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ABSTRACT ACM Reference Format:

Model-based systems engineering (MBSE) techniques can help man-
age the growing complexity in the design and development of
cyber-physical systems, and can even allow for the optimization of
a system under design in simulation. However, models are always
an abstraction of the real-world systems they represent. This in-
troduces uncertainty at the model level, which affects the validity
of simulation results, and thus also the results of the optimization.
This, together with variations in real-world system parameters, sig-
nificantly complicates the validation of simulation and optimization
results. In this experience report, we first use a descriptive process
model to describe our efforts to validate the results of a model-based
design space exploration (DSE) process given this uncertainty. After
this, we discuss lessons learned and insights gained, and identify
future challenges. We present a possible prescriptive process model
for future validation efforts, which specifically takes into account
uncertainty.

CCS CONCEPTS

« Computer systems organization — Embedded and cyber-
physical systems; « Computing methodologies — Model veri-
fication and validation; - General and reference — Validation.
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cyber-physical systems, model-based systems engineering, design
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1 INTRODUCTION

Cyber-physical systems are becoming increasingly complex, with
both the dependencies between system components and the com-
plexity of the components themselves increasing rapidly. As these
systems become more complex, so does their design and develop-
ment. Here, model-based systems engineering (MBSE) techniques
can help manage this complexity. Such techniques provide a safer,
more efficient, and less costly way of developing such systems,
compared to analyzing and evaluating each component during the
construction and integration phase [3]. They also enable model-
based design space exploration (DSE), whereby the system under
design can be optimized in simulation, possibly even before its ac-
tual implementation or construction. However, models are always
an abstraction of the real-world system they represent, with cer-
tain details or effects being omitted or otherwise simplified. This
introduces uncertainty at the model level, which affects the validity
of the simulation results, and by extent also of the DSE results.
This complicates validation efforts, as this can cause discrepancies
between modelled and observed system behavior. Additionally, vari-
ations in real-world system parameters, e.g. due to variations in the
production process or measurement uncertainty, can cause further
discrepancies or can even cause the system behavior to divergence
from simulation results.

In previous work [11], we demonstrated an ontology-based ap-
proach to DSE, where we considered the optimal embedded deploy-
ment of an advanced control algorithm for brushless DC (BLDC)
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Figure 1: Schematic overview of the load angle controller [10]

motors. Using this approach, we were able to determine good, non-
obvious design candidates for embedded deployment of this algo-
rithm. However, in the DSE, the determined design candidates were
only evaluated in simulation using models. As such, it remained
unknown how well they would actually perform in a real-world
setup. In this experience report, we present our efforts to validate
these results on a real-world setup, along the way encountering
difficulties regarding uncertainty. We start by deploying the iden-
tified design candidates on an embedded platform and evaluating
their performance on a real-world test setup. After this, we further
validate our results and the simulation models themselves by re-
peating these evaluations for multiple other (non-optimal) design
candidates. Then, to quantify the obtained results, we investigate
the impact of uncertainty regarding different model parameters on
the predicted performance of the design candidates. These different
steps are all captured in a descriptive process model. After this, we
discuss what this impact means in retrospect for the DSE results
and what this may mean in the future, based on gained insights and
lessons learned. For example, how statistical information may be
used to inform the optimization problem definition. This discussion
is accompanied by a possible prescriptive process model.

The rest of this paper is structured as follows. First, in Section 2,
we introduce the example case used in previous work and the
current paper. Next, in Section 3, we describe the followed validation
process (descriptive). Lastly, in Section 4, we discuss the results of the
descriptive process and the insights gained, and present a possible
prescriptive process, taking into account lessons learned.

