
 1

Generative Multisimulation: Decision-Support under
Uncertainty using Evolutionary Multimodels

Levent Yilmaz, Bradley Mitchell

Auburn University, 3116 Shelby Center, Auburn, AL, 36849, USA
Corresponding author : yilmaz@auburn.edu

ABSTRACT

Generative Multisimulation (GMS) is a generative simulation methodology, which
introduces a symbiotic adaptive decision support capability for systems with shifting, ill-
defined, uncertain environments. Rather than rely on a single authoritative model, GMS
explores an ensemble of plausible models, which are individually flawed but collectively
provide more insight than would be possible otherwise. A case study based on a UAV
team search and attack model is presented to illustrate the potential of GMS. Preliminary
results demonstrate the potential of GMS to produce a large degree of exploratory
behavior, followed by increased exploitative search behavior as the physical system
unfolds.

KEYWORDS

Generative multisimulation, evolutionary multimodels, autonomic simulation, decision-
support systems

1. Introduction

Strategy problems are typically characterized by significant uncertainty [Davis and
Bigelow 1988]. Proper simulation-based decision support methodologies that facilitate
making decisions in field settings could improve modeling Course of Actions (COAs),
simulating them faster than real time, and then performing COA analysis to improve
robustness and resilience of decisions. Exploring the effectiveness of alternative COAs
requires dynamic updating, branching, and simultaneous execution of simulations,
potentially at different levels of resolution. Dynamic updating of simulation models is a
key requirement for using simulation as a tool to improve systems in which information
only becomes available once the system is in progress [Yilmaz 2004;Yilmaz et al. 2007].
In these types of systems, the initial conditions provide little or no insight into how the
system may develop over time. Emergent behavior that arises dynamically is a primary
source of information in these systems. Exploiting this information to enable robust
decision-making in a timely manner requires the ability to observe the system in real-time
and adapt useful characteristics for the system with as little computational effort as
possible.

The notion of self-organization provides a useful metaphor for the design and
development of next generation simulation infrastructures. The term self-organization has
been used in different areas with different meanings, as is cybernetics, thermodynamics,
biology, mathematics, computing, and information theory. A system can be described as
self-organizing if its elements interact to dynamically achieve a globally desired behavior.
The behavior is not imposed and determined in a top-down manner, rather it is achieved
autonomously as elements of the system adapt and evolve to changing environmental
conditions. Similarly, autonomic computing paradigm relies on perception and

 2

understanding of the environmental context to self-manage the computational
infrastructure so that optimal operating conditions can be attained.

Symbiotic Simulation (S2) [Fujimoto et al., 2002] involves the use of simulation systems
that are synchronized with the physical systems to enable mutually beneficial adaptation.
In S2, simulation outputs are examined and used to determine how the physical system
may be optimized. Similarly, measurements from the physical system are used to validate
the simulation. When uncertainty in the physical system is present, multiple what-if
simulation experiments can be helpful in adjusting the physical system. However, since
the number of what-if experiments that may be performed is limited by both
computational and real-time constraints, the ability to conduct an efficient search of the
model space is essential.

Generative Multisimulation (GMS) is intended as a self-organizing generative S2
technique appropriate for physical systems characterized by distributed, dynamic and
uncertain conditions. It is heavily inspired by the fields of Multisimulation [Yilmaz
2007], Exploratory Analysis [Davis and Bigelow 2000], and Exploratory Modeling
[Bankes 1993], which involve the use of an ensemble of plausible models to provide
insight in the absence of a single authoritative model. The salient feature of GMS is the
use of evolutionary computation in terms of a Genetic Algorithm (GA) to evolve the
model ensemble in response to changes in the physical system. With this feature, it is
conjectured that an effective search of an uncertain model space would be possible, thus
permitting synchronization with the physical system.

