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ABSTRACT
The advance in digital twin technology is creating value for lots of
companies. We look at the digital twin design and operation from a
sustainability perspective. We identify some challenges related to a
digital twin’s sustainable design and operation. Finally, we look at
some possible approaches, grounded in multi-paradigm modelling
to help us create and deploy more sustainable twins.

CCS CONCEPTS
• Computer systems organization → Embedded systems; Re-
dundancy; Robotics; • Networks→ Network reliability.
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1 INTRODUCTION
Sustainable development focuses on development with three dimen-
sions in mind: (a) Economic, (b) Social and (c) Environmental [22].
Sustainable development is defined as the development that ful-
fils today’s needs without compromising future generations’ needs.
However, human emission of greenhouse gasses and aerosols create
an unbalance in the Earth’s energy system [1]. Consequently, we
see an increase in the earth’s temperature, melting polar caps and
permafrost regions. Computing as an industry is currently respon-
sible for 2% to 6% of the emissions of greenhouse gasses globally,
with a predicted share of 6% - 22% in 2030 [21].

One of the key transformational technologies for the industry
is the digital twin. Several definitions of a digital twin exist in the
literature; as such, we will only state one: “A set of virtual informa-
tion constructs that mimics the structure, context and behaviour of
an individual / unique physical asset, or a group of physical assets,
is dynamically updated with data from its physical twin throughout
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its life cycle and informs decisions that realise value.” [9]. Digital
twins create value for companies by integrating the physical and
digital world to address complexities and high demands from the
market [18]. Digital twins have multiple functionalities. Applica-
tions include but are not limited to real-time monitoring, system
optimisation, quality control and waste management [2, 16]. Digital
twins are applied in all industrial sectors like aeronautics, medical,
smart city, and manufacturing.

While digital twins help in sustainable development’s social and
economic dimensions by optimising system usage, the design of
twins largely ignores its impact on electricity consumption. Digital
twin implementations heavily rely on computing and network-
ing infrastructure to monitor, predict, and optimise their analogue
counterparts. In this paper, we discuss the challenges and possible
approaches for the sustainable development of digital twins.

To make the challenges more tangible, we use a motivating
example of a simple system with a digital twin. Our system is a
heat-sink used to cool a critical component of another system. It
has fans to pull in air cool air which is guided over several fins
to convectively cool the critical part. The original design of the
system is done using a distributed parametermodel. The twinmakes
predictions based on the predicted system critical component loads,
air temperature and current conditions if the system will be able to
keep cool enough.

To give an overview of the paper, in section 2 we give some
background about digital twins and energy and power consumption.
In section 3 we discuss the sustainable design and deployment
of digital twins and 4 challenges connected with the design and
deployment of digital twins. Lastly, in section 4 we describe some
possible approaches to these challenges.

2 BACKGROUND
2.1 Digital Twins
Digital twins are virtual counterparts of real systems. Digital twins
are created using digital models that are augmented with data from
the real-world. Figure 1 shows various forms of the use of digital
models. During the design process, digital models are often used to
make choices on various decisions. The digital models created serve
as the basis for the digital twin. The digital model can also manually
be used in the operations phase of the system to identify faults, etc.
To detect faults or monitor the system more efficiently, engineers
have created tracking simulators that augment and keep the model
in synchrony with the real-life system; these are commonly referred
to as digital shadows. Digital twins go one step further and close the
loop between the virtual model and the real-world system to make
decisions. The term filter is defined as components that estimate
the state of a system from data, e.g. Kalman filter or particle filter.
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Figure 1: Digital Model, Digital Shadow and Digital Twin

A digital twin is a complex system that needs to be engineered.
All the design principles thus also apply to the design of a digital
twin.

2.2 Energy and Power Consumption
Energy (E) is the amount of work a system performs over a certain
amount of time. The energy consumption of a digital twin is mea-
sured in Joules (J) or Watt-hours (W.h). It is the energy required
to operate all aspects of the digital twin. Power (P) is the rate at
which a system performs work. Power is expressed in Watt. Power
and energy are related through 𝐸 =

∫ 𝑏

𝑎
𝑃𝑑𝑡 .

Reasoning over energy and power consumption and their asso-
ciated models can include several levels of impact [4]:

• First order impacts: Impact on the direct production and
operation of the digital twin. We focus on this impact in this
article.