2 EXAMPLE USE CASE

In the current paper, as in previous work, we consider the em-
bedded deployment of an advanced, energy-efficient load angle
control system for BLDC motors, based on the algorithm proposed
by De Viaene et al. [2]. In short, this algorithm consists of two
main parts, mapped to different tasks on the embedded platform:
a monitoring part, and a control part, as shown in Figure 1. The
monitor part contains an algorithm that estimates the load angle,
i.e. the angle between the stator current vector and the magnetic
rotor field of the motor. This estimated load angle serves as feed-
back to the controller, which will attempt to drive the load angle
to a predefined setpoint by varying the motor current amplitude.
Here, a larger load angle increases energy efficiency but reduces
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the margin for error, increasing the chance of loss of synchronism.
Therefore, the monitor contains a watchdog that guards against loss
of synchronism by overruling the controller when the estimated
load angle becomes too large. This algorithm was developed using
a MBSE approach and was implemented in MATLAB® Simulink®.
What complicates matters is that there is an optimization prob-
lem associated with the embedded deployment of this algorithm.
Indeed, we want to find the optimal combination of estimator period,
control period, and load angle setpoint, which will result in the best
possible system performance, i.e. the lowest energy consumption,
while maintaining system stability and ensuring schedulability on
the embedded platform. To determine this optimal configuration,
we make use of (model-based) DSE techniques. Here, a model of
the control algorithm is combined with a plant model, i.e. a model
of the physical system it will control, to predict the performance of
different algorithm configurations in simulation. The specific DSE
approach we used is discussed in the following subsection.

3 VALIDATION PROCESS (DESCRIPTIVE)

In this section, we present the process we followed to validate the
performance of the previously determined design candidates on
a real-world test setup. To model this process and the different
formalisms and transformations used therein, we make use of the
formalism transformation graph + process model (FTG+PM) formal-
ism [4]. The FTG part is shown in Figure 3, while the PM is shown
in Figure 4. Note that we add a small extension to the standard
FTG+PM formalism to allow the inclusion of real-world entities.
The major sections of the PM are further described in the following
subsections. The PM shown here is a descriptive process model, i.e.
it describes the process steps in the order they were performed.
As such, the shown process is rather inefficient. In Section 4, we
discuss how, in retrospect, this process could have been improved
and show a possible prescriptive process.

3.1 Experimental Setup

Although many definitions exist for the term validation, we regard
model validation as the assessment of model accuracy by way of
comparison of simulation results with experimental measurements,
as defined by Oberkampf and Roy [7]. As such, a real-world test
setup is needed to perform the required measurements described in
the following subsections. It consists of four main parts, as shown
in Figure 2:

o Abrushless DC motor to be controlled by the load angle control
algorithm. A high-resolution encoder attached to the motor shaft
allows us to measure the rotor angle (0yot0r) to determine the
ground-truth load angle (6, ) for validation purposes.

The embedded platform on which the load angle control algo-
rithm is to be deployed, in this case a MicroZed"" 7020, paired
with the required power electronics to drive the BLDC motor.
e A permanent magnet synchronous motor (PMSM) paired
with a Siemens® SINAMICS® drive. The PMSM is operated in
torque control mode, which allows us to apply a precise load
torque to the BLDC motor in a controlled and repeatable manner.
A Speedgoat educational real-time target (RTT) machine is
used both to sequence experiments and to log data over the course
of each experiment. During an experiment, it is responsible for
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Figure 2: Simplified diagram of the real-world test setup.
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Figure 3: Formalism transformation graph showing the formalisms and transformations used in the validation process.

configuring (Ssetpoint) and enabling (En_d¢opsro1) the load angle
controller, and commanding the SINAMICS® drive to apply a
specific load torque (T7) at a specific time. At the same time, it
collects information about the estimated load angle (Jes;¢), the
ground-truth load angle (6, ), and the requested motor current
(Isetpoint)- It also records the motor phase voltages (vq, vp, vc)
and the resulting phase currents (ig, ip, ic) for later analysis.

This setup allows us to (semi-)automatically run pre-defined ex-
periments. It is used in full, or in part, in all experiments, character-
ization, and validation efforts described in the current paper. Here,
the brushless DC motor, power electronics, and the PMSM with
its SINAMICS® drive are considered the plant (Figure 4), while the
embedded platform is the (configured) controller. As such, these
parts together become the configured system.

3.2 Plant Model Calibration

Our previous work was performed using experiments in-silico. We
used a model of the load angle control system, together with a plant
model, to evaluate design candidates in a (simulated) test scenario.
The used plant model was constructed using parameter values from
datasheets and other theoretical values. During initial testing on
the real-world test setup, we noticed discrepancies between the
observed behavior of the real system and the simulated behavior
of the modeled system. Such discrepancies could originate from a

poorly calibrated plant model, which does not match its real-world
counterpart. As such, it was deemed necessary to first calibrate the
plant model. We identified and calibrated six important parameters
using a series of experiments (shown as a loop in Figure 4):

(1) The motor velocity constant (K3) specifies the ratio between
the motor’s unloaded rotational speed and the voltage across
its windings. As this constant is closely related to the back
electromotive force (back EMF), we experimentally determined
K, by measuring the back EMF voltage at different rotational
speeds.

