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Anstract – Asynchronous cellular automata, synchronous cellular automata, 
and a special class of hybrid automata are three, essentially interchange-
able, forms of a single class of systems. � is article expresses these seemingly 
distinct formalisms as mathematical systems, and from this basis shows 
that the former are homomorphic simplifi cations of a particular class of 
hybrid automata. It is further conjectured that, as a consequence of this 
relationship, every asynchronous cellular automaton is essentially peri-
odic: like their synchronous counterparts, asynchronous automata appear 
to settle into a very regular, predictable trajectory if they are observed for a 
suffi  ciently long period of time. � is conjecture is based on recent work in 
the theory of diff erential automata with constant derivatives. � e paper 
concludes with a discussion of problems posed by the hypothesis and of its 
consequences for discrete event systems that are schedule preserving.
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INTRODUCTION

Self-clocked cellular automata are similar to synchronous cellular automata, 
of which the Game of Life [Gardner, 1970] is best known, but diff er in 
that each cell evolves at its own rate. ! e rate is expressed as a duration, 
which can be any real positive number, for the cell’s state. A fi xed duration 
is assigned to each cell, and the cell changes state at intervals equal to the 
duration. A transition rule, which is common to all cells, assigns the transi-
tioning cell a new state that is determined by the current state of itself and 
its neighbors.

To be concrete, consider a one dimensional, self-clocked cellular automa-
ton with n cells indexed 1, 2, …, n. ! e neighborhood of cells with index 
1 < k < n are the cells at k-1 and k+1. ! e neighbors of the leftmost cell at 
k=1 are the cells at locations 2 and n; the neighbors of the rightmost cell are 
at locations n-1 and 1. ! e subscript k,l is used to denote the left neighbor 
of cell k and k,r the right. ! ree pieces of information are maintained for 
each cell: the time e

k
 that has elapsed since its last transition, its discrete 

state q
k
, and its duration P

k
. ! e elapsed time begins, and remains, in the 

interval [0,P
k
]. ! e transition rule   maps the state of a cell and its neigh-

bors into a new state when e
k
=P

k
. A three step procedure is used to simulate 

the cellular automaton:

Find the time t1. 
N
 until the next transition by fi nding the smallest 

P
k
-e

k
.

For each cell add t2. 
N
 to e

k
. If e

k
=P

k
 then calculate  (q

k
,q

k,l
,q

k,r
) and save 

the result to !
k
.

For each cell, if e3. 
k
=P

k
 then set q

k
 to !

k
 and set e

k
 to zero.

Go to step 1.4. 

Self-clocked cellular automata can simulate asynchronous cellular automata 
that have a fi xed update order. Without loss of generality, consider n cells 
that are updated from left to right. To simulate this update order, the dura-
tion of each cell is n and the elapsed time is initially e

k
=n-k. ! e cell at posi-

tion k has its fi rst update at time k. Subsequent updates occur at times k+n, 
k+2n, … so that in every n time steps each cell is updated just once and in 
the desired order.

To illustrate this construction, consider an automaton with three cells. ! e 
discrete state of each cell is 0 or 1, the transition rule is 
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and the initial values of the discrete states are q
1
=q

3
=0 and q

2
=1. Table I 

shows six time steps of this cellular automaton; in each step, the cell that 
changes its state is enclosed in a box.

Self-clocked cellular automata and asynchronous automata with fi xed 
update order are widely used to model multi-agent systems. Applications 
can be found in fi elds as diverse as ecology, biology, sociology, and econom-
ics. Asynchronous cellular automata are attractive for these applications 
because they can model asynchronous interactions that occur in the system 
of interest [Cornforth et al., 2002; Green et al., 2001].

Are asynchronous cellular automata are essentially periodic? A conjecture based of the theory of hybrid systems

Time k=1 k=2 k=3 Rule

0 q=0,e=2 q=1,e=1 q=0,e=0 R7

1 q=1,e=0 q=1,e=2 q=0,e=1 R2

2 q=1,e=1 q=0,e=0 q=0,e=2 R7

3 q=1,e=2 q=0,e=1 q=1,e=0 R2

4 q=0,e=0 q=0,e=2 q=1,e=1 R7

5 q=0,e=1 q=1,e=0 q=1,e=2 R2

6 q=0,e=2 q=1,e=1 q=0,e=0 R7

Table I. Six time steps of a self-clocked cellular automaton that simu-
lates a left to right update order.
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When compared with its synchronously updated counterpart, an asyn-
chronous cellular automaton can exhibit radically diff erent behaviors 
[Bersini and Detour,  1994; Schönfi sch and de Roos, 1999; Stark and 
Hughes, 2000]. It is surprising then that self-clocked cellular automata 
seem to share an important property of their synchronous relatives. A 
synchronous cellular automaton defi ned over a fi nite space is periodic 
because it has a fi nite number of states. A self-clocked cellular automaton, 
on the other hand, has an infi nite number of potential states because of 
the elapsed time that is intrinsic to every cell. None the less, it is conjec-
tured here that all self-clocked cellular automata must settle into one of a 
fi nite number of limit cycles, the particular choice depending on its initial 
state.

