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ABSTRACT

Generative Multisimulation (GMS) is a generativenglation methodology, which
introduces a symbiotic adaptive decision suppopatality for systems with shifting, ill-
defined, uncertain environments. Rather than oslya single authoritative model, GMS
explores an ensemble of plausible models, whichratigidually flawed but collectively
provide more insight than would be possible othsewiA case study based on a UAV
team search and attack model is presented toriitesthe potential of GMS. Preliminary
results demonstrate the potential of GMS to prodackarge degree of exploratory
behavior, followed by increased exploitative sealdhavior as the physical system
unfolds.
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1. Introduction

Strategy problems are typically characterized bynificant uncertainty [Davis and

Bigelow 1988]. Proper simulation-based decisionpsup methodologies that facilitate
making decisions in field settings could improvedalng Course of Actions (COAS),

simulating them faster than real time, and therfopeing COA analysis to improve

robustness and resilience of decisions. Explormgdffectiveness of alternative COAs
requires dynamic updating, branching, and simutiaeeexecution of simulations,

potentially at different levels of resolution. Dyn& updating of simulation models is a
key requirement for using simulation as a toolnpiliove systems in which information
only becomes available once the system is in pssgréilmaz 2004;Yilmaz et al. 2007].

In these types of systems, the initial conditionsvjale little or no insight into how the

system may develop over time. Emergent behavidratises dynamically is a primary
source of information in these systems. Exploitthgs information to enable robust
decision-making in a timely manner requires théitsglio observe the system in real-time
and adapt useful characteristics for the systenh &g little computational effort as
possible.

The notion of self-organization provides a usefuketaphor for the design and
development of next generation simulation infrastnees. The term self-organization has
been used in different areas with different measiias is cybernetics, thermodynamics,
biology, mathematics, computing, and informatioadity. A system can be described as
self-organizing if its elements interact to dynaatliicachieve a globally desired behavior.
The behavior is not imposed and determined in edtan manner, rather it is achieved
autonomously as elements of the system adapt amldeeto changing environmental
conditions. Similarly, autonomic computing paradigrelies on perception and



understanding of the environmental context to swfiage the computational
infrastructure so that optimal operating conditioas be attained.

Symbiotic Simulation (S2) [Fujimoto et al., 2008}olves the use of simulation systems
that are synchronized with the physical systemenible mutually beneficial adaptation.
In S2, simulation outputs are examined and usetktermine how the physical system
may be optimized. Similarly, measurements fromphsgsical system are used to validate
the simulation. When uncertainty in the physicasteyn is present, multiple what-if
simulation experiments can be helpful in adjustimg physical system. However, since
the number of what-if experiments that may be peréd is limited by both
computational and real-time constraints, the abtlit conduct an efficient search of the
model space is essential.

Generative Multismulation (GMS) is intended as a self-organizing generat8z
technique appropriate for physical systems chaniaetd by distributed, dynamic and
uncertain conditions. It is heavily inspired by tfields of Multisimulation [Yilmaz
2007], Exploratory Analysis [Davis and Bigelow 200@&nd Exploratory Modeling
[Bankes 1993], which involve the use of an ensendbl@lausible models to provide
insight in the absence of a single authoritativeleloThe salient feature of GMS is the
use of evolutionary computation in terms of a Genélgorithm (GA) to evolve the
model ensemble in response to changes in the @hysystem. With this feature, it is
conjectured that an effective search of an uncerteodel space would be possible, thus
permitting synchronization with the physical system

1.1 Motivation

Experimenting with evolutionary and/or contingemegdels in real-time on demand
would be critical for decision support in unstruetd problems with the characteristics of
(1) deep uncertainty, (2) dynamic environments, @dhifting, ill-defined, and
competing goals. The major challenges pertainirdetmsion-making in such asymmetric
and irregular environments include the followinglfiyaz 2007]:

» For most realistic problems, the nature of the f[@mbchanges as the simulation
unfolds. Initial parameters, as well as modelshwairrelevant under emergent
conditions. Relevant models need to be identifredl iastantiated to continue
exploration. Manual exploration is not cost effeetand realistic within a large
problem state space.

