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Cyber Physical Systems

Cyber-physical systems (CPS) - tight conjoining of and
coordination between computational and physical
resources.
CPS requirements: adaptability, autonomy, efficiency,
reliability, safety.
CPS characteristics

Systems that respond more quickly (e.g., autonomous
collision avoidance),
more precise (e.g., robotic surgery and nano-tolerance
manufacturing),
work in dangerous or inaccessible environments (e.g.,
autonomous systems for search and rescue, firefighting,
and exploration),
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CPS capabilities

CPS needs capabilities that facilitate deeply embedding
computational intelligence,
communication, control, and coordination

for
sensing, actuation, and adaptation

into physical systems with
active and reconfigurable components.
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Coping with Uncertainty and Ambiguity

!

Focus in prediction, optimization, (performance and
representational) efficiency, scalability etc.
Partial consideration of uncertainty (lack of information)
and
Little discussion on ambiguity (lack of clarity)



Motivation: Cyber Physical Systems (CPS) Uncertainty and Ambiguity in CPS GMS: Methodology Case Study Conclusions

Decision-support under Uncertainty

Need methods to improve robustness and resilience of
decisions.
Experimenting with evolutionary and/or contingency
models in real-time in unstructured problems with the
characteristics of

deep uncertainty,
dynamic environments, and
shifting, illdefined, and competing goals.

Need ability to observe the system in real-time and adapt
useful characteristics with as little computational effort as
possible
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The Basis for Autonomic Generative Multisimulation

Need to cope with an unpredictable environment
autonomously through flexibility and robustness.
Flexibility can be achieved using different but closely
related approaches:

Adaptation. The system changes its behavior through
learning and adaptation.
Anticipation. Next state depends on its current state as
well as the current image(s) of its future state(s).



Motivation: Cyber Physical Systems (CPS) Uncertainty and Ambiguity in CPS GMS: Methodology Case Study Conclusions

The Compound Arthropod Eye Analogy

Compound Eye Metaphor
Excellent at detecting motion. As an object moves across
the visual field, ommatidia are progressively turned on and
off.
Because of the "flicker effect", insects respond far better to
moving objects (e.g., situations) than stationary ones.
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Major Goals and Questions

What are different forms of uncertainty and
How can they be modeled in such a way to facilitate
exploration and variation of configurations in an efficient
manner?
Can the key principles of CAS evolution be leveraged to
attain robustness.
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Solution Approach

Rather than rely on a single authoritative model, GMS explores
an ensemble of plausible models:

individually flawed but collectively provide more insight
insights derived from the model ensemble are used to
improve the performance of the system under study
as the system develops, observations improve exploration
of the model ensemble.
In essence, a useful co-evolution between the physical
system and GMS occurs
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Principles

Model schema (agents) undergo three types of change:
first order change - adapt the observation to the existing
schema; second order change - purposeful change in the
schema in order to better fit observations; and third order
change - schema survives or dies because of the survival
or death of its corresponding fitness.

Schema change makes model ensembles more
robust (it can perform in light of increasing variation or
variety),
reliable (it can perform more predictably), or
grow in requisite variety (in can adapt to a wider range of
conditions).
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Hybrid Exploration

To efficiently search a potentially infinite number of plausible
models, AMS uses a hybrid exploration technique.
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Hybrid Exploration

Uncontrollable inputs and controllable inputs are handled
with input analysis and output analysis modules.
System observations are used to hypothesize distributions
for uncontrollable inputs.
As details emerge, fidelity of distributions improve.
Controllable input factors representing the configuration of
the physical system are evolved using a genetic algorithm.
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Uncontrollable Factors Controllable Factors
X11 X12 · · · X1m G1 G2 · · · G`

X21 X22 · · · X2m G1 G2 · · · G`
...

...
. . .

...
...

...
. . .

...
Xn1 Xn2 · · · Xnm G1 G2 · · · G`

Table: A Combined Model Ensemble of n models is composed of a
Partial Model Ensemble of m sampled variables, X , and an individual
of ` genes, G. Each row represents a single model for which one or
more simulation replications should be performed. Note that the
same individual is used in each model.
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Local Adaptation

In GMS, Particle Swarm Optimization (PSO) is used for
implementing the learning element of adaptive agents.
PSO as a continuous numeric optimization technique in
which a potential solution to a problem is characterized as
a point in some n-dimensional space, with the number of
dimensions being equal to the number of decision variables

Particle Swarm Optimizer
−→v id = χ(vid + c1ε1(pid − xid) + c2ε2(pgd − xid)) (1)



Motivation: Cyber Physical Systems (CPS) Uncertainty and Ambiguity in CPS GMS: Methodology Case Study Conclusions

Global Adaptation

AMS evolves potential system configurations for use within
the physical system.
Search of the space of potential system configurations
requires the exploitation of the performance characteristics
of the configuration.