• Second order impacts: Secondary impact related to the effect
of digital twins on, e.g. production and product usage. For
example, the decrease of energy consumption of a device
because of the optimisation possible by the twin.

• Third order impacts: indirect effects caused by twins, e.g.
impacting the structure of an industry or the lifestyle of
persons.

3 SUSTAINABLE DESIGN OF TWINS
To understand the problem of sustainable digital twinning, we need
to understand where energy is consumed during the life-cycle of
the system and its twin.

We break down energy consumption into an additive model
where the consumption of the energy occurs: 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑑𝑒𝑠𝑖𝑔𝑛 +
𝐸𝑙𝑜𝑐𝑎𝑙 + 𝐸𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑖𝑛𝑔 + 𝐸𝑐𝑙𝑜𝑢𝑑 + 𝐸𝑢𝑝𝑑𝑎𝑡𝑒 . With

• 𝐸𝑑𝑒𝑠𝑖𝑔𝑛 is the energy consumed for creating the twin. Build-
ing a simulation model of a twin might not have a large
impact on this factor. However, this term might have a sig-
nificant impact when using data-driven methods.

• 𝐸𝑙𝑜𝑐𝑎𝑙 is the energy consumption at the analogue side of the
system (e.g., by storing the data, pre-processing the data, and
executing a part of the twin model locally).

• 𝐸𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑖𝑛𝑔 is the system’s energy consumption by sending
and receiving messages on the network.

• 𝐸𝑐𝑙𝑜𝑢𝑑 is the energy consumption by executing the twin in
the cloud environment.

• 𝐸𝑢𝑝𝑑𝑎𝑡𝑒 is the energy necessary to redesign and update the
model during the system’s life-cycle.

This model allows us to reason on the impact developers have
during the design and deployment of digital twins.

In the next subsections, we will look at the challenges in devel-
oping and deploying a digital twin. The first subsection will look
at choosing a digital twin formalism. Then the second subsection
looks at how this choice affects the value of the digital twin. The
third subsection will look at what happens if the system evolves
and lastly the fourth subsection looks at the deployment of a digital
twin.

3.1 Twin Formalisms and Boundary Conditions
Different formalisms and workflows exist to create a twin model to
use in the digital twin architecture. Most of the techniques shown
here transform the model into a less approximate model or a model
that is only valid within a certain context. For the approximation,
an operating point or operating region needs to supplied. These
are commonly referred to as boundary conditions. In this paper
we call all these different models surrogate models of the model.
We show a formalism transformation graph in Figure 2 to visualise
the choice of formalism for the motivating example. A Formalism
Transformation Graph shows how formalisms can be transformed
into each other [8].

On one side of the spectrum, there are the fully data-driven digi-
tal twins. Engineers create this twin by combining big data together
with machine learning algorithms. An example is the use of classifi-
cation and clustering for predictive maintenance [7]. Historical data
on performance and failure is combined to train machine learning
algorithms to flag when a certain component, machine part or sys-
tem is likely to fail. The current sensor information is used together
with the twin to predict the health status. Engineers prioritise their
maintenance schedules based on these outcomes. Note that systems
do experience drift and that it is likely that retraining or continual
learning techniques might be necessary [15].

On the other end of the spectrum, we have physics-based or
simulation-based digital twins. These digital twins run simulations
of the system to reason on the system behaviour. The simulation
model can be modelled using several formalisms and at several
levels of abstraction and approximation (or a combination of). Based
on the complexity of the model, more (respectively less) accuracy
is obtained at a higher energetic and run-time cost (respectively
lower).

In our running example, we start from a distributed parameter
model. For this type of formalism, several techniques exist to cre-
ate surrogate models. Projection-based methods lower the state
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Figure 2: Formalism Transformation Graph showing differ-
ent means to create the twin model

space dimensions of the problem. An example is proper orthogonal
decomposition where the singular value decomposition is used to
create a lower-dimensional orthonormal basis. The nonlinear terms
still need to be evaluated in an efficient way [6].

Another means to trade run-time and energetic performance
with accuracy is to model a simplified model by hand. The modeller
needs to have sufficient domain knowledge to do this. The manual
modelling requires much insight into the underlying physics of the
problem. Yet another means of approximation is at the numerical
algorithm level. We can use coarser approximations of the spatial
and temporal discretisation employed by methods such as finite
differences. Finally, linearising and neglecting non-linear terms is
also often employed around operating points.