* Our knowledge about the problem being studied nayoa captured by any
single model or experiment. Instead, the availahtavledge is viewed as being
contained in the collection of all possible modglexperiments that are plausible
given what is known and what is learned.

» Dealing with uncertainty is paramount to analyzuognplex evolving
phenomena. Adaptivity in simulations and scenasagcessary to deal with
emergent conditions for evolving systems in a Béximanner.

1.2 Strategy: The Basisfor GMS
Addressing the above challenges requires a sirmuolatystem to cope with an
unpredictable environment autonomously throughilfidéity and robustness. Flexibility

can be achieved using different but closely relajggioaches:

» Adaptation. The system changes its behavior to cope witlchiamge through



learning and adaptation.
» Anticipation. An anticipatory system is a system whose nexé stapends on its
current state as well as the current image(spdtiture state(s).

Coping with robustness and resiliency under chapgionditions, on the other hand,
requires capability to function in the face of peo&tions. Proper mechanisms for dealing
with uncertainty are abundant in nature. For insamrthropod (insect) eyes which are
called compound eyes, are made up of repeating,uthié ommatidia, each of which
functions as a separate visual receptor. Each didioma is pointed at just a single area
in space and contributes information about only small area in the field of view. The
compound eye is excellent at detecting motion. Asobject moves across the visual
field, ommatidia are progressively turned on anfd BEcause of the resulting "flicker
effect”, insects respond far better to moving olsjée.g., situations) than stationary ones.

Similarly, when model excursions are viewed coilegy, the behavior of plausible

models can be informative despite the flaws of eadividual model. Because of the
presence of uncertainty, there may be many plaugsibbdels that could represent a
system [Bankes 1998]. Similarly, knowledge of tigstem constrains the set of plausible
models. Multisimulation, Exploratory Analysis [Daviand Bigelow 1999] and

Exploratory Modeling experiment with ensembles afdels as experimentation with a
single plausible model would be just as likely gene as informative. Among a set of
plausible models, variation occurs according toutnmncertainty and structural

uncertainty.

1.3 Decision-support under Uncertainty using GM S

GMS supports decision making by conducting a se#ncbugh a potentially infinite
space of models. The search works by evolving afspbtential system configurations
for a dynamic set of environmental conditions. his tpaper, we explore the following
problems:

* What are different forms of uncertainty and how tteey be modeled in such a
way to facilitate exploration of alternatives aratiation of configurations in an
efficient manner?

* How can the key principles of CAS evolution be leged to design the
evolution process of the decision support systemsso attain robustness under
emergent order and unpredictable future stateeopliysical system.

Systems characterized by non-linear interactionergmdiverse agents often exhibit
emergent behavior that may be very different fromatmhe initial conditions of these

systems would suggest. Traditional simulation témples that rely on accurate

knowledge of these conditions typically fail in $leecases. The goal of GMS is to enable
robust decision making in real-time for these peoid. Rather than rely on a single
authoritative model, GMS explores an ensemble afugble models, which are

individually flawed but collectively provide morendight than would be possible

otherwise. The insights derived from the model eride are used to improve the

performance of the system under study. Likewis¢hasystem develops, observations of
emerging conditions can be used to improve exptoradbf the model ensemble. In

essence, a useful co-evolution between the physyséém and GMS occurs.

2. Generative Multismulation: Methodology and | mplementation



GMS behaves/evolves according to three key priasipbrder is emergent as opposed to
predetermined [Zeigler 1989], the system's histenyreversible, and the system's future
is often unpredictable [Holland 1975]. Agents aeensautonomous units that seek to
maximize some measure of goodness, or fithessydlyiarg over time. Agents scan their
environment and develop schema representing imvpr and action rules. Existing
agent and model schema undergoes three types afyehéirst order change, where
action is taken in order to adapt the observatmthe existing schema; second order
change, where there is purposeful change in thensahin order to better fit observations;
and third order change, where a schema survivdgsrbecause of the survival or death
of its corresponding fitness. Schema changes tlhroagdom mutation. Schema change
generally has the effect of making the model en$esnimore robust (it can perform in
light of increasing variation or variety), moreiaélle (it can perform more predictably),
or grow in requisite variety (in can adapt to aevidange of conditions). The fitness of
the model ensemble is a complex aggregate of matgrks, both local and global. The
general health or fithess of the agents within reglsi model determines what the
probability of change will be. Optimization of Idcitness allows differentiation and
novelty/diversity; global optimization enhances tuherence of GMS and induces long
term memory. In general the probability of secomdeo schema change is a nonlinear
function of the fitness value.