! is conjecture emerges from the theory of hybrid systems, and specifi -
cally from the recent work by Matveev and Savkin [2000] that describes 
the limit cycles of diff erential automata. ! e argument begins by showing 
that self-clocked cellular automata are instances of a class of diff erential 
automata that have fi ve critical properties. ! e theory of hybrid systems 
shows that these properties are suffi  cient for the automata to always con-
verge to one of a fi nite number of limit cycles. ! e necessary conclusion 
is that self-clocked cellular automata converge eventually to a limit cycle. 
Moreover, because self-clocked cellular automata can simulate determin-
istic asynchronous cellular automata, it is concluded that all determinis-
tic cellular automata – synchronous and asynchronous – are essentially 
periodic.

1. BRIEF REVIEW OF DIFFERENTIAL AUTOMATA

Diff erential automata are fi nite state automata that have a set of diff erential 
equations associated with each discrete state. Discrete events, which change 
the system’s discrete state, occur when the automaton’s continuous trajec-
tory encounters an event surface. By changing the discrete state, the event 
causes the system to select a new set of diff erential equations which govern 
its motion away from the interrupting event surface. Figure 1 illustrates the 
trajectory of a diff erential automaton with a single continuous variable.
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149Diff erential automata measure time in two dimensions. ! e fi rst dimen-
sion is the real number line, and it measures time by seconds, minutes, and 
hours. ! e second dimension counts events that occur at an instant, neatly 
arranging instantaneous events by the order of their occurrence. Time is 
modeled by the set |R × |N|| and the advance operator  moves a time (t,c) 
forward by (t’,c’) with the rule

(1)

! e advance operator is not commutative and it is not associative. Time is 
ordered fi rst by t and then by c: specifi cally,

 (2)

(3)

A trajectory of a hybrid system is a function from |R × |N|| to its set of states. 
! e trajectory, by virtue of being a function, has a single value at each point 
in time; the second dimension of time allows for instantaneous changes in 
the discrete state of the system. For example, the trajectory

(4)

Are asynchronous cellular automata are essentially periodic? A conjecture based of the theory of hybrid systems

Figure 1. A trajectory of a diff erential 
automaton with a single continuous var-
iable × which follows the solid curve, 
two event surfaces shown as dashed 
curves, and two discrete transitions 
" # $ and $ # %.

Figure 2. Illustration of the trajec-
tory z that is defi ned by Equa-
tion 4. ! e value a is indicated 
with a solid line and b with a bro-
ken line.
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has this property; it is illustrated in Figure 2.

A diff erential automaton is a system with a fi nite set Q of discrete states, 
a set  |Rm of continuous state vectors, and two functions that describe its 
dynamic behavior. ! e diff erential function f : |Rm  Q # |Rm describes 
how the continuous variables evolve between discrete events. ! e transition 
function 

  & : °
m

× Q # Q  defi nes the event surfaces and their eff ect on the 
discrete state. ! e continuous state vector × satisfi es

 (5)

at each instance of real time for which q is constant.

When q changes at time (t,c), its subsequent value at time (t,c+1) is

(6)

! e discrete change in the diff erential function takes eff ect at time 
(t,c)+(0,1)=(t,c+1) and × evolves from its value at the transition. Because × 
does not change discontinuously, the trajectory ×(t), which satisfi es Equa-
tion 5 and is a function from |R # |Rm, is equal to ×((t,c)), a function from 
|R × |N|| # |Rm, for all c ' |N||, and so the two technically distinct trajectories 
can be used interchangeably.

! e total state transition function ∆
da

 takes the system from an initial state 
(x(t

0
),q) through an interval [(t

0
,c

0
),(t

f
,c

f
)). Defi ning fi rst

, (7)

the function ∆
da

 is defi ned recursively by

(8)
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! is abstruse defi nition bridges a technical, but critical, gap between self-
clocked cellular automata and the diff erential automata that are constructed 
in the next section; we will return to Equation 8 in Section 3.

