 1 Internal transition function of the DTS model 
 

3.2 The Discrete Event Model   
Unlike the DTS model, an agent in the DES model does not make a decision at every time step. 
Instead, the decision making is based on the “change” of the environment and/or the “change” of 
the agent’s own position (according to the space resolution). Whenever such a change happens, 
an agent checks its environment and makes a decision to choose a movement action. Based on 
that action, it calculates the duration (space resolution divided by the agent’s current moving 
speed) of the action, and after that duration elapses it performs the action (move or avoid) to 
update its position. This means that an agent does not update its position unless the position 
change equals to the space resolution. When an agent updates its position, it also notifies its 

procedure deltint() 
1 if the agent’s current state is “decision_making” 
2 check the environment; 
3  Action a       perform a decision making; 
4          holdIn(“update_position”, Timestep);  
5 else  if the agent’s current state is “update_position” 
6 update position based on action a; 
7          holdIn(“decision_making”,0.0); 
8 end if. 
end procedure deltint.



nearby agents because this represents a “change” in the environment for those agents. Once those 
agents receive the message, they carry out the same sequence, i.e., check environment, make a 
decision, perform action, and notify nearby agents, as described above. Note that because agents 
constantly move, the couplings between an agent and its nearby agents is set up dynamically 
based on agent’s positions.  

Each agent is modeled as a DEVS atomic model which includes an external transition 
function, an internal transition function, a confluent transition function (internal transition 
function first and then the external transition function) and an output function. These functions 
are used to decide the agent movements and inter-agent communication. Figure 2 shows the state 
transitions of an agent. In the “active” state, an agent checks its environment and makes a 
decision. In “move or avoid” state, the agent performs the action and carries out the movement. 
While in “message” state, the agent notifies the neighborhood agents about its new position. 
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Fig. 2 Agent state transition diagram 

 
Initially, the agent stays at the “active” state where the agent performs a decision making 

through the behavior control model to decide the next movement. The result is an action which 
indicates where the agent should move to. After holding in duration δ, the agent transits to 
“move or avoid” state where the agent moves to the new position. The agent then goes to the 
“message” state in order to send its new position information to the neighborhood agents if the 
movement distance is equal to the agent’s space resolution SR. Before sending the position 
information, the couplings between the agent and the neighborhood agents are setup. And after 
the message is sent, the agent returns back to the “active” state. After each movement or when a 
new message is received from neighborhood agents, the agent performs a new decision making 
which continues the procedure mentioned above. The following functions implement this state 
transition diagram. 

The external function is used to capture the messages sent from other agents. When a 
message is received, it transits to the “active” state. The procedure is shown in Fig. 3. 
 
 
 
 
 
 

Fig. 3 External function 
 

procedure deltext(e, x) 
1 if message received in x 
2  holdin(“active”, 0.0); 
3 end if. 
end procedure delext.



In the internal function, the agent performs a decision making if the current state is “active”. 
Otherwise, it performs the movement, updates its position and sends the new position to the 
neighborhood agents if the movement distance is greater than its space resolution. The procedure 
is shown in Fig. 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Internal function 
 

The output function is used to send messages to the neighborhood agents if the current state 
is “message”. The procedure is described in Fig. 5. 
 

 
 

 
 
 
 

Fig. 5 Output function 
 

4. Analysis of the DES and DTS Models  
Both the DES and DTS model introduce imprecision, also referred to as position error in this 
paper, in modeling agents’ position updates. For the DTS model, an agent’s position will not be 
updated until the time step is reached. Within a time step, an agent’s position is considered as 
unchanged. For the DES model, an agent’s position will not be updated until the space resolution 
threshold is reached. Any position change within the space resolution threshold is not captured. 
This section analyzes the position error introduced by the DES and DTS models and studies their 
relationship. The goal is to build a ground for comparing the DES and DTS models and showing 
how the DES model can exploit the spatial-temporal heterogeneity of the crowd system. 