2.1 Hybrid Exploration

In order to efficiently search a potentially intminumber of plausible models, GMS uses
a hybrid exploration technigue. As shown in Figure uncontrollable inputs and
controllable inputs are handled with an input asiglynodule and an output analysis
module respectively. Measurements of the physigastesn's behavior are used to
hypothesize distributions for uncontrollable inpufss more details of the physical
system's environment become known, the fidelityhafse distributions with the actual
values of the physical system should improve. Gdlafole input factors representing the
configuration of the physical system are evolvethgisa genetic algorithm. A set of
controllable inputs that completely describes aeptigl system configuration can be
thought of as an individual. The controllable fasttherefore, are considered to be the
decision variables of a given problem while the amtmllable factors determine the
shape of a dynamic fitness landscape. An evolutjoalgorithm enables the adaptation
of individuals through a process of natural setectiwith better performing individuals
being more likely to survive and ultimately be useslthe configuration settings for
agents within the physical system itself.
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Figure 1: Symbiotic Simulation
2.2 Partial Model Ensembles

Once a distribution has been hypothesized for eaclontrollable factor in the physical
system, and the associated parameters for thoséudiins have been estimated, each
factor is sampled multiple times. These samplesstweed in a 2-dimensional array
referred to as a Partial Model Ensemble (PME). Atas for each sampled distribution
are associated on a per-sample basis and placedh@tsame row of an array. Each
column of the array stores variates from a singgii factor, and each row of the array is
considered to be a partial plausible model of thgsral system. Later, these partial
models are combined with potential system configoma to create fully specified
plausible models for simulation. To hypothesizerihstions for uncontrollable inputs
and estimate their parameters, a means of obsettvenghysical system is required. As
real-time symbiotic simulation is performed, obsgions of the physical system enable
more accurate estimates of the input distributiarameters. With these improvements,
the space of plausible models shrinks, allowingsdygem to simulate fewer models in
greater detalil.

2.3 Combined Model Ensembles

In GMS, a Combined Model Ensemble (CME) is a spestion for conducting a series

of simulation experiments involving a single indival from a population of potential

system configurations. The goal of these experimento test an individual in multiple

possible environments. Each simulation experimetnmenes the individual in the

context of a set of uncontrollable factors représgma single possible environment. The
fitness of the individual for a particular enviroent is obtained as an output from a
simulation experiment. Resulting fithess valuesnfrall experiments with the individual

in each respective environment are then averaggstter to obtain an overall fitness for
the individual, which is used to determine its m@ioitity for reproduction and survival

within the genetic search.

The layout of a CME is shown in Table 1. The pdssdnvironments with which the
individual is to be tested are determined by a RWE)ncontrollable Factors making up



the left hand side of the table. Copies of thevidldial are paired with each row of the
PME. A single row of the CME thus includes bothampled set of values from the
uncontrollable factor distributions and a copy be tindividual which specifies the
settings of the controllable model factors. Takmgether, these two sets of elements form
a single plausible model described by the entiweagbvalues in the CME.

Table 1: Combined Model Ensemble- A Combined Model Ensendfl@ models is
composed of a Partial Model Ensembleno$ampled variables, and an individual of
genes,G. Each row represents a single model for which onemore simulation
replications should be performed. Note that theesemrdividual is used in each model.

LUncontrollable Factors Conmtrollable Factors
i1 Mi1n XKi1m Oy O =
KMo MNan Xam Oy O oy
Kl X oo Xam oy o e

Note that for a given CME, the same individual &red with each row of the PME.
Furthermore, the same PME is combined with eaciviohehl in the population to create
a set of unigue CMEs, one for each individual. c8ithe same PME is used in each
CME, each individual is evaluated using the samarenmental conditions. In essence,
the uncontrollable factor settings of the PME, whahange each time a new PME is
created, become a dynamic fitness landscape.