(2) The motor torque constant (K7) specifies the ratio between
the stator current and the produced torque. K7 can be calculated
from K. As such, we calculated this from our experimentally
determined K.

(3) The motor winding resistance (R) was determined using a
four point resistivity measurement and later verified using the
parameter estimation capabilities of the vedder electronic speed
controller (VESC) [12].

(4) The motor winding impedance (L) was similarly measured
in a lab setup and later verified using the VESC.

(5) The moment of inertia (J) of the system, i.e. both mo-
tor rotors with encoders and shaft couplings, was determined
using the parameter estimation capabilities of the Siemens®
SINAMICS® drive used to control the PMSM.
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Load Angle at Varying Currents and Load Torques
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Figure 5: Load angle at varying current levels under different
loads on the physical system (meas.) and in simulation, using
both the uncalibrated (uncalib.) and calibrated model (calib.).

(6) The friction inherent in the system due to, e.g. bearing fric-
tion, viscous friction, etc., Characterizing this is less straight-
forward than the previous parameters. An initial estimate was
made by running the motor up and down its operating speed
range and recording the required current, and thus torque (using
Kr), at each speed. Using this data, we were able to approximate
the friction in function of the rotational speed using the qua-
dratic function Tfyjcrion = P1 -w? + pz - © + p3. Note that this
does ignore breakaway torque. While this is not important for
our purposes, this does affect the validity range of the model.

Most of the listed parameters (everything except friction) are
generally also provided by the manufacturer. While most of our mea-
surements resulted in values close to those listed in the datasheet
(within ~1-2%), the measured impedance was an order of magnitude
lower than stated by the manufacturer. As multiple independent
measurements using different techniques provided similar results,
we do assume these to be correct. This has a major impact on system
behavior. First, a significantly lower impedance means the current
in the motor windings rises and falls more quickly, leading to worse
than expected performance of the current control system. This in
turn affected the precision of the estimated load angle. As such,
modifications were made to the implementation of the system to
mitigate these effects. Additionally, the load angle estimator re-
quires the values of R and L to be known. A significant mismatch
with the actual resistance and impedance of the motor windings
affects the accuracy of the estimate and thus the overall behavior
of the load angle control system.

With these changes and other small modifications to the model,
the behavior of the system in simulation much more closely matches
the behavior of the real system during our test scenario. This is
illustrated in Figure 5, which shows the reference load angle at
different motor current amplitudes under different loads, both in
simulation and measured on the real-world test setup (meas.). Sim-
ulation results are shown for both the uncalibrated (uncalib.) and
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calibrated (calib.) models. Note that the curves do not match exactly
between the simulation and the real world. This is likely due to
the fact that the model is still an abstraction of reality. While this
does further limit the validity of the model, the shown simulation
results are sufficiently close to reality for our purposes as we are
mostly concerned with the maximum load angle, specifically with
0-0.1Nm external load torque. However, as the model has changed,
the results of the previously performed design space exploration
may no longer be valid. As such, we repeated the DSE process
using the updated models. This is explained in more detail in the
following section.

3.3 Design Space Exploration

As the model has changed, the results of the design space explo-
ration presented in previous work may no longer be valid. Ad-
ditionally, some modifications were made to the implementation
to reduce some undesired effects, further invalidating the previ-
ous DSE results. As such, we reuse the DSE workflow presented
in previous work [11] to once again determine two good design
candidates for deployment on respectively a single- and dual-core
embedded platform. Each candidate consists of a specified period
for the monitor and control parts of the algorithm, together with an
optimal load angle setpoint. Using this approach, we arrive at the
following configurations:

(a) Single-Core Candidate
Monitor period: 24 ps
Control period: 40 ps
Load angle setpoint: 80°

(b) Dual-Core Candidate
Monitor period: 12 ps
Control period: 36 ps
Load angle setpoint: 85°

For reference, we also exhaustively evaluated the entire design
space. All schedulable configurations are shown in Figure 6, with
the single- and dual-core candidates listed above highlighted. This
figure shows the corresponding optimal load angle setpoint for
each schedulable combination of monitor and control period.