A third technique are data-fit models that are trained using the
input and outputs from simulating the simulation model. Different
basis functions are available to map onto. For example, neural
networks are shown to universally approximate functions [14].

Besides using a single model and formalism for the twin, some
hybrid techniques and architectures are described in the literature
that combine several of these techniques. Most notable are ensemble
methods that combine several of these techniques together in a
single twin.

Challenge 1: Digital Twin Model Energy Consumption:
The challenge for sustainable twinning is to create a model that
explains and predicts the energy consumption of all possible digital
twin architectures created during the system’s design. Furthermore,
the model should also predict the ramifications of this architectural
choice on the energy consumption in the operational phase of
the system. The plethora of methods and techniques for creating
surrogate models (and thus with the number of available paths
toward a digital twin model) is especially challenging. Furthermore,
the formalism transformation graph is highly domain-dependent
and starts from the initial formalism. If there is no such base model
with a very large validity context, the developers are already forced
into using combinations of models, where for some of these models,
surrogate models are needed.

For the running example, it is possible to create a neural network
that clones the physics behaviour of the system within a certain
operational area (boundary conditions). This will require a lot of
energy to produce such a model as we need a lot of data for training
a neural network model (𝐸𝑑𝑒𝑠𝑖𝑔𝑛 is increased significantly). How-
ever, once trained, the running of the model in the digital twin
will not consume much energy (𝐸𝑙𝑜𝑐𝑎𝑙 ). In comparison, if we use
the distributed parameter model with coarser temporal and spatial
approximations, the design phase (𝐸𝑑𝑒𝑠𝑖𝑔𝑛) will not require any
additional energy. However, calculating the twin requires a lot of
energy every time we need to make a prediction.

3.2 Twin Purpose and Its Value Proposition
In the previous challenge, we neglect several important concepts.
The foremost concept is that of the purpose of the twin. Each twin
is made for a specific purpose, e.g., the monitoring of the system’s
health, and the online optimisation of the system. Based on the
purpose, a company gains a certain amount of value from the twin.
This has to be balanced. When the cost of developing and operating
the twin is higher than the value it brings, there is no need for a
twin.

From the perspective of simulation engineering, the purpose has
a huge influence on the engineering of the simulation model. The
same thus applies to engineering the model of the twin. Figure 3
shows a concept framework, from [5], based on [3], extended with
a decision maker. When running a simulation, the semantics [[.]]
are given in terms of traces. However, we might be interested in
certain features of the trace (e.g. the maximum, minimum, integral,
etc.). A function 𝑓 () translates to this value. Based on the system’s
requirements, we interpret this feature in the ontological domain
(e.g. the system is cooling sufficiently). A decision maker (human or
automatic) uses this ontological interpretation of the feature and a
decision-makingmodel tomake a certain decision. The same applies
to the approximated model. When the ontological interpretation of
the feature is the same, the decision is the same, and the models are
both valid (and substitutable) in the context. However, depending
on the context, this is not always true. As such, approximations
introduce uncertainty on the simulation outcome. Based on this
conceptual framework, we see that uncertainty and tolerance play
a critical role in the outcome of a decision maker.

The value proposition and the allowed uncertainty introduced by
the model are related. If the twin decision maker is tolerant to more
uncertainty, then an approximate model with more uncertainty
results in the same value as a twin with a detailed model. This
allowable uncertainty can be exploited by selecting a model that has
the lowest energetic cost that still is valid (and thus substitutable) in
the context where the system operates in. Furthermore, in certain
problems, it is not necessarily that the decision maker is always
perfect for gaining sufficient value from the digital twin. As such,
the requirements on the uncertainty can be further reduced.

In our example, the decision maker does not allow for much tol-
erance within the operational region of the system. This is because
the changes in the load have a very immediate response on the
temperature of the cooling system. Furthermore, failing to warn
the system to be cooled to reduce the thermal load, results in a
catastrophic restart.
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Figure 3: Conceptual framework for the validity of surrogate
models, from [5]

Challenge 2: Including Uncertainty into the Formalism
Selection Process: Estimating howmuch uncertainty the decision
maker can tolerate gaining enough value from the digital twin
is a difficult problem. Furthermore, once we know the allowable
tolerance, we still need to include this into the formalism selection
process of challenge 1.