2.4 Local Adaptation: Particle Swarm Optimizer

Self-organization is a kind of aggregate behavat is often associated with Complex
Adaptive Systems (CAS). Self-organization as a @rypof an engineered system has
been described as being one in which individuahtgyer units respond to local stimuli to

achieve through a division of labor the efficieetfprmance of some task. The collective
efficiency of task performance must be greater thdrat could be accomplished

individually. Additionally, self-organization inveés the creation of an equilibrium state
that arises from the local interactions of ageftsis equilibrium may be achieved

through either competition or cooperation.

In GMS, Particle Swarm Optimization (PSO) is used implementing the learning
element of adaptive agents. A broad introductio80D can be found in [Kennedy and
Eberhart 2001]. We use PSO as a continuous nurogtimization technique in which a
potential solution to a problem is characterizedhg®int in some n-dimensional space,
with the number of dimensions being equal to thenloer of decision variables. As the
name suggests, PSO uses a population of potemtiafions. These solutions " fly"
through the problem space over time. As each pammwves through the problem space,
it records the best solutiopbestthat it has found so far as well as the best swiugbest
discovered by the other members of the swarm.dResttend to gravitate toward these
two positions over time as they search for bettert®ns [Bratton and Kennedy 2001].

2.5 Global Adaptation: Genetic Search of Potential System Configurations

GMS evolves potential system configurations for wihin the physical system. Unlike
the creation of a PME, however, a search of theespé potential system configurations



requires the exploitation of a different type ofst®m information, namely the
performance characteristics of the configuratiowol&tionary Algorithms exploit this
type of information to improve a search as theyvee# suited for optimization problems.
Among Evolutionary Algorithms, Genetic Algorithmae a feature useful to GMS,
which is the distinction between genotypic and hwpic representation. A genetic
encoding of the characteristics of a potentialeystonfiguration allows the same system
to be interpreted in different ways and in varyiegels of detail.

The structure of a typical GA is shown in Algorithin An initial population ofm
individuals is randomly created and the fithessugalof the resulting individuals are
evaluated. The algorithm then enters a loop in lwhsuccessive generations of
individuals are evolved. An inner loop continuesilue group ofn children are created.
Two individuals are chosen to be parents. Crossowetbines the characteristics of both
parents to create a new child. A mutation opergtthen applied which may modify the
child with characteristics not possessed by eigaent. The fitness of the new child is
then evaluated.

Algorithm 1 : A genetic algorithm.

1: pop[m] <= ereatelnitialPopulation( )

2: for i =1 to mdo

3. popli] <= caleulateFitness( pop[i] )
4: end for

5: repeat

&: children[rn]
7 fori=1ton do

8 parents[2] < selectParents( pop )

a: children[i] <= crossover( parents )

10: children[i] <= mutatation( children[t] )

11: children[i] <= calculateFitness( children[s] )
12: end for

13: pop[m] <= selectSurvivors( pop, children )

14: until termination = true

Once the children have been created, the totallptpu of individuals is then reduced
back tom. Depending on the design of the GA, survivor g@daanay or may not involve
direct competition between parents and childrer @¥olutionary process continues until
some termination condition (such as a fixed nunobéitness evaluations) is reached.

2.6 GM S Component Architecture

GMS implementation, designed to operate in missigiical environments, is based on
an independent component architecture in whichrttieidual components of the system
could execute in parallel and communicate via nmesgzassing [Braude 2004]. This
could be especially useful for entities operatinghe physical environment that would
likely not have the hardware resources to procéssilations. Rather, these entities
would only need some means of measuring the pHysistem and sending those
measurements to the components running the simoofatiFigure 2 illustrates the
essential components of the GMS system. Obsengsafimam the physical system are
passed to an Input Exploration Component (IEC) aesiple for conducting input
analysis and selecting appropriate distributions tfee uncontrollable model factors.
Samples from these distributions are then usedré¢ate a PME, a copy of which is



integrated with each individual to form one CME feach Agent-based Simulation
Process (ASP).
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Figure 2: Components of the GMS Framework

The Genetic Algorithm Controller (GAC) is responsilior evolving the population of
individuals which are used to form the CMEs. andwanber of Agent Simulation
Instances (ASPs) to simulate CMEs in parallel. llge@ach ASP is mapped to one or
more CPU cores. If the population used by the G&\laige, or if hardware resources are
limited, multiple ASPs can run on a single corehHre is an excess of hardware, a GMS
implementation should be capable of offloading nleaéthin the CME to multiple CPU
cores. Outputs from the ASPs take the form of dhjeditness values of the individuals
that have been averaged across all of the regitatspecified by the CME. These are
passed to the GAC which then assigns the fithekseesao the simulated individuals
before continuing execution of the GA. Ideallysliould be possible for a user to interact
with the GAC in real time to examine the individsiglenerated and possibly seed new
configurations to the population.