3.4 Face Validation

To validate the performance of the proposed design candidates, we
deploy them on the embedded platform and evaluate them on the
physical setup. To evaluate their performance, we record the motor
power consumption during a predefined validation sequence. In
this part of the process, we only considered face validity, i.e. does
the model seem reasonable to an expert [8], which is subjective.

3.4.1 Validation Sequence. The used validation sequence is illus-
trated in Figure 7, which shows (a) the load torque, (b) the load
angle, and (c) the motor current amplitude during one validation
run. The validation sequence starts with the motor running at a
predefined speed, with no external load. After 15 s however, the
load is abruptly increased to 0.1 Nm to exercise the watchdog. In
the figure, the watchdog is active from 15 s to 25 s, as can be seen
by the increased motor current. The load torque of 0.1 Nm is main-
tained until the end of the sequence, at 35 s. Performing this test for
a range of load angle setpoints allows us to find the setpoint with
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Figure 6: Optimal load angle setpoint for all schedulable
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Figure 7: Measurement data showing the externally applied
load, load angle, and motor current during a test sequence.

the lowest energy consumption, i.e. the highest possible load angle
before loss of synchronism occurs, for each specific design candi-
date. Overall, better candidates will be able to maintain a larger
load angle, resulting in lower power consumption.

3.4.2  Determine Face Validity. We use this approach to validate the
single- and dual-core solution determined using the DSE approach
described in the previous subsection. For each solution, we compare
the actual optimal load angle setpoint to one predicted in simulation.
For the single-core solution, this results in an optimal load angle of
77 —78° on the real-world system compared to 80° in simulation.
Similarly, for the dual-core solution, we find an optimal load angle
of 81 —83° instead of the predicted 85°. In short, both solutions
perform slightly worse on the real-world setup when compared
to the simulation. Overall, this is not surprising, as we know the
simulation models used are always an abstraction of their real-
world counterparts [13]. They might not capture all effects that
can affect system performance. As such, a difference between the
real-world and simulation results is to be expected.
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Figure 8: Predicted performance of different algorithm con-
figurations compared to their real-world performance.

To further validate our simulation results, we additionally evalu-
ate multiple (non-optimal) design candidates on the physical setup.
Here, we take a row of the design space seen in Figure 6 at con-
trol period 36 ps and evaluate design candidates for a subset of all
possible estimator periods. We choose a row, as the estimator pe-
riod appears to have a much larger impact on system performance
than the control period. Nevertheless, this was first confirmed by
evaluating a few configurations within a column, resulting in the
same observed performance. First, however, the precision of the
measurements was determined by repeating the same measure-
ments ten times each for two different configurations, resulting in a
repeatability of 1°. To gauge the influence of temperature changes,
we also repeated the same measurements multiple times over a
longer period of time (3 —5 h), which showed that once the motor
had warmed up for around an hour, the same repeatability of 1°
could be achieved over multiple measurements. As such, the motor
was allowed to warm up for more than one hour at the start of each
measurement session. Nevertheless, to minimize the influence of
environmental factors, measurements were performed out of order
to avoid introducing a potentially misleading trend in the results.

After this, each candidate from the chosen subset was evaluated
at least twice, the results of which can be seen in Figure 8, which
shows the measurement results together with the predicted perfor-
mance from the simulation runs. Overall, the measurement results
confirm the expected trend, with shorter monitor periods resulting
in better system performance (larger maximum load angle). Addi-
tionally, we see that most of the measurements are within 2 —3°
of the predicted value and are especially close for estimator peri-
ods around 20 —25 ps. However, we do see that the measurements
start to diverge from the simulation at around 28 —30 s, possibly
some effect(s) not considered in the model start to have a larger
impact here. As such, the model might no longer be valid from
this point on. In short, the model appears valid up to around 28 ps.
Nevertheless, without a relevant frame of reference, it is hard to
quantify how good or bad these results actually are. As such, in
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the following subsection, we investigate the impact of potential
sources of uncertainty on the predicted performance.