1.1 Motivation

Experimenting with evolutionary and/or contingency models in real-time on demand
would be critical for decision support in unstructured problems with the characteristics of
(1) deep uncertainty, (2) dynamic environments, and (3) shifting, ill-defined, and
competing goals. The major challenges pertaining to decision-making in such asymmetric
and irregular environments include the following [Yilmaz 2007]:

• For most realistic problems, the nature of the problem changes as the simulation
unfolds. Initial parameters, as well as models can be irrelevant under emergent
conditions. Relevant models need to be identified and instantiated to continue
exploration. Manual exploration is not cost effective and realistic within a large
problem state space.

• Our knowledge about the problem being studied may not be captured by any
single model or experiment. Instead, the available knowledge is viewed as being
contained in the collection of all possible modeling experiments that are plausible
given what is known and what is learned.

• Dealing with uncertainty is paramount to analyzing complex evolving
phenomena. Adaptivity in simulations and scenarios is necessary to deal with
emergent conditions for evolving systems in a flexible manner.

1.2 Strategy: The Basis for GMS

Addressing the above challenges requires a simulation system to cope with an
unpredictable environment autonomously through flexibility and robustness. Flexibility
can be achieved using different but closely related approaches:

• Adaptation. The system changes its behavior to cope with the change through

 3

learning and adaptation.
• Anticipation. An anticipatory system is a system whose next state depends on its

current state as well as the current image(s) of its future state(s).

Coping with robustness and resiliency under changing conditions, on the other hand,
requires capability to function in the face of perturbations. Proper mechanisms for dealing
with uncertainty are abundant in nature. For instance, arthropod (insect) eyes which are
called compound eyes, are made up of repeating units, the ommatidia, each of which
functions as a separate visual receptor. Each ommatidium is pointed at just a single area
in space and contributes information about only one small area in the field of view. The
compound eye is excellent at detecting motion. As an object moves across the visual
field, ommatidia are progressively turned on and off. Because of the resulting "flicker
effect", insects respond far better to moving objects (e.g., situations) than stationary ones.

Similarly, when model excursions are viewed collectively, the behavior of plausible
models can be informative despite the flaws of each individual model. Because of the
presence of uncertainty, there may be many plausible models that could represent a
system [Bankes 1998]. Similarly, knowledge of the system constrains the set of plausible
models. Multisimulation, Exploratory Analysis [Davis and Bigelow 1999] and
Exploratory Modeling experiment with ensembles of models as experimentation with a
single plausible model would be just as likely deceptive as informative. Among a set of
plausible models, variation occurs according to input uncertainty and structural
uncertainty.

1.3 Decision-support under Uncertainty using GMS

GMS supports decision making by conducting a search through a potentially infinite
space of models. The search works by evolving a set of potential system configurations
for a dynamic set of environmental conditions. In this paper, we explore the following
problems:

• What are different forms of uncertainty and how can they be modeled in such a
way to facilitate exploration of alternatives and variation of configurations in an
efficient manner?

• How can the key principles of CAS evolution be leveraged to design the
evolution process of the decision support system so as to attain robustness under
emergent order and unpredictable future state of the physical system.

Systems characterized by non-linear interactions among diverse agents often exhibit
emergent behavior that may be very different from what the initial conditions of these
systems would suggest. Traditional simulation techniques that rely on accurate
knowledge of these conditions typically fail in these cases. The goal of GMS is to enable
robust decision making in real-time for these problems. Rather than rely on a single
authoritative model, GMS explores an ensemble of plausible models, which are
individually flawed but collectively provide more insight than would be possible
otherwise. The insights derived from the model ensemble are used to improve the
performance of the system under study. Likewise, as the system develops, observations of
emerging conditions can be used to improve exploration of the model ensemble. In
essence, a useful co-evolution between the physical system and GMS occurs.