The sequence of operations that occur within thennexecution loop of a GMS
implementation are shown in a UML sequence diagrafigure 3. Active components
and processes, displayed as boxes across the ttpe adiagram include the Genetic
Algorithm Controller, Agent-based Simulation Proses (of which several run
simultaneously), an Input Exploration Component #mel Physical System. An initial
message is passed from the GAC to the IEC reqgeatimew Partial Model Ensemble.
The IEC takes observations from the physical systamd uses them to produce
uncontrollable factor settings which are incorpedainto the PME. The PME is then



passed to the GAC which uses them to create a @¥i&aich ASP.
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Figure 3: Component Interaction in GMS

When created, the CMEs are passed to the ASPsimuthted in parallel. Simulation
results are examined on a per CME basis so thatskt can be assigned to a given
individual based on its performance against tharenmental settings specified in the
PME. After fitness values have been assigned tavichehls, the GAC evolves the
population. Individuals with higher fithess ar@en preference for producing offspring,
which are created using genetic operators of cuessand mutation. Due to the need to
maintain a naturally parallel structure for theaaithm, large numbers of children should
be generated before selecting survivors.

In addition to evolving the existing population,ettGAC also selects the most fit
individual of each generation to update the physggstem's configuration. This

continual process of dynamically updating the ptaisisystem helps ensure that the
physical system is responding correctly to obseohahges in the environment.

3. Case Study: UAV Search and Attack Scenario

To perform an assessment of the potential of theSGivethodology, a model based on
the features of Complex Adaptive Systems was iategrinto the parallel application.
The field of autonomous UAV cooperation providesatural environment from which to
create such a model. Toward this end, an agentdbaselel of an autonomous UAV
team in a Search and Attack mission was developkd.UAVs in this model interact
through local communication only. There is no glo§gstem of coordination or prior
intelligence of targets. A rule-based approachld8ivV movement is implemented. This
set of movement rules, which is based on generaWlgdge of the problem domain,
results in a robust performance element for UAVpatde of both independent and
cooperative actions. These rules are implementgwbrthe steering behaviors described
in [Reynolds 1999]. Similar implementations of thesteering behaviors have been
featured in a number of autonomous UAV studiesuiiclg [Price 2006] and [Crowther
2004].



The Search and Attack scenario takes place in am2rsional space of equal
dimensions. UAVs begin play from a base locatethatcenter of the map. Targets are
distributed randomly across the map and their ostare initially unknown to the
UAVs. Once they are launched, the UAVs must find aestroy all of the targets as
quickly as possible. Figure 4 depicts the openinmkation steps in which UAVs are in
the process of launching from the base (represdatedgray hexagon) and sweeping the
map. Targets (represented by gray triangles) witiensensor envelope of a UAV have a
chance of being discovered while those outside ireimdden.

PN
A

Figure 4: The Search and Attack scenario shortly after satiarn start. UAVs depart
from the centrally located airbase (represented bgxagon with uniformly random
initial movement vectors. The sensor envelopesadi/idual UAVs are represented by
dotted circles.