3.5 Uncertainty and Statistical Validation

In the previous section, we compared the performance of the de-
ployed load angle control algorithm in a real-world test setup to
the expected performance predicted using simulations. However,
while we went to great lengths to calibrate our model to obtain
representative simulation results (Subsection 3.2), there is still un-
certainty associated with many of the calibrated model parameters.
This uncertainty can stem from the methods used to determine
these parameters, which may not be entirely accurate, but certain
parameters may also change depending on the operating conditions
of the system, e.g. because they are temperature dependent. In the
current section, we seek to determine the impact of this uncertainty
on the simulation results and, thus, in retrospect, what this means
for our previously obtained DSE results and the DSE workflow we
used to obtain them.

3.5.1 Estimating Uncertainties. First, we identified potential sources
of uncertainty that are likely to impact the accuracy of the model
and thus the reliability of the simulation results. For each item, a
realistic range of possible values was identified. This resulted in six
potential sources of uncertainty:

(1) Motor winding resistance (R): While we have taken care to
measure the resistance as accurately as possible, this was done
so in a static setup, i.e. without the motor running. However,
the resistance can change depending on the operating point of
the motor (rotational speed and phase current). From measure-
ments performed on a similar setup [1], we expect the phase
resistance to increase by about 78% to 109% in our test sce-
nario. As such, we consider the following likely values for R:
[1,1.78,2.09] - Rineasured-

(2) Motor winding impedance (L): Similar to the winding re-
sistance, the impedance can change depending on the oper-
ating point. Based on the same measurements, we estimate
that the impedance may increase by 9% to 22% in our test sce-
nario. As such, we consider the following likely values for L:
[1,1.09,1.22] - Lineasured-

(3) Friction: As mentioned in Subsection 3.2, the friction in func-
tion of the rotational speed of the motor was approximated
using a quadratic function. However, in reality, the friction
is also temperature dependent, with friction decreasing over
time as the motor is running and heats up. The measurements
shown in Figure 5 were originally performed when the mo-
tor had already been running for some time. To gain insight
into the extent of the impact of the operating temperature, the
no-load measurement was repeated both before a longer mea-
surement campaign, i.e. with the motor at room temperature,
and after said measurement campaign, i.e. after several hours
of operation. The results of these measurements are shown in
Figure 9, which shows the original measurements (warm) of
the load angle in function of the stator current levels together
with these new measurements (cold and hot). The simulation
results using the calibrated model are also shown for reference.
From these results, we determined that we could approximate
the friction over the measured operating range by changing
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Figure 9: Load angle at varying current levels at different
operating temperatures.

p3 in the original fit, with an increase of ~5.1% representing
the “cold” situation and a decrease of ~10.2% representing the
“hot” situation. As such, we consider the following values for
Pp}:[0.898,1,1.051] - ps.

(4) Additive measurement noise on the voltage measurements:
The voltage range supported by the analog inputs of the used
embedded platform is rather small (0-1V). While external input
conditioning circuitry does allow us to measure the phase volt-
ages required by the load angle estimator, this limited range
does make these inputs susceptible to electrical noise. During
testing, we observed additive measurement noise with an am-
plitude of around 35mV at the analog inputs of the embedded
platform. We expect this noise can impact the precision of the
load angle estimate and thus the behavior of the system. To
replicate this in simulation, we add additive white Gaussian
noise (AWGN) to the voltage measurements, with a variance in
the following range: [0, 0.035%]V.

(5) Additive measurement noise on the current measure-
ments: Similar to the voltage measurements, noise on the cur-
rent measurements may affect the performance of the system.
As such, we also add AWGN to the current measurements in
simulation, with a variance in the range [0, 0.035]V.

(6) Ringing on the voltage measurements: In addition to noise
on the voltage measurements, we observed some ringing at
sharp transitions. As such, we have added the capability to
emulate this behavior in our model so the potential impact of
this effect can be evaluated in simulation. For the ringing, we
consider possible values of [0, 1], where 0 means ringing is
disabled, and 1 means ringing is enabled.