2. Generative Multisimulation: Methodology and Implementation

 4

GMS behaves/evolves according to three key principles: order is emergent as opposed to
predetermined [Zeigler 1989], the system's history is irreversible, and the system's future
is often unpredictable [Holland 1975]. Agents are semi-autonomous units that seek to
maximize some measure of goodness, or fitness, by evolving over time. Agents scan their
environment and develop schema representing interpretive and action rules. Existing
agent and model schema undergoes three types of change: first order change, where
action is taken in order to adapt the observation to the existing schema; second order
change, where there is purposeful change in the schema in order to better fit observations;
and third order change, where a schema survives or dies because of the survival or death
of its corresponding fitness. Schema changes through random mutation. Schema change
generally has the effect of making the model ensembles more robust (it can perform in
light of increasing variation or variety), more reliable (it can perform more predictably),
or grow in requisite variety (in can adapt to a wider range of conditions). The fitness of
the model ensemble is a complex aggregate of many factors, both local and global. The
general health or fitness of the agents within a single model determines what the
probability of change will be. Optimization of local fitness allows differentiation and
novelty/diversity; global optimization enhances the coherence of GMS and induces long
term memory. In general the probability of second order schema change is a nonlinear
function of the fitness value.

2.1 Hybrid Exploration

In order to efficiently search a potentially infinite number of plausible models, GMS uses
a hybrid exploration technique. As shown in Figure 1, uncontrollable inputs and
controllable inputs are handled with an input analysis module and an output analysis
module respectively. Measurements of the physical system's behavior are used to
hypothesize distributions for uncontrollable inputs. As more details of the physical
system's environment become known, the fidelity of these distributions with the actual
values of the physical system should improve. Controllable input factors representing the
configuration of the physical system are evolved using a genetic algorithm. A set of
controllable inputs that completely describes a potential system configuration can be
thought of as an individual. The controllable factors therefore, are considered to be the
decision variables of a given problem while the uncontrollable factors determine the
shape of a dynamic fitness landscape. An evolutionary algorithm enables the adaptation
of individuals through a process of natural selection, with better performing individuals
being more likely to survive and ultimately be used as the configuration settings for
agents within the physical system itself.

 5

Figure 1: Symbiotic Simulation

2.2 Partial Model Ensembles

Once a distribution has been hypothesized for each uncontrollable factor in the physical
system, and the associated parameters for those distributions have been estimated, each
factor is sampled multiple times. These samples are stored in a 2-dimensional array
referred to as a Partial Model Ensemble (PME). Variates for each sampled distribution
are associated on a per-sample basis and placed into the same row of an array. Each
column of the array stores variates from a single input factor, and each row of the array is
considered to be a partial plausible model of the physical system. Later, these partial
models are combined with potential system configurations to create fully specified
plausible models for simulation. To hypothesize distributions for uncontrollable inputs
and estimate their parameters, a means of observing the physical system is required. As
real-time symbiotic simulation is performed, observations of the physical system enable
more accurate estimates of the input distribution parameters. With these improvements,
the space of plausible models shrinks, allowing the system to simulate fewer models in
greater detail.

2.3 Combined Model Ensembles

In GMS, a Combined Model Ensemble (CME) is a specification for conducting a series
of simulation experiments involving a single individual from a population of potential
system configurations. The goal of these experiments is to test an individual in multiple
possible environments. Each simulation experiment examines the individual in the
context of a set of uncontrollable factors representing a single possible environment. The
fitness of the individual for a particular environment is obtained as an output from a
simulation experiment. Resulting fitness values from all experiments with the individual
in each respective environment are then averaged together to obtain an overall fitness for
the individual, which is used to determine its probability for reproduction and survival
within the genetic search.

The layout of a CME is shown in Table 1. The possible environments with which the
individual is to be tested are determined by a PME of Uncontrollable Factors making up

 6

the left hand side of the table. Copies of the individual are paired with each row of the
PME. A single row of the CME thus includes both a sampled set of values from the
uncontrollable factor distributions and a copy of the individual which specifies the
settings of the controllable model factors. Taken together, these two sets of elements form
a single plausible model described by the entire row of values in the CME.