Progression of the model is simulated through tstepped execution, dividing
simulation time into a number of equal size incrateeDuring a simulation step, each
UAV may act. The results of these actions are wgatlaynchronously and may affect
actions performed by other UAVs in the same tine@ st

4. Experimentswith the Parallel GM S System

The goal of computational experimentation for thissis was to provide an initial
understanding of the potential of GMS as an S2 adetlogy. Toward this end, it was
hoped that successful experimentation would hejmtwer a central question:

» Can the use of symbiotic simulation through ensembf plausible models
improve a physical system's performance?}

4.1 Egtablishing Face Validity

One interesting phenomenon observed in some aéxperiments is that the behavior of
the UAVS' average Cooperation values due to tHaente of the distributed PSO. Figure
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5 illustrates a single replication from one seegperiments, which was not included in
the original experimental design, but appears uesire. This case involved a high

Communication Range setting of 60 and one leadeW.UAs discussed earlier, the

distributed PSO evaluates the PSO objective funaiiod updates its decision variables
(including Cooperation and Base Distance) oncespdime steps. This period is referred
to as the sampling interval, shown across the bottd the plot. Thus, at sampling

interval 10, 500 time steps have elapsed in thailsiton. This plot tracks the change in
the average of all Cooperation values within theMUfeam across a single model

replication. In this case, by about the 10th sangpinterval, the distributed PSO had
evolved the team away from cooperative behavior.
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Figure 5: Effect of Cooperation on Target Population witlghiCommunication Range

The behavior shown in Figure 5 contrasts with wdeaturs when Communication Range
is set to a low value. Figure 6 depicts that whenm@unication Range is set to 6,
cooperation is more likely to occur. In this caske average value of the PSO
Cooperation value stayed relatively close to 0.%e Ttransitioning behavior to
equilibrium in both cases is typical of self-organg systems and helped us instill
confidence in the learning mechanism.
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Figure 6: Effect of Cooperation on Target Population withaALGommunication Range
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4.2 Emulator Objective and Individual Fitness

Experimentation with the Parallel GMS Applicationvolved the use of a system
emulator, rather than an actual physical systens @mulator is itself a simulation with
the same structural model of autonomous UAV behlawsed by the ASPs. It only differs
in terms of the values used for its input factard a that its controllable factor settings
are not fixed for the duration of its executionm$ar to the model replications used in
the stand-alone mode for face validity, the permoe objective of the Emulator is to
minimize the number of time steps required to else all targets. Therefore, to
synchronize the performance of the simulations eteztin the ASPs with that of the
emulator, the fitness of an individual is definedbe the average number of time steps
required to eliminate all targets across all regtlans specified by that individual's CME.

The emulator is an ordinary UAV model simulationiethreceives controllable factor
updates from GMS. Therefore, it was possible tarera the performance of the Parallel
GMS Application by running an emulator with idemficuncontrollable factor settings
used in the stand-alone mode. Since the emulatbiseand-alone models use the same
model structure, their performance can be compaseldbng their uncontrollable factors
and fixed model settings are identical. Our posii® that the emulator's system would
have an advantage over the system in a stand atodel. The controllable factors of
Leader flags and Cooperation Thresholds can befraddyy GMS to the benefit of the
emulator, whereas the system in the stand alonesi@$ controllable factor settings
that are determined in advance and fixed for theatthn of its execution. In order to
compare the performance of the emulator with GMS8ireg a stand-alone model, all
fixed model settings such as Weapon Range, Avevdgapon Effect, Weapon Effect
Standard Deviation, Average Target Distance, ardéisStandard Deviation were set to
the identical settings used in the experimentsride=t in the previous, as these settings
were held constant across all treatments in thatgr Furthermore, a subset of the
treatments corresponding to one pair of settingh@iincontrollable factors is selected.

4.3 GA Design

One intent with GMS is for the Genetic Algorithmr@ller to produce a large degree of
exploratory behavior initially, followed by increzs exploitative search behavior as the
physical system changes. With this in mind, prapogl selection was chosen as a parent
selection operator for these experiments. The traniaoperators used for these
experiments included one-point crossover, whichaiolst a single cut point that
determines how the chromosomes will be divided mudmbined to produce children.
Each individual represented 20 UAVs and a non-aygihg survival model was selected
so that all children survive while parents autooally die. This type of GA, which
balances a relatively low selection pressure with rates of variation from one-point
crossover and low mutation, is suitable for encgum@ exploration of controllable
factors early in the physical system's development.