3.5.2  Propagating Uncertainties. To propagate the previously iden-
tified uncertainties and to investigate how and to what extent they
impact the simulation results, we perform Monte Carlo simulations.
Here, a subset of the previously performed simulations is repeated
with varying configurations for the previously mentioned param-
eters. We do this both by uniform sampling within the identified
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Figure 10: Confidence bounds determined using the Monte
Carlo simulations together with the measurement results.

ranges for a large number of samples (16 384) to get an idea of
the resulting distribution of simulation results and by simulating
every combination of identified potential values (7 776 combina-
tions) to increase the likelihood of finding the worst-case bounds on
these results. To evaluate a configuration, we perform a parameter
sweep over the load angle setpoint (46 possible values). As such,
(16 384 + 7 776) - 46 = 1 111 360 simulations were required. For
reference, these simulations took over 80 hours when parallelized
over 382 cores of a high-performance computing (HPC) cluster, i.e.
requiring nearly 31 thousand CPU hours in total. Figure 10 shows
the results of the Monte Carlo simulations together with the sim-
ulations and measurement results from Figure 8. For the Monte
Carlo simulations, it shows the mean result (blue dashed line) with
the corresponding one sigma bounds (red dashed lines), as well as
the extreme values, i.e. the minima and maxima, (solid red lines).

3.5.3 Statistical Validity. Using the information gained in the pre-
vious subsection, we can further quantify the results obtained in
Subsection 3.4. Indeed, this allows us to determine the statistical
validity, i.e. to what extent the (measurement) results correspond
to those obtained in another context (simulation). In Figure 10, we
see that most of our measurements are close to the mean predicted
values (within ~1-2 ). Indeed, for estimator periods of 16us and
below, the measurements are closer to the mean from the Monte
Carlo simulations than to the prediction obtained using the initial
simulations. Overall, most measurements fall within the one sigma
confidence bounds. It’s mostly for estimator periods of 30us or
more that we start seeing larger deviations from the mean, with
measurements falling outside the one sigma bound and even out-
side the extreme values observed in the Monte Carlo simulations.
As such, we conclude that for estimator periods smaller than 30us,
our system model represents the real system accurately enough
for our purpose and can be used to make predictions of its perfor-
mance. However, the model is no longer valid for estimator periods
of 30us or more. This is likely due to certain abstractions made in
the model, such as the omission of certain physical or embedded
platform effects.
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4 DISCUSSION AND FUTURE WORK

In the previous sections, we described the experiments, measure-
ments, and simulations we performed in an effort to (i) calibrate
a plant model against its real-world counterpart and (ii) validate
the performance of different design candidates determined using
design space exploration techniques, which used this calibrated
plant model to predict their performance. However, the order and
sometimes extent of these steps were in retrospect not very efficient.
In this section, we discuss some of these steps, presenting lessons
learned and highlighting additional questions raised and identified
challenges. In tandem with this, we present a more efficient (pre-
scriptive) process model for model calibration and validation in
the context of model-based design space exploration, which takes
into account these lessons learned and other observations. This
prescriptive process model is shown in Figure 11.

Face validation and statistical validation. Regarding validation,
we saw that face validation as described in Subsection 3.4 can
give some idea about the validity of a (system) model. However,
it is based on expert knowledge and experience. While this can
be reliable in certain situations, as demonstrated by the fact that
our interpretation of the results here was later confirmed by the
statistical validation, it remains subjective. Indeed, without an ex-
plicit frame of reference, the actual validity is hard to quantify
and evaluate objectively. Statistical validation, as described in Sub-
section 3.5 can help quantify this, but this requires information
about uncertainties and their impact on the (simulation) results to
determine e.g. probability distributions or confidence bounds. In
the descriptive process, the face validation and statistical validation
were performed sequentially. However, this does not need to be
the case. Indeed, they can be performed in parallel, as shown in
the “full validation” section of the prescriptive process. Additionally,
during the plant model calibration, we only considered face validity.
However, it might be useful to also investigate uncertainties and
their impact, and subsequently the statistical validity of the plant
model. As such, this is also shown in the “plant model calibration”
section of the prescriptive process.