Table 1: Combined Model Ensemble- A Combined Model Ensemble of n models is
composed of a Partial Model Ensemble of m sampled variables, X, and an individual of l
genes, G. Each row represents a single model for which one or more simulation
replications should be performed. Note that the same individual is used in each model.

Note that for a given CME, the same individual is paired with each row of the PME.
Furthermore, the same PME is combined with each individual in the population to create
a set of unique CMEs, one for each individual. Since the same PME is used in each
CME, each individual is evaluated using the same environmental conditions. In essence,
the uncontrollable factor settings of the PME, which change each time a new PME is
created, become a dynamic fitness landscape.

2.4 Local Adaptation: Particle Swarm Optimizer

Self-organization is a kind of aggregate behavior that is often associated with Complex
Adaptive Systems (CAS). Self-organization as a property of an engineered system has
been described as being one in which individual agents or units respond to local stimuli to
achieve through a division of labor the efficient performance of some task. The collective
efficiency of task performance must be greater than what could be accomplished
individually. Additionally, self-organization involves the creation of an equilibrium state
that arises from the local interactions of agents. This equilibrium may be achieved
through either competition or cooperation.

In GMS, Particle Swarm Optimization (PSO) is used for implementing the learning
element of adaptive agents. A broad introduction of PSO can be found in [Kennedy and
Eberhart 2001]. We use PSO as a continuous numeric optimization technique in which a
potential solution to a problem is characterized as a point in some n-dimensional space,
with the number of dimensions being equal to the number of decision variables. As the
name suggests, PSO uses a population of potential solutions. These solutions ``fly''
through the problem space over time. As each particle moves through the problem space,
it records the best solution, pbest that it has found so far as well as the best solution, gbest
discovered by the other members of the swarm. Particles tend to gravitate toward these
two positions over time as they search for better solutions [Bratton and Kennedy 2001].

2.5 Global Adaptation: Genetic Search of Potential System Configurations

GMS evolves potential system configurations for use within the physical system. Unlike
the creation of a PME, however, a search of the space of potential system configurations

 7

requires the exploitation of a different type of system information, namely the
performance characteristics of the configuration. Evolutionary Algorithms exploit this
type of information to improve a search as they are well suited for optimization problems.
Among Evolutionary Algorithms, Genetic Algorithms have a feature useful to GMS,
which is the distinction between genotypic and phenotypic representation. A genetic
encoding of the characteristics of a potential system configuration allows the same system
to be interpreted in different ways and in varying levels of detail.

The structure of a typical GA is shown in Algorithm 1. An initial population of m
individuals is randomly created and the fitness values of the resulting individuals are
evaluated. The algorithm then enters a loop in which successive generations of
individuals are evolved. An inner loop continues until a group of n children are created.
Two individuals are chosen to be parents. Crossover combines the characteristics of both
parents to create a new child. A mutation operator is then applied which may modify the
child with characteristics not possessed by either parent. The fitness of the new child is
then evaluated.

Once the children have been created, the total population of individuals is then reduced
back to m. Depending on the design of the GA, survivor selection may or may not involve
direct competition between parents and children. The evolutionary process continues until
some termination condition (such as a fixed number of fitness evaluations) is reached.

2.6 GMS Component Architecture

GMS implementation, designed to operate in mission critical environments, is based on
an independent component architecture in which the individual components of the system
could execute in parallel and communicate via message passing [Braude 2004]. This
could be especially useful for entities operating in the physical environment that would
likely not have the hardware resources to process simulations. Rather, these entities
would only need some means of measuring the physical system and sending those
measurements to the components running the simulations. Figure 2 illustrates the
essential components of the GMS system. Observations from the physical system are
passed to an Input Exploration Component (IEC) responsible for conducting input
analysis and selecting appropriate distributions for the uncontrollable model factors.
Samples from these distributions are then used to create a PME, a copy of which is

 8

integrated with each individual to form one CME for each Agent-based Simulation
Process (ASP).