4.4 Emulator Results

The major limitation of these experiments was tingt IEC was not yet implemented.
Therefore, certain assumptions were made regar@mglator / physical system
measurement and PME generation. The work of the W&S simulated within the
experiments. At run-time, the simulated IEC is ialited with uniform random
distributions for three uncontrollable factors: gbness, Communication Range, and
Target Max Visibility. Note that Target Max Visiliif was held constant across all
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treatments. The true values used for these faaiithen the emulator were Toughness 10,
Communication Range 6, and Maximum Target Vis\p#it

The parameterized distributions within the simualEC for the uncontrollable factors
are arbitrarily selected to be uniform distribusoof length 30 about each factor's true
setting (truncated by zero as a minimum paramefEhnjs included U(0, 25), for
Toughness, U(0, 20) for Maximum Target Visibilignd U(0, 21) for Communication
Range. At each iteration, a PME of 30 rows andl8mas (one for each uncontrollable
factor) is created. When combined with an individeach CME therefore had 30 rows
and 43 columns (3 columns for the uncontrollabttdies and 40 columns representing 2
genes for each of the 20 UAVs in an individual).clkaow, representing a single
parameterized model, runs for one replication taspin 30 replications for each CME.
A population of 20 individuals mapped to 20 ASPswaed. This resulted in 600 model
runs during each iteration of the main loop. Theuktor replications included on
average, 16 generations. Thus, on average, appaedyn9600 model replications are
performed by the ASPs for each replication of theukator. More replications for each
row of a CME and a larger population would haverbdesirable but were not used due
to project time constraints.

For the experiment, 30 replications of the GMS Rarapplication on the Altix
Supercomputer are run. As can be seen in Tablee2pd¢rformance improvement of the
emulator is noticeable in terms of the number ofetisteps for mission completion
compared to the best performing UAV team configorahmong the stand-alone model
tests.

Table 2: The results of the Parallel Application compat@the best performing Stand-
alone Model. The Parallel Application provides digantly improved performance on
average, but with higher variance.

Expenment Average Time Steps Standard D
Ermulator with SAMS 1597.5 164.34
Stand-alone mode] 1777.24 129.65
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Fitness of Emulator System Configuration: Proportional Selection
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Figure 7: Fitness of Emulator System Configuration

A possible explanation for the increased standadation in GMS may be that the
number of replications performed for each CME wsiraply insufficient to properly
assess the fitness of the CME's respective indaidihis might also explain the initial
decrease in fitness in Figure 7 as the initiabtiens of the main loop involve significant
uncertainty in the uncontrollable factors. Whileegh experiments seem encouraging,
more experimentation is needed to explore thisisswdetail. In particular, experiments
with larger numbers of model replications need ® pperformed. Secondly, the
possibilities for modification of Genetic Algorithmsed by GMS have barely been
scratched. Much research is needed to identify wleatgn features of a GA (or EA)
contribute most to improved performance.

5. Conclusions

This research examines the need for dynamic mqui#dting for Symbiotic Simulation

of systems involving interacting agents with compleon-linear behavior. Our position
is that these systems may not be effectively stbdi¢h traditional simulation techniques
that rely on valid, authoritative models of the picgl system. Instead, techniques such as
Multisimulation and Exploratory Analysis, which esqiment with an ensemble of
plausible models are developed to deal with thesklgms.

The proposed Symbiotic Adaptive Multisimulation egpgch involves a Hybrid
Exploration strategy to study an ensemble of pldesmnodels. When parameterized to
account for input uncertainty in controllable anmttaontrollable factors, GMS is able to
dynamically update a system emulator resultingnproved performance. This benefit is
realized with the help of a Genetic Algorithm tleablves potential system configurations
over the lifetime of the system emulator and whseln be used to update the emulator.
These updates consist of adaptive strategies thapassed on to the agents operating
within the emulator. This initial study of GMS assinulation methodology has shown
encouraging results, but has also left many problemsolved. In particular, further
experimentation with larger numbers of model reglans is required. Also,
experimentation with additional GA designs can be&grmed to understand the features
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that make an Evolutionary Algorithm suitable for GMIrhe understanding gained could
provide further improvements to the methodologytenms of speed and robustness.
Other significant problems that remain are the inpomation of appropriate
Multiresolution Modeling, input analysis for estitimy uncontrollable factor
distributions, and handling of structural uncerirGiven these challenges, Autonomic
Multisimulation appears to be a rich opportunity fiarther study.
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