3.3 System Evolution
To allow for the long and continuous operation of the digital twin,
we need insight into the range of validity of the model in combina-
tion with insights into the system’s evolution.

Different forms of evolution exist in systems and their digital
twin:

• Change in boundary conditions: The evolution entails a
change in the system’s boundary conditions. In our case
study, we could see that the thermal load on the heat sink
is beyond the specified load during the design of the digital
twin.

• Change in a component of the system: The evolution entails
that a sub-component of the system is changed. As such, the
digital model should be updated accordingly to the specified
change. For example, the fan is changed within the heat sink
system, creating a different cold air stream over the sink and
thus changing the thermal cooling properties of the system.

• Change in the purpose of the system (and its twin): On the
longer term, the system’s evolution can entail a different
function and purpose. For example, the heat-sink is used to
cool an entirely other system than it was initially designed
for.

All of the previous evolutions of the system require that the
validity of the simulation twin model is checked for the new context
of the system or for the changes in the system operation.

Challenge 3: The Impact of System Evolution: Including
the dimensions of evolution within the formalism selection process
is needed. Having a good estimate of these evolutions in frequency
and severity helps determine the needed boundary conditions and
validity of the model. If not taken into account, a new model needs
to be used, possibly a model that consumes more energy. In data-
driven models, it could be that a new model needs to be trained,
adding significant overhead to the total energetic cost of the setup.

In our motivating example, evolutions in the system to cool has
an impact on the thermal load it supplies to our cooling system.
The boundary conditions thus change. The model that underlies
the twin should be checked for this new operational context: is the
model still valid in this new context? If not, a new model must be
selected, trained or developed.

3.4 Twin Deployment Architecture
As previously explained, a digital twin is a complex system on its
own. A twin deployment architecture thus needs to consider all
different parts of the system. Below, we give a non-exhaustive list of
several architectural choices that have an influence on the energy
consumption of the twin:

• A first choice that might have a significant impact is where
to run part of the twin architecture. Parts of the model can
be run in the cloud, edge or locally. This choice could have a
significant impact on the energy consumption of the system.
One of the effects is that data streams from a local system
to the cloud might increase or decrease because of these
choices.

• A second choice, influenced by the purpose of the twin, is
how the digital twin interacts with the real system. There
can be several frequencies at which the system and twin
work. If there is a frequency difference between the system
and the twin, the difference can be exploited to batch process
signals and compress and pack the signals before sending.

• A third choice is on the networking technologies for the
data’s telemetry. Different technologies are available to pro-
vide networking and telemetry, and all impact the twin sys-
tem’s final energy consumption. Some networks are very
much low-power, e.g. LoraWAN [10], or configurable, which
might result in less power consumption [23]. Similarly, the
decision-making and state estimation technologies also have
an influence on the consumption of energy. Some algorithms
provide very good results but have a heavy computational
burden (e.g., particle filters in comparison with Kalman fil-
ters).

• Finally, all energy consumption related to storing and re-
trieving the data from and into data lakes and time-series
databases has also a serious impact.

Challenge 4: Deployment of the Twin Architecture : The
final challenge is to reason on the deployment choices related to
the deployment architecture used for the digital twin. Most choices
are impacted by the requirements of the system, which in turn are
depending on the value proposition of the twin. Integrating these
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value and sustainability-related questions into the requirements
and architecture phase is needed but challenging as requirements
and constraints can change.

4 POSSIBLE APPROACHES IN THE
SUSTAINABLE DESIGN OF TWINS

The proposed approaches are very much grounded in the philoso-
phy of Multi-Paradigm Modelling (MPM) [20]. MPM advocates that
all relevant system parts are explicitly modelled using the most ap-
propriate formalism(s) at the most appropriate abstraction level(s).
The additive model shown in section 3 is already the beginning to
examine what models are required to solve the proposed challenges.
We first start with a requirements-level view, then a system level
view and than look at some individual components.

In this section, we describe some approaches to solve the chal-
lenges from the previous section. In the first subsection, we describe
the approaches to the challenge of value evaluation. In the second
section, we describe approaches for selecting a digital twin for-
malism. In sections 3 and 4 we describe approaches to predict the
energy during the design and operation of the digital twin.