2. MODELING SELF-CLOCKED CELLULAR AUTOMATA

WITH DIFFERENTIAL AUTOMATA

Every self-clocked cellular automaton is a homomorphic image (see, e.g., 
[Zeigler, 2000]) of a diff erential automaton whose trajectories converge to a 
fi nite number of limit cycles. ! at self-clocked cellular automata are essen-
tially periodic follows this fact. In this section, the relevant class of diff eren-
tial automata is constructed.

! e discrete states of a binary cellular automaton can be numbered by treat-
ing its leftmost cell as the most signifi cant bit in a binary number and its 
rightmost as the least signifi cant. An automaton with n cells has 2n discrete 
states. In addition to its binary state, each cell k has a clock (

k
 that induces a 

change of state under two conditions: beginning from zero, (
k
 grows until it 

reaches the cell’s duration P
k
; and beginning at P

k
, (

k
 shrinks until it reaches 

0. ! e direction of the clock is the cell’s third and fi nal state variable.

! e pair (b
k
,d

k
) is the discrete state of cell k, where b

k
'{0,1} is the binary 

state and d
k
'{1,-1} is the direction of the clock; the set of discrete states is 

Q={0,1}×{1,-1}. ! e clock (
k
 begins, and remains, in the interval [0,P

k
]. ! e 

diff erential automata that models the cell is

 (9)

(10)

A cellular automaton with n cells is a diff erential automaton with the set of 
discrete states Qn and the continuous state vector (=[(

1
 (

2
 … (

n
] for which 

each component (
k
 is in [0,P

k
]. ! e dynamic equations for this model are

(11)

(12)

Are asynchronous cellular automata are essentially periodic? A conjecture based of the theory of hybrid systems
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where   (13)

! is diff erential automaton has fi ve important properties: 1) it is determin-
istic; every initial state generates a single trajectory, 2) the model is legitimate 
(i.e., non-Zeno), 3) the vector d(/dt is constant between discrete events, 
4) Qn is a fi nite set, and 5) the event surfaces form hyper-cubes in its phase 
space. ! e fourth and fi fth conditions confi ne the continuous trajectories 
of the cellular automaton to a subset K of |Rn. ! e fi rst, second, and third 
conditions imply that the discrete trajectories are well behaved: the system is 
predictable, always moves forward on its real time line, and between events 
follows straight lines through |Rn.

Matveev and Savkin [2000] show that these properties have the following 
consequences: (i) there exists a limit cycle lying in K, (ii) the number of such 
cycles is fi nite, (iii) any limit cycle lying in K is regularly locally asymptoti-
cally stable in K, and (iv) any trajectory lying in K regularly converges to one 
of these limit cycles. Informally, every trajectory of the cellular automaton 
converges to a periodic trajectory as the real time t goes to infi nity. Both the 
continuous and discrete variables are eventually periodic! Moreover, there 
are a fi nite number of these limit cycles, and so they act as distinct equilib-
rium trajectories for the system.

! ere are exactly two cellular automata with a single cell, and these give 
the simplest demonstration of the theory. ! e cell has a duration P. It is its 
own left and right neighbor, and so   is entirely defi ned by its action on the 
triples (1,1,1) and (0,0,0); for brevity   is written as a function of a single 
value. Two transition rules can be defi ned:

Both automata, the fi rst with rule  
"
 and the second with rule  

$
, have a pair 

of limit cycles. ! ese are shown in Figure 3. ! e event surfaces are lines at 
t=0 and t=P. Beginning with a direction d=1, the clock moves up to P where 
a discrete event occurs and causes the direction to change; it then moves to 
0 where the direction changes again; and the cell bounces back and forth 
between these two constraining surfaces. Both automata need two bounces 
to return to their initial states and so have a period of length 2P.
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3. A HOMOMORPHISM FROM DIFFERENTIAL AUTOMATA

TO SELF-CLOCKED CELLULAR AUTOMATA

! e simulation procedure described in Section 1 can be reformulated as a 
recursive state transition function. A self-clocked cellular automaton with n 

cells has the set of states 
 

S = )
k =1

n

({0,1} × ° ) , and in the state s=(…,(q
k
,e

k
),…)

each pair (q
k
,e

k
) describes a single cell. ! e real time remaining to the next 

state transition is given by the time advance function

(14)

! e state transition function that takes the system from the state s through 
an interval [(t,c),(t

f
,c

f
)) is

Are asynchronous cellular automata are essentially periodic? A conjecture based of the theory of hybrid systems

Figure 3. Event surfaces and periodic trajectories of two self-
clocked cellular automata each with a single cell; in this 
drawing, b’= 

"
(b) and b= 

"
(b’) for the fi rst automaton, and 

similarly with respect to  
$
 for the second automaton.

|R
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(15)

where  (16)

! e state transition function ∆ca acts exactly like the iterative procedure 
from which it is derived: the elapsed times are incremented by the time 
remaining to next transition; the next state of the active cells is computed; 
and the process repeats.