We compare both the DTS and DES models with an analytic model for an agent’s position 
update. Assume there are ݊ agents in the crowd and the simulation is running over the time 

procedure output() 
1 if the agent’s current state is “message” 
2  send a message to the coupled agents; 
3 end if. 
end procedure output.

procedure deltint() 
1 if the agent’s current state is “active” 
2          update the position; 
3  check the environment; 
4  Action a       perform a decision making; 
5          holdIn(a.name, a.duration); 
6 else 
7         if the agent’s current state is not “message” 
8                 perform the action and update the position; 
9                 if movement distance greater than SR 
10                        setup couplings with the neighborhood agents; 
11                        holdin(“mesage”, 0.0); 
12                        return; 
13        else 
14                holdin(“active”, 0.0); 
15 end if. 
end procedure delint. 



base ሾ1ݐ,  is the ending time. Assume the position at time 2ݐ is the starting time and 1ݐ 2ሿ, whereݐ
 ,is known of all agents. This position is also called initial position. Using the analytic model 1ݐ
an agent ݆ ( )’s position at time  ( ) is calculated through Eq.1.  
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In both DES and DTS, an agent’s position is updated discretely. Eq. 2 and Eq. 3 represent the 
position update of the DTS and DES models respectively, where  is the time step of the DTS 
simulation and SR is the space resolution of the DES simulation. In the DTS model, Eq.2 shows 
that before the time step  is reached, the agent ’s position jtp ,

r
 is not changed.  Thus, compared 

with the analytical model, between the time step  and , there is an error of agent ’s 
position. Similarly, in the DES model, Eq.3 shows that an agent’s position will not be updated 
until the space resolution threshold is reached. Note that in Eq. 3, Pt-1 should be interpreted as the 
agent’s previous position, instead of the position at time .  

)2(
t     1-t tif

1-t tif          

1
,,1

,1

,
⎪⎩

⎪
⎨
⎧

Δ+=+

Δ+<
=

∫
−

−

−
t

t
jtjt

jt

jt dtvp

tp
p rr

r

r

 

 

)3(
if

if

1 1
,,,1

1
,,1

,

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=+

<
=

∫ ∫

∫

− −
−

−
−

t

t

t

t
jtjtjt

t

t
jtjt

jt

SRdtvdtvp

SRdtvp
p

rrr

rr

r

 

 
In order to make a fair comparison between DES and DTS models, the following condition 

should be satisfied: The maximum position error in both DES and DTS models is same. In DTS 

model, from Eq.2 the maximum position error is ∫
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. Here  maxv  is the maximum moving 

speed among all agents. While in DES model, from Eq.3 the maximum error is the space 
resolution SR of agents. Thus, Eq.4 holds when the DES and DTS model are compared. 
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When the moving speed of an agent is constant during a time step, Eq.4 can be simplified to 

Eq.5 shown below. In the following, we use TS to represent the time step of the DTS model. 
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Eq.5 is used as a basis in this work for comparing the DES and DTS models.  In the next 
section, three experiments are used to compare the two models, and to show how the DES model 



can result in more efficient computation by exploiting the spatial-temporal heterogeneity of 
crowd behavior.   

 
5. Experiment Results 
This section compares the DES and DTS models from different aspects, including position errors, 
number of decision makings and execution time. It intends to show that the DES model can 
achieve a more efficient simulation than the DTS model through comparing the execution time 
and number of decision makings of both models under the fair comparison condition described in 
section 4. The first experiment compares the maximum position errors of both models. The 
second experiment shows that the computation in DES model is less than that of DTS model if 
there is a non-uniform movement in the crowd. And the last experiment further shows that the 
DES model is more efficient than the DTS model if there is speed heterogeneity in the crowd. 
 