4.1 Value and Allowable Uncertainty
Taking the value of the choices into account, we need to fix on
how much uncertainty brings an optimised value for the designer
of the digital twin. To quantify the allowable uncertainty, models
of the decision maker need to be co-simulated with the model of
the simulation model (or traces thereof that are already existing),
augmentedwith uncertainty. The results of these evaluations should
be combined with value models from economics. Value is a formal
encoding of preference. The outcome is a (response) surface that
encodes the relationship between uncertainty and provided benefits.
It allows to a trade-off between the incurred energetic costs with
the value provided by an uncertain model. However, the energetic
cost cannot be the only criterion in the trade study, as we would
end with always similar architectures. The design and trade-offs
are discussed in the next subsection.

4.2 Selection of the Correct Twin Model
Architecture

The selection of a twin model architecture is perhaps the most
difficult challenge presented here. The different dimensions of the
problem (including evolution and value) make the problem very
difficult as most of the information is or might not be available
to the twin designers. As the design space of the problem is quite
big, design-space exploration techniques have to employed to solve
the problem. As we are in a multi-paradigm modelling setting,
design-space exploration should not just be done at a single level of
abstraction, but at multiple levels of detail, with explicit knowledge,
similarly to [11, 17, 25]. As such, we need models at different levels
of abstraction for all of the additive parts of the energy consumption
model (we discuss the development of such models in the next two
subsections). As stated before, we cannot only look at the energetic
cost of a system. Other criteria should be considered (e.g., monetary
cost of operation, design time, etc. ).

Sensitivity information is of particular interest between the dif-
ferent choices and the model’s energy consumption. We want to

fix the choices with the highest impact first. To evaluate decisions,
we will use competitive analysis [12]. Competitive analysis focuses
on minimizing the regret incurred by making decisions under un-
certainty. Regret allows us to rank different alternative designs and
make decisions online. This is needed, as backtracking a choice
has a serious consequence on the total energy consumed over the
model’s life-cycle, e.g., we first learned a neural network with spe-
cific boundary conditions to broaden the boundary conditions later.

Finally, we need detailed information on the validity of each
model used. Validity frames are needed to capture such informa-
tion [19, 24].

4.3 Prediction of Design Consumption
We make a distinction between data-driven models and physics-
based twins. Physics-based twins do not use a huge amount of
energy during the design time. Most energy consumption is in-
volved in techniques for calibration and validation of the models,
e.g., Monte-Carlo simulations for proving statistical validity. How-
ever, a lot of manual effort is involved in the design of abstractions
and approximations. Estimation models for the other criteria are
also thus very much needed.

For data-driven twins, the situation is different. Training of black
box models does take a lot of computation and energy. Some tech-
niques already exist to predict training time but assume that pre-
trained neural networks are used and are fine-tuned for the appli-
cation [26]. This part of the research still had very foundational
aspects. We, therefore, want to establish the relationship between
metrics of the dynamic behaviour and energy consumption of the
training. Some examples of these metrics include but are not limited
to:

• Maximum Lyapunov Exponents that quantify the rate of
separation of infinitely close trajectories. The metric gives
an insight into the predictability of the dynamic system.

• Singular Value Decomposition is a decomposition of a matrix.
When used with trace information of a simulation, the SVD
gives information on the orthonormal basis set needed to
represent the problem. It is also used in projection methods
for this reason.

If these metrics correlate, we create a data fit model to estimate the
needed energetic cost (including uncertainty).

4.4 Prediction of Operational Consumption
For each technique to create the twin model, an estimate of how
much energy is required to update the twin is needed. For projective
techniques, we still need to estimate the non-linear terms. For the
other methods, we might be able to relate metrics to the energetic
cost (e.g., the number of equations needed to represent the problem).
Energy consumption during operation for black box models has
already some techniques available [13].

Finally, for all the deployed components, e.g. network compo-
nents, etc., we need prediction models on the energy consumption
at a different level of detail.

5 CONCLUSION
The advance of digital twin technology is creating value for lots
of companies. In this paper, we looked at the digital twin design
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and operation from the perspective of sustainability. We identified
some challenges related to the sustainable design and operation of
a digital twin: (a) formalism selection, (b) twin value proposition,
(c) system and twin evolution and (d) twin deployment. Finally, we
looked at some possible approaches, grounded in multi-paradigm
modelling, to help us create and deploy more sustainable twins.
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