Adaptive design space exploration and experiment definition. The
probability distribution obtained during the statistical validation
indicates that the DSE we performed was likely too fine-grained.
Indeed, there is quite a bit of variation in the predicted performance
due to uncertainties when compared to the overall trend (Figure 10).
If this information had been available earlier, a larger step size
could have likely been used for the monitor period instead of the
current 1 ps, as the impact of such a small change in monitor period
on real-world system performance would likely be indiscernible
from other variations. This is illustrated in the “(adaptive) design
space exploration” part of the prescriptive process model, where the
probability distribution is used to modify the optimization problem
definition. Similarly, this information might have been used to
determine the number of measurements needed to validate the
simulation results. Indeed, we could have determined how far apart
(regarding the monitor period) the measured points should be to
confirm or disprove the overall trend. This is shown as a “modify
experiment” step in the “uncertainty propagation and measurement
and simulation” section of the prescriptive process model. However,
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Figure 11: Possible prescriptive process model of the model calibration, design space exploration, and system validation process.
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this is currently only speculation. As such, in future work, we intend
to investigate to what extent this actually holds true. However, we
have already identified some potential problems that would need
to be addressed first:

Obtaining the probability distribution. To obtain the probability
distributions required to reduce the design space, e.g. by modifying
the step size, we require the full configured system model, as we
want to know the impact of uncertainty on the closed-loop system
behavior. As such, we already need to have some likely design
candidates, which creates a chicken and egg problem. Indeed, we
need to perform DSE to determine design candidates which we
need to obtain the probability distributions to reduce the design
space for the DSE. A potential way to deal with this would be to
perform a kind of adaptive sampling, whereby (sampled) candidates
are used to propagate the uncertainties and to obtain the probability
distributions, which are then used to adjust the resolution of the
DSE, leading to the loop shown in the “(adaptive) design space
exploration” part of the prescriptive process model.

Propagating the uncertainties. Furthermore, to propagate the un-
certainties, we made use of Monte Carlo simulations. However, this
took a lot of computation time. In this case, the time required to
propagate the uncertainties far outweighed the potential time gains
resulting from reducing the resolution of the DSE. Regardless, the
probability information was still relevant in the statistical valida-
tion. This highlights another problem: you may need to spend a
lot of time running (Monte Carlo) simulations to save a bit of time
in other steps, but this of course depends on the relative execu-
tion times of the different steps. However, there are some possible
ways to deal with the computational complexity of the Monte Carlo
simulations (not shown in the process model):

(1) Performing sensitivity analysis (SA) to determine how much
each source of uncertainty contributes to observed variations
on the simulation results would allow us to disregard sources
with a low sensitivity index, significantly reducing the required
number of simulations for the Monte Carlo analysis. However,
this does create another problem: performing sensitivity analy-
sis usually also requires many simulation runs. As such, there
is a tradeoff between the time spent to perform the SA and the
time saved on the Monte Carlo simulations.

(2) Another option is to use surrogate models which can be sim-
ulated more quickly or which can be used in other analytical
approaches to uncertainty propagation to obtain an estimate of
the required probability distributions. However, as these mod-
els are approximations of higher-order models, they introduce
additional uncertainty which must be taken into account [6].

Robust optimization. Reducing the time required to obtain these
probability distributions is also useful when going toward robust
optimization, e.g. to take into account variability in the manufactur-
ing process. For example, in the current paper, we considered the
optimal deployment of an advanced controller for BLDC motors.
However, our design candidates are to an extent tailored to our
specific setup, as we calibrated our models for our setup. How-
ever, variations in motor parameters, e.g. due to manufacturing
tolerances, will affect the system performance when going to se-
ries production. As such, we would need to take these variations
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(uncertainty) into account in the evaluation of design candidates
in the design space exploration process itself. To guarantee a cer-
tain minimum performance, for example. In that case, a probability
distribution on the predicted performance of design candidates is
required, which would dramatically increase the computation time
required to perform the DSE. Here, the potential solutions listed
above would also be relevant.

Future work. The presented prescriptive process is at this point
a hypothetical process, which assumes the challenges presented
above are solved. Further research is required to actually address
these challenges to make this possible and subsequently to deter-
mine how realistic this process is and the actual advantages or gains
(e.g. regarding computation time) that can be obtained. Addition-
ally, methods, tools, and techniques are required to support such a
process. For example, the validity of models has been mentioned
multiple times throughout this paper. Here, Validity Frames (VF) [9]
can be used to explicitly capture the range of validity of each model.
Similarly, the EMF-based Simulation Specification (ESS) [5] can be
used to define and automate model validation experiments to sup-
port the validation process.
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