Figure 2: Components of the GMS Framework

The Genetic Algorithm Controller (GAC) is responsible for evolving the population of
individuals which are used to form the CMEs. and a number of Agent Simulation
Instances (ASPs) to simulate CMEs in parallel. Ideally, each ASP is mapped to one or
more CPU cores. If the population used by the GAC is large, or if hardware resources are
limited, multiple ASPs can run on a single core. If there is an excess of hardware, a GMS
implementation should be capable of offloading models within the CME to multiple CPU
cores. Outputs from the ASPs take the form of objective fitness values of the individuals
that have been averaged across all of the replications specified by the CME. These are
passed to the GAC which then assigns the fitness values to the simulated individuals
before continuing execution of the GA. Ideally, it should be possible for a user to interact
with the GAC in real time to examine the individuals generated and possibly seed new
configurations to the population.

The sequence of operations that occur within the main execution loop of a GMS
implementation are shown in a UML sequence diagram in Figure 3. Active components
and processes, displayed as boxes across the top of the diagram include the Genetic
Algorithm Controller, Agent-based Simulation Processes (of which several run
simultaneously), an Input Exploration Component and the Physical System. An initial
message is passed from the GAC to the IEC requesting a new Partial Model Ensemble.
The IEC takes observations from the physical system and uses them to produce
uncontrollable factor settings which are incorporated into the PME. The PME is then

 9

passed to the GAC which uses them to create a CME for each ASP.

Figure 3: Component Interaction in GMS

When created, the CMEs are passed to the ASPs and simulated in parallel. Simulation
results are examined on a per CME basis so that fitness can be assigned to a given
individual based on its performance against the environmental settings specified in the
PME. After fitness values have been assigned to individuals, the GAC evolves the
population. Individuals with higher fitness are given preference for producing offspring,
which are created using genetic operators of crossover and mutation. Due to the need to
maintain a naturally parallel structure for the algorithm, large numbers of children should
be generated before selecting survivors.

In addition to evolving the existing population, the GAC also selects the most fit
individual of each generation to update the physical system's configuration. This
continual process of dynamically updating the physical system helps ensure that the
physical system is responding correctly to observed changes in the environment.

3. Case Study: UAV Search and Attack Scenario

To perform an assessment of the potential of the GMS methodology, a model based on
the features of Complex Adaptive Systems was integrated into the parallel application.
The field of autonomous UAV cooperation provides a natural environment from which to
create such a model. Toward this end, an agent-based model of an autonomous UAV
team in a Search and Attack mission was developed. The UAVs in this model interact
through local communication only. There is no global system of coordination or prior
intelligence of targets. A rule-based approach for UAV movement is implemented. This
set of movement rules, which is based on general knowledge of the problem domain,
results in a robust performance element for UAVs capable of both independent and
cooperative actions. These rules are implementations of the steering behaviors described
in [Reynolds 1999]. Similar implementations of these steering behaviors have been
featured in a number of autonomous UAV studies including [Price 2006] and [Crowther
2004].

 10

The Search and Attack scenario takes place in a 2-dimensional space of equal
dimensions. UAVs begin play from a base located at the center of the map. Targets are
distributed randomly across the map and their positions are initially unknown to the
UAVs. Once they are launched, the UAVs must find and destroy all of the targets as
quickly as possible. Figure 4 depicts the opening simulation steps in which UAVs are in
the process of launching from the base (represented by a gray hexagon) and sweeping the
map. Targets (represented by gray triangles) within the sensor envelope of a UAV have a
chance of being discovered while those outside remain hidden.

Figure 4: The Search and Attack scenario shortly after simulation start. UAVs depart
from the centrally located airbase (represented by a hexagon with uniformly random
initial movement vectors. The sensor envelopes of individual UAVs are represented by
dotted circles.

Progression of the model is simulated through time-stepped execution, dividing
simulation time into a number of equal size increments. During a simulation step, each
UAV may act. The results of these actions are updated synchronously and may affect
actions performed by other UAVs in the same time step.