With this formalism and the formalism of Equation 8, it can be shown that 
the self-clocked cellular automaton is a homomorphic image of the dif-
ferential automaton constructed in Section 2. ! e state of the diff erential 
automaton is mapped into a state of the cellular automaton by 

(17)

where (18)

Using Equation 18, the time advance of the cellular automaton can be 
written

(19)

To show that H is a homomorphism, it is enough to consider in turn cases 
1, 2, and 3 in Equations 15 and 8. Case 1 is trivial. For cases 2 and 3, fi rst 
observe that under H, the switching surfaces of the diff erential automaton 
defi ne the time advance function of cellular automaton. Specifi cally, the 
event surface that will be encountered next by the diff erential automaton is 
defi ned by

 (20)
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and the time to reach this surface is ta(H((…,((
k
,(b

k
,d

k
)),…))). ! erefore, 

h in Equation 8 and ta(s) in Equation 15 are equal; the hybrid system in 
state * and discrete event system in state H(*) undergo their next events at 
the same moment.

Keeping now in mind that h=ta(s), consider cases 2 and 3 in turn. For 
case 2, it is suffi  cient that simulation over the interval +=[(0,0),(h,1)) gives

(21)

Now consider just the action of H, ∆
da

, and ∆
ca
 on the single cell k. For the 

left side of Equation 21

and for the right side

If d
k
=-1 then

and if d
k
=1 then

just as desired.

For case 3, it is suffi  cient that Equation 21 holds when + is replaced by 
the interval +

,
=[(0,0),(0,1)). For each cell there are three cases to consider. 

Case (i): if 0<(
k
<P

k
 then the discrete state of the diff erential automaton does 

not change. Because h=ta(s), it is also true that e
k
<P

k
 and so the discrete 

state of the cellular automaton does not change. ! erefore Equation 21 
holds. Case (ii): If 0=(

k
 and d

k
=-1 then the diff erential automaton changes 

its discrete state and, for H to be a homomorphism, the cellular automaton 
must as well. Again, because h=ta(s), 0=(

k
 and d

k
=-1 is equivalent to e

k
=P

k
. 

Hence, Equation 21 holds. Case (iii): P
k
=(

k
 and d

k
=1; the argument here is 

identical to Case (ii). ! erefore, H is a homomorphism.

! is is the main result. To summarize, the diff erential automata constructed 
in Section 2 are essentially periodic; every self-clocked cellular automaton 
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is a homomorphic image of one of these diff erential automaton; therefore, 
every self-clocked cellular automaton is essentially periodic.

4. DISCRETE EVENT SIMULATION OF SELF-CLOCKED CELLULAR AUTOMATA

Every self-clocked cellular automaton can be written as a discrete event sys-
tem in the terms of the Discrete Event System Specifi cation (DEVS) and 
very effi  ciently executed using a DEVS simulation engine [Zeigler, 2000]. 
Each cell is an atomic model with states (b,b

l
,b

r
,-) where b,b

l
,b

r
'{0,1} and 

-'[0,P]. ! e model’s set of input is {l,r}×{0,1} where l is the left neighbor, r 
is the right neighbor, and {0,1} is the neighboring state. ! e set of output is 
{0,1}. Letting q=(b,b

l
,b

r
,-), the dynamic behavior of a cell is defi ned by

! is model has the binary state b of the cell, the binary states b
l
 and b

r
 of 

its neighbors at their last transition, and the elapsed time -. When the time 
advance ta expires, the model produces as output its next binary state, sets 
b to this new value, and resets the elapsed time. ! e cell can receive input 
from its neighbors at any time, and when this occurs it records their binary 
states and increments its internal by the time e that has elapsed since its last 
event (i.e., change of state by  

int
,  

ext
, or  

con
).

! e clock of the diff erential automata can be recovered by adding the direc-
tion d and time t

L
 of the last event to the state variables of this model. Ini-

tially, d=1 and it is multiplied by -1 by the internal transition function. ! e 
time t

L
 of the last event is initially zero, and it is incremented by e in the 
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external transition function and by the time advance in the internal transi-
tion function. ! e clock ( at any time t is then

5. ILLUSTRATIONS OF THE THEORY

In a left looking cellular automaton, each cell takes its next state from its left 
neighbor. ! e transition function is

and when P=1 the confi guration of the cell space simply translates to the 
left at each step. Figure 4 shows 125 steps of this model beginning with 
alternating 1, colored black, and 0, colored white, cells. ! e periodicity of 
this model is immediately apparent.