 5.1 Experiment 1 
In this experiment, position errors of both DES and DTS models are compared, and the number 
of decision makings is explored for the simulation with one agent whose moving speed is 0.5. 
The agent moves through a series of destinations which are pre-defined. When all destinations 
are arrived, the simulation stops and position errors and the number of decision makings are 
calculated. Here, the position errors are based on the comparison between the DES/DTS model 
and the analytic model (see Eq. 1). Fig. 6(a) and Fig. 6(b) show the position errors of the two 
models under two space resolutions SR and two time steps TS. As described in Section 4, to 
ensure fair comparisons between the two models, for a specific space resolution SR in a DES 
simulation, the corresponding time step TS in a DTS simulation is calculated as TS = SR/v, 
where v is the agent’s moving speed (0.5 in this experiment).  

     
(a) DES model                                                                  (b) DTS model 

Fig. 6 Position errors in DES model and DTS model (SR=1.35 and 2.7, correspondingly TS = 2.7 and 5.4) 
 

Fig. 6(a) shows the agent position errors in DES model under two space resolutions 1.35 and 
2.7. X-axis represents the simulation time. Y-axis indicates the position error at different time. 
For SR=1.35 the agent updates its position at time 2.7*N (N=1, 2, 3…) since the moving speed is 
0.5. And the position error is increasing linearly between two position updates. Similarly, for SR 
= 2.7, the agent updates its position at time 5.4*N (N=1, 2, 3…). Fig. 6(a) shows that the greater 
the space resolution, the greater the position error the agent will have, and the less the simulation 



accuracy is. Fig. 6(b) shows the position errors in the DTS model under two time steps 2.7 and 
5.4. It shows that the position error increases linearly between two time steps. For the time step 
2.7, the maximum position error is 1.35. Note that when the agent approaches a destination (i.e. 
the time step 364.5), there exists position error because in our implementation if the agent is near 
the destination within a specified distance range, we consider that the agent has arrived at that 
destination. Fig. 6 confirms that both the DES and DTS model introduce position errors in 
agents’ position update. To make a fair comparison, the maximum position error in both models 
should be the same. The DES model with SR=2.7 and the DTS model with TS=5.4 can be fairly 
compared since the maximum error in both models is same. Similarly, the DES model with 
SR=1.35 and the DTS model with TS=2.7 can be fairly compared because of the same maximum 
error. 

Besides the maximum position error, the space resolution of a DES model also affects the 
number of decision makings the agent will perform. Fig. 7 shows the relationship between space 
resolution and the number of decision making the agent has performed in the DES model for 
different space resolutions. Here the number of decision makings calculated as the number of 
times the agent is in the “active” state since a decision making is performed whenever the agent 
is at that state (see section 3 for more details).  
 

 
Fig. 7 Relationship between space resolution and number of decision makings of DES model 

  
In Fig.7, X-axis represents the space resolution and Y-axis represents the number of decision 

makings the agent has performed to traverse all predefined destinations. The number of decision 
makings decreases as the space resolution increases. This is because the greater the space 
resolution, the longer distance the agent can move in one step. Since the total distance the agent 
shall traverse is the same among different space resolutions, the longer distance the agent can 
move in one step, the fewer decision makings the agent needs to perform to finish all these 
destinations. As a result, one can increase space resolution to reduce the number of decision 
makings for more efficient computation. However, as shown by Fig. 6, the greater the space 
resolution, the greater the position errors are. Thus, one needs to consider the tradeoff between 
computation efficiency (number of decision making) and simulation accuracy (position error) 
and choose the space resolution in a balanced way.  
 
5.2. Experiment 2 
In experiment 1 the relationship between the number of decision makings and space resolution is 
explored for the simulation with one agent. Experiment 2 further compares the number of 
decision makings in both models for both uniform (i.e. agents with same moving speed) and non-



uniform (i.e. agents with different moving speed) pedestrian crowds. The goal is to show that the 
number of decision makings in DES model is fewer than that of DTS model if the agents have 
non-uniform movements. In other words, the computation in DES model is less than that of DTS 
model, thus the DES model is more efficient than the DTS model. Otherwise, if the crowd has a 
uniform movement, the number of decision makings in DES model is the same as that of DTS 
model. 