Evolutionary Computation
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GMS Component Architecture

Figure: Components of the GMS Framework.

Observations from the physical system are passed to an
Input Exploration Component (IEC) responsible for
conducting input analysis and selecting appropriate
distributions for the uncontrollable model factors. Samples
from these distributions are then used to create a PME, a
copy of which is integrated with each individual to form one
CME for each Agent-based Simulation Process (ASP).
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GMS Component Architecture

Input Exploration Component (IEC) - input analysis and
selecting appropriate distributions for the uncontrollable
model factors.
Samples are used to create a PME, a copy of which is
integrated with each individual to form one CME.
The Genetic Algorithm Controller (GAC) is responsible for
evolving the population of individuals - used to form the
CMEs. and a number of Agent Simulation Instances
(ASPs) to simulate CMEs in parallel.
Ideally, each ASP is mapped to one or more CPU cores.
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Component Interaction Dynamics

Figure: Component Interaction in GMS
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UAV Search, Rescue, Attack: Scenario

Based on an agent-based model of an autonomous UAV
team in a Search and Attack mission.
Interact through local communication only. There is no
global system of coordination or prior intelligence of
targets.
A rule-based approach for UAV movement is implemented.
e.g., steering behaviors
Takes place in a 2-dimensional space of equal dimensions.

UAVs start from a base located at the center of the map.
Distributed randomly across the map and their positions are
initially unknown to the UAVs. Once they are launched, the
UAVs must find and destroy all of the targets as quickly as
possible.
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Initial State

Figure: The Search and Attack scenario shortly after simulation start.
UAVs depart from the centrally located airbase (represented by a
hexagon) with uniformly random initial movement vectors. The sensor
envelopes of individual UAVs are represented by dotted circles.
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UAV Movements

Figure: The cohesion, separation, and alignment rules are useful for
coordinating group behaviors. Cohesion causes a UAV to move
toward the average position, or centroid. Separation causes a UAVs
to move away from other UAVs. alignment causes a UAV to align its
velocity vector with the velocities of other UAVs
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UAV Decision Rules

Figure: Decision Making Progress.



Motivation: Cyber Physical Systems (CPS) Uncertainty and Ambiguity in CPS GMS: Methodology Case Study Conclusions

Optimization

max(x) = 1− 1
a(k+1) + 2

− 1
d + 2

(2)

The fitness of a particle’s position varies from 0 to 1 and is
determined by maximizing the objective function.

a is the number of attacks performed by the UAV,
k is the number of the UAV’s kills, and
d is the number of target detections propagated by the UAV

the UAV prefers those locations in the optimization space
that favor

number of attacks and UAV kills,
with increased capability to help others through large
number of potential message exchanges.
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Implementation

Figure: UAVs begin cooperative behavior to mass their fires on
individual targets.
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Experiments with the Parallel GMS Application

Objective: to provide an initial understanding of the potential of
GMS as an S2 methodology.

Can the use of symbiotic simulation through ensembles of
plausible models improve a physical system’s
performance?
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Face Validity

Figure: Effect of Cooperation on Target Population with High
Communication Range
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Face Validity

Figure: Effect of Cooperation on Target Population with Low
Communication Range
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Experimentation with Emulator

Used a system emulator, rather than an actual physical
system
Emulator objective is to minimize the number of time steps
required to eliminate all targets.

the fitness of an individual is the average number of time
steps required to eliminate all targets.

Our position: Emulator’s system would have an advantage
over the system in a stand alone model. The controllable
factors of Leader flags and Cooperation Thresholds can be
modified by GMS to the benefit of the emulator
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Experimentation with Emulator

Experiment Average Time Steps Standard Dev.
Emulator with GMS 1397.5 164.34
Stand-alone model 1777.24 129.68

Table: The results of the Parallel Application compared to the best
performing Stand-alone Model. The Parallel Application provides
significantly improved performance on average, but with higher
variance.
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Fitness of Emulator System Configuration

Figure: Fitness of Emulator System Configuration.
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Concluding Remarks

Valid, authoritative models of the physical system have
limitations to cope with uncertainty (lack of information) in
CPS.

GMS builds on earlier techniques such as Multisimulation
and Exploratory Analysis, which experiment with an
ensemble of plausible models.

GMS involves a hybrid exploration strategy to study an
ensemble of plausible models.
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Concluding Remarks

When parameterized to account for input uncertainty, GMS
is able to dynamically update a system emulator resulting
in improved performance.
Initial study presents encouraging results, but has also left
various problems unsolved.

Experimentation with additional GA designs can be
performed to understand the features that make an
Evolutionary Algorithm suitable for GMS.

Other significant problems that remain: incorporation of
Multiresolution Modeling, input analysis for estimating
uncontrollable factor distributions, and handling of
structural uncertainty.
Given these challenges, autonomic GMS appears to be a
rich opportunity for further study.
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