Figure 4. Discrete trajectory of the left looking automaton with P=1. ! e cells are 
arranged from bottom to top and time increases from left to right.

Figure 5. Discrete trajectory of the left looking automaton with P selected for each 
cell at random from 1/2, 1/3, and 1.
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Figure 5 shows 125 units of time for the left looking model with P selected 
at random from 1/2, 1/3, and 1. ! e trajectory of this automaton initially 
appears to be irregular, but at the sixth set of bands settles into a recogniz-
able pattern. ! e continuous phase space of this model has three dimen-
sions: the fi rst for cells with P=1/2, the second for cells with P=1/3, and the 
third for cells with P=1. Figure 6 shows planar cuts of the phase space, and 
these clearly depict the periodicity of the clock variables.

! is same experiment was repeated with P selected randomly from 2 , 23 , 
and 2. A recognizable pattern takes much longer to appear in this case. Fig-
ure 7 shows the discrete trajectory for the fi rst 125 units of time. At fi rst, the 
behavior of the automaton is quite erratic, but a structure seems ultimately 
to assert itself. ! is is illustrated in Figure 8, which shows the discrete trajec-
tory from time 15000 to 15125.

! e phase space of this automaton is more intricate than the previous two. 
! e 2 . 23  plane is shown in Figure 9(a), where a regular pattern of 
diamonds is quite visible. In fact, there appear to be close spaced nets of dia-
monds, which produce a distinct pattern. ! ese can be seen in the enlarged 
view of this plane shown in Figure 9(b). It should be noted, however, that 
these are not snapshots of a periodic trajectory. Because the clocks of the 
individual elements lack a common period, their trajectories will completely 
fi ll the phase plane.

CONCLUSIONS

Small systems, with components having rational durations, move quickly 
into their intrinsic limit cycles, but these may take a very long time to appear 
if the phase space of the model has many dimensions or if it has many dis-
crete states. Patterns seen in short-term observations might refl ect unique, 
transient eff ects or might be part of a long limit cycle.

For automata whose components have irrational durations, however, there 
is no genuinely periodic trajectory. As the demonstrations above show, the 
trajectory may appear more or less periodic after some time, and may in 
fact follow a more or less predictable path indefi nitely. ! at is, it appears to 
be converging to some periodic trajectory, but if so, the theory developed 
by Matveev and Savkin [2000] (a brief summary is given in [Matveev and 
Savkin, 1999]) does not say what that trajectory is, stating only that it exists. 
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Figure 6. Planar cuts of the phase space corresponding to the discrete trajectory 
shown in Figure 5.

Figure 7. Discrete trajectory over the real interval [0,125] of the left looking automa-
ton with P selected for each cell at random from 2 , 23 , and 2.

Figure 8. Discrete trajectory over the real interval [15000,15125] for the same 
automaton shown in Figure 7.
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Figure 9. ! e 2 . 23  phase plane corresponding to the discrete trajec-
tory shown in Figure 8.

9(b) Enlarged view.

9(a) View of the entire phase plane.
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! is seeming contradiction, between the absence of genuine periodicity and 
the claim of convergence to a limit cycle, raises three questions:

Do the asynchronous automata in fact satisfy the required assump-1. 
tions, or has some critical point been overlooked?

Is an assumption missing from the underlying theory, which if invoked 2. 
would rule out the asynchronous, cellular automata described above?

Is there in fact a limit cycle (defi ned in [Matveev and Savkin, 2000; 3. 
1999] as a class of periodic trajectories) that the system converges too 
and, if so, what are those trajectories?

With respect to questions 1 and 2, it can be observed that cellular automata 
are unusual amongst diff erential automata most often considered in that the 
real space occupied by distinct, discrete states overlap. ! is might provide 
a clue to either the missing assumption (i.e., a positive answer to 2) or the 
point of divergence from the theory (i.e., a positive answer to 1).

If the conjecture in this paper holds, it has further consequences for the class 
of Schedule Preserving DEVS (SP DEVS) described by Hwang [Hwang, 
2005]. If a SP DEVS has a fi nite number of discrete states, then in each 
state the model has a fi xed duration. It is likely, therefore, that the same 
homomorphism developed above for the cellular automata can be extended 
to this larger class of systems, and so it can be conjectured that all SP DEVS 
with a fi nite set of states are essentially periodic. Even if this broad conjec-
ture fails by its encompassing irrational durations, the same conjecture may 
still hold if only rational durations are considered.
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