Three agents are used in this environment. The simulation time is 120000. Two cases are 
experimented. One is a uniform crowd where all agents have the same moving speed 0.5; the 
other is a non-uniformed crowd where agents have different moving speeds (0.005, 0.05 and 0.5 
respectively). Fig. 8 shows the relationship between space resolution (SR) (or time step TS) and 
the average number of decision makings of the uniform crowd. The results of the non-uniform 
crowd are shown in Fig. 9. To ensure a fair comparison, TS is 2* SR since the maximum moving 
speed of the agents is 0.5.  The average number of decision makings is the total number of 
decision makings during the simulation divided by the number of agents. 

 

    
Fig. 8 SR/TS and decision makings (same speed)            Fig. 9 SR/TS and decision makings (different speed)  

 
Fig. 8 shows that agents of DES and DTS models perform almost the same number of 

decision makings for all space resolutions. This is because in DES model, each agent in each 
time step will perform a decision making which is the same as the case in DTS model. However, 
for the non-uniform crowd (Fig. 9), DES model performs fewer decision makings than the DTS 
model. In other words, for the non-uniform crowd, under the fair comparison condition where 
two simulations have the same maximum position error, the DES model is computation more 
efficient than the DTS model. This is because in the DTS model, all agents need to make a 
decision in every time step. Thus a slow agent makes the same number of decisions as a fast 
agent. However, in a DES model the slow agent makes less number of decisions than a fast agent. 
To better see this, Fig. 10 shows in the case of non-uniform crowd, the relationship between 
space resolutions (or time steps) and the number of decision makings of each individual agent. 
Each agent in DTS model performs the same number of decision makings since each agent 
performs a decision making in each time step (shown by the curve indicated by “DTS”). The 
other three curves represent the three agents in DES model. As can be seen, the faster the agent 
moves, the larger number of decision makings the agent performs, since the faster agent 



performs decision makings more frequently than the slower ones. Fig. 9 and Fig. 10 show that in 
a non-uniform crowd, the DES model requires less computation than the DTS model. This will be 
further illustrated in Experiment 3.  
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Fig. 10 SR/TS and individual agents’ decision makings (different speed) 

 
5.3. Experiment 3 
As an important research problem, evacuation of pedestrian crowds under emergent situations 
such as fire alarms has been studied for a long time [2]. Thus, in this experiment, we study the 
effect of space resolutions on decision makings and system “activities” under emergent situations. 
Here, activities refer to the distribution of the crowd system’s decision makings in the 
environment. A snapshot of an emergent evacuation is shown in Fig. 11. In the simulation, 
agents move randomly in the environment and after a specified time, an emergency starts and all 
agents escape out of the environment with their speeds doubled. The system’s spatial “activities” 
are shown in Fig. 12.  As can be seen, more “activities” are distributed near the exit area since 
more decision makings are performed under the emergent situation and all agents escape from 
the exit with their speed increased.  
 

Speed: 0.5

Speed: 0.05

Speed: 0.005

DTS 



    
    Fig. 11: Simulation of emergent evacuation                                   Fig. 12: Illustration of system activities 
 