4. Experiments with the Parallel GMS System

The goal of computational experimentation for this thesis was to provide an initial
understanding of the potential of GMS as an S2 methodology. Toward this end, it was
hoped that successful experimentation would help to answer a central question:

• Can the use of symbiotic simulation through ensembles of plausible models
improve a physical system's performance?}

4.1 Establishing Face Validity

One interesting phenomenon observed in some of the experiments is that the behavior of
the UAVs' average Cooperation values due to the influence of the distributed PSO. Figure

 11

5 illustrates a single replication from one set of experiments, which was not included in
the original experimental design, but appears instructive. This case involved a high
Communication Range setting of 60 and one leader UAV. As discussed earlier, the
distributed PSO evaluates the PSO objective function and updates its decision variables
(including Cooperation and Base Distance) once per 50 time steps. This period is referred
to as the sampling interval, shown across the bottom of the plot. Thus, at sampling
interval 10, 500 time steps have elapsed in the simulation. This plot tracks the change in
the average of all Cooperation values within the UAV team across a single model
replication. In this case, by about the 10th sampling interval, the distributed PSO had
evolved the team away from cooperative behavior.

Figure 5: Effect of Cooperation on Target Population with High Communication Range

The behavior shown in Figure 5 contrasts with what occurs when Communication Range
is set to a low value. Figure 6 depicts that when Communication Range is set to 6,
cooperation is more likely to occur. In this case, the average value of the PSO
Cooperation value stayed relatively close to 0.5. The transitioning behavior to
equilibrium in both cases is typical of self-organizing systems and helped us instill
confidence in the learning mechanism.

Figure 6: Effect of Cooperation on Target Population with Low Communication Range

 12

4.2 Emulator Objective and Individual Fitness

Experimentation with the Parallel GMS Application involved the use of a system
emulator, rather than an actual physical system. This emulator is itself a simulation with
the same structural model of autonomous UAV behavior used by the ASPs. It only differs
in terms of the values used for its input factors and in that its controllable factor settings
are not fixed for the duration of its execution. Similar to the model replications used in
the stand-alone mode for face validity, the performance objective of the Emulator is to
minimize the number of time steps required to eliminate all targets. Therefore, to
synchronize the performance of the simulations executed in the ASPs with that of the
emulator, the fitness of an individual is defined to be the average number of time steps
required to eliminate all targets across all replications specified by that individual's CME.

The emulator is an ordinary UAV model simulation which receives controllable factor
updates from GMS. Therefore, it was possible to examine the performance of the Parallel
GMS Application by running an emulator with identical uncontrollable factor settings
used in the stand-alone mode. Since the emulator and stand-alone models use the same
model structure, their performance can be compared as long their uncontrollable factors
and fixed model settings are identical. Our position is that the emulator's system would
have an advantage over the system in a stand alone model. The controllable factors of
Leader flags and Cooperation Thresholds can be modified by GMS to the benefit of the
emulator, whereas the system in the stand alone model has controllable factor settings
that are determined in advance and fixed for the duration of its execution. In order to
compare the performance of the emulator with GMS against a stand-alone model, all
fixed model settings such as Weapon Range, Average Weapon Effect, Weapon Effect
Standard Deviation, Average Target Distance, and Target Standard Deviation were set to
the identical settings used in the experiments described in the previous, as these settings
were held constant across all treatments in that group. Furthermore, a subset of the
treatments corresponding to one pair of settings of the uncontrollable factors is selected.

4.3 GA Design

One intent with GMS is for the Genetic Algorithm Controller to produce a large degree of
exploratory behavior initially, followed by increased exploitative search behavior as the
physical system changes. With this in mind, proportional selection was chosen as a parent
selection operator for these experiments. The variation operators used for these
experiments included one-point crossover, which obtains a single cut point that
determines how the chromosomes will be divided and recombined to produce children.
Each individual represented 20 UAVs and a non-overlapping survival model was selected
so that all children survive while parents automatically die. This type of GA, which
balances a relatively low selection pressure with low rates of variation from one-point
crossover and low mutation, is suitable for encouraging exploration of controllable
factors early in the physical system's development.

4.4 Emulator Results

The major limitation of these experiments was that the IEC was not yet implemented.
Therefore, certain assumptions were made regarding emulator / physical system
measurement and PME generation. The work of the IEC was simulated within the
experiments. At run-time, the simulated IEC is initialized with uniform random
distributions for three uncontrollable factors: Toughness, Communication Range, and
Target Max Visibility. Note that Target Max Visibility was held constant across all

 13

treatments. The true values used for these factors within the emulator were Toughness 10,
Communication Range 6, and Maximum Target Visibility 5.

The parameterized distributions within the simulated IEC for the uncontrollable factors
are arbitrarily selected to be uniform distributions of length 30 about each factor's true
setting (truncated by zero as a minimum parameter). This included U(0, 25), for
Toughness, U(0, 20) for Maximum Target Visibility, and U(0, 21) for Communication
Range. At each iteration, a PME of 30 rows and 3 columns (one for each uncontrollable
factor) is created. When combined with an individual, each CME therefore had 30 rows
and 43 columns (3 columns for the uncontrollable factors and 40 columns representing 2
genes for each of the 20 UAVs in an individual). Each row, representing a single
parameterized model, runs for one replication resulting in 30 replications for each CME.
A population of 20 individuals mapped to 20 ASPs was used. This resulted in 600 model
runs during each iteration of the main loop. The emulator replications included on
average, 16 generations. Thus, on average, approximately 9600 model replications are
performed by the ASPs for each replication of the emulator. More replications for each
row of a CME and a larger population would have been desirable but were not used due
to project time constraints.

For the experiment, 30 replications of the GMS Parallel Application on the Altix
Supercomputer are run. As can be seen in Table 2, the performance improvement of the
emulator is noticeable in terms of the number of time steps for mission completion
compared to the best performing UAV team configuration among the stand-alone model
tests.

Table 2: The results of the Parallel Application compared to the best performing Stand-
alone Model. The Parallel Application provides significantly improved performance on
average, but with higher variance.

 14

Figure 7: Fitness of Emulator System Configuration

A possible explanation for the increased standard deviation in GMS may be that the
number of replications performed for each CME were simply insufficient to properly
assess the fitness of the CME's respective individual. This might also explain the initial
decrease in fitness in Figure 7 as the initial iterations of the main loop involve significant
uncertainty in the uncontrollable factors. While these experiments seem encouraging,
more experimentation is needed to explore this issue in detail. In particular, experiments
with larger numbers of model replications need to be performed. Secondly, the
possibilities for modification of Genetic Algorithm used by GMS have barely been
scratched. Much research is needed to identify what design features of a GA (or EA)
contribute most to improved performance.

5. Conclusions

This research examines the need for dynamic model updating for Symbiotic Simulation
of systems involving interacting agents with complex, non-linear behavior. Our position
is that these systems may not be effectively studied with traditional simulation techniques
that rely on valid, authoritative models of the physical system. Instead, techniques such as
Multisimulation and Exploratory Analysis, which experiment with an ensemble of
plausible models are developed to deal with these problems.

The proposed Symbiotic Adaptive Multisimulation approach involves a Hybrid
Exploration strategy to study an ensemble of plausible models. When parameterized to
account for input uncertainty in controllable and uncontrollable factors, GMS is able to
dynamically update a system emulator resulting in improved performance. This benefit is
realized with the help of a Genetic Algorithm that evolves potential system configurations
over the lifetime of the system emulator and which can be used to update the emulator.
These updates consist of adaptive strategies that are passed on to the agents operating
within the emulator. This initial study of GMS as a simulation methodology has shown
encouraging results, but has also left many problems unsolved. In particular, further
experimentation with larger numbers of model replications is required. Also,
experimentation with additional GA designs can be performed to understand the features

 15

that make an Evolutionary Algorithm suitable for GMS. The understanding gained could
provide further improvements to the methodology in terms of speed and robustness.
Other significant problems that remain are the incorporation of appropriate
Multiresolution Modeling, input analysis for estimating uncontrollable factor
distributions, and handling of structural uncertainty. Given these challenges, Autonomic
Multisimulation appears to be a rich opportunity for further study.