Besides spatial heterogeneity, this system’s activities also exhibit temporal heterogeneity. 
This is illustrated in Fig. 13, which shows the average number of decision makings of 64 
simulation time intervals (i.e. interval i is [100*i, 100*(i+1))) of a simulation.  The simulation 
contains a non-uniform crowd with 20 agents where the moving speeds 0.00005 and 0.005 are 
distributed uniformly among 10 agents and the other 10 agents’ moving speeds are 0.5. Note that 
these are agents’ initial moving speeds. Agents’ moving speed increase after emergency 
(described below). The simulation time is 6400 and the emergency start time is 1500.5. Space 
resolution SR is 0.5 and time step TS is 1.0. The average number of decision makings in each 
time interval is calculated as the total number of decision makings in that interval divided by the 
number of agents. Curve 1 shows the average number of decision makings of the DTS model for 
different time intervals. Since the number of decision makings of the DTS model dependents 
only on the time step, it is not changed for either the normal or emergent situations. Curve 2-4 
show the distribution of the average number of decision makings of the DES model. Curve 2 and 
3 are for the emergent cases where each agent gets a 100X and 50X speed increase respectively 
as along as its speed does not exceed 0.5. This constraint is used to keep a same maximum 
position error for both models, thus ensure a fair comparison. Curve 2 and 3 show the average 
number of decision makings increases after the emergency because of the speed increase. The 
more the speed increases, the larger number of decision makings. Curve 4 shows the average 
number of decision makings in each time interval for a simulation without emergency. In this 
case, the average number of decision making maintains the same throughout the simulation.  
 



 
Fig.13 The distribution of the average number of decision makings 

 
To verify the computation advantage of the DES model as compared to the DTS model, we 

measure the execution time of both models for both the uniform and non-uniform crowd. We run 
crowd behavior simulation with 100 agents. Agents’ initial speed in the uniform crowd is 0.05 
and when an emergency occurs each agent doubles its speed. In the non-uniform crowd, the 
initial speed of each agent is generated randomly within the range [0.05, 0.5]. Similarly, when an 
emergency occurs each agent doubles its speed. The simulation time is 6400 and the emergency 
occurs at the time 500.5. Fig. 14 and Fig. 15 show the average number of decision makings and 
execution time for the uniform crowd and non-uniform crowd respectively. “NoEmerg” and 
“Emerg” stand for the normal case and emergent case respectively. “DM” stands for the average 
number of decision makings and “Time” stands for the execution time. The left-side Y-axis 
shows the execution time for each spatial resolution in milliseconds. And the right-side Y-axis 
shows the corresponding average number of decision makings. Fig. 14 shows that agents in both 
models perform almost same number of decision makings in either the normal case or the 
emergent case. Because of this, there is no big difference of the execution time of both models 
under both the normal and emergent cases. For the non-uniform crowd (Fig.15), the DES model 
is more efficient than the DTS model in both cases since the execution time of the DES model is 
less than that of the DTS model, resulting from the less number of decision makings performed 
in the DES model. Both Fig. 14 and Fig. 15 show that in the emergent case, agents perform more 
decision makings than the normal case. And thus, in the emergent case, the execution time is 
more than that of the normal case. This is due to the speed increase after the emergency starts. 
The faster the agents move the more decision makings they will perform (see section 3 for more 
details).  
 

4.DES. Without Emergence 

Emergency start point
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Fig. 14 Execution time of uniform crowd in emergent evacuation 

 

 
Fig. 15 Execution time of non-uniform crowd in emergent evacuation 

 



6. Conclusion and future work 
This paper presents a discrete event model for simulating pedestrian crowd to exploit the crowd 
system’s spatial-temporal heterogeneity resulting from agents’ non-uniform movements. Both 
discrete event and discrete time models are considered and their performance results are 
compared. The experiment results show that the DES model can achieve better performance 
results (fewer decision makings and less execution time) than the DTS model for the non-
uniform crowd. This is because the discrete event model is able to track the crowd system’s 
“activities” in both space and time, and thus lead to more computation efficient simulations. 

Future work will be carried out from several aspects. First, besides the decision makings, 
space heterogeneity also affects the frequency of agent interactions, such as the number of 
message passing between the agents. Thus one future work is to explore how the DES model 
affects the message passing among agents. Second, we will carry out more research to study how 
the DES model can affect the position error for more complex simulations with more agents. 
Third, we will study approaches of choosing an appropriate space resolution for a specific agent 
based simulation, and applying the proposed DES approach to other general agent based systems. 
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