REFERENCES

[Bankes 1993] Bankes, S. Exploratory modeling for policy analysis. Operations
Research, 1993. Vol. 43, No. 1, pp. 435–449.

[Bankes 1998] Bankes, S. Policy analysis for complex and uncertain systems through
computational experiments. In Proceedings of the 1998 IEEE Aerospace
Conference, 1998. pp. 125–132.

[Bratton and Kennedy 2007] Bratton, D. and J. Kennedy. Defining a standard for particle
swarm optimization. In Proceedings of the 2007 IEEE Swarm Intelligence Symposium.
Honolulu, HI: IEEE, 2007, pp. 120–127.

[Braude 2004] Braude, J. E. Software Design: From Programming to Architecture. John
Wiley & Sons, 2004.

[Crowther 2004] Crowther, B. Flocking of autonomous unmanned air vehicles.
Aeronautical Journal, 2004. Vol. 107, No. 10, pp. 111–124.

[Davis and Bigelow 1988] Davis, K. P. and J. H. Bigelow. The role of uncertainty in
assessing the NATO-PACT central region balance,” RAND N-2839. The RAND
Corporation, Santa Monica, CA, 1988.

[Davis and Bigelow 1999] Davis, K. P. and J. H. Bigelow. Experiments in
multiresolution modeling (mrm). RAND Technical Report, 1999.

[Davis and Bigelow 2000] Davis, K. P. and J. H. Bigelow. Exploratory analysis enabled
by multiresolution, multiperspective modeling. In Proceedings of the 2000 Winter
Simulation Conference, 2000. pp. 127–134.

[Fujimoto et al. 2002] Fujimoto, M. R., D. Lunceford, E. Page, and A. M. Uhrmacher.
Grand challenges for modeling and simulation. Dagstuhl report,” 2002.

[Holland 1975] Holland H. J. Adaptation in Natural and Artificial Systems. Ann Arbor,
MI: The University of Michigan Press, 1975.

[Kennedy and Eberhart 2001] Kennedy, J and Eberhart C. R. C. Swarm Intelligence. San
Francisco, CA: Morgan Kaufmann Publishers, 2001.

[Price 2006] Price, C. I. Evolving self-organized behavior for homogeneous and
heterogeneous uav or ucav swarms. Master’s thesis, Air Force Institute of Technology,
Wright-Patterson Air Force Base, OH, 2006.

 16

[Reynolds 1999] Reynolds, C. Steering behaviors for autonomous characters. (Retrieved
on October 31, 2008 from http://www.red3d.com/cwr/papers/1999/gdc99steer.html),
1999.

[Yilmaz 2004] Yilmaz, L. Dynamic model updating in simulation with multimodels:
A taxonomy and a generic agent-based architecture. In Proceedings of
SCSC 2004 - Summer Computer Simulation Conference, pp. 3–8, 2004.

[Yilmaz 2007] Yilmaz, L. Toward next generation simulation-based computational tools
for conflict and peace studies,” Social Science Computer Review, 2007. Vol. 25, No. 1,
pp. 48–60.

[Yilmaz et al. 2007] Yilmaz, L., A. Lim, S. Bowen, and T. Oren, Requirements and
design principles for multisimulation with multiresolution, multistage models,” In
Proceedings of the 2007 IEEE/ACM Winter Simulation Conference, pp.823-832.

[Zeigler 1989] Zeigler, P. B. Discrete event abstraction: An emerging paradigm for
modeling complex adaptive systems. In Perspectives on Adaptation in Natural and
Artificial Systems, Essays in Honor of John Holland, Sante Fe Institute, Oxford
University Press, England, 1989.

