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Abstract
ROS, the Robot Operating System, is a middleware that eases the
programming of robotic applications significantly, bringing stan-
dard communication and synchronization mechanisms to a wide
variety of operating systems and computers or embedded computer
boards. However, a robotic application is a complex set of many
services, with many relations between them, and multiple choices
have to be made regarding the software and the hardware architec-
tures. To rely on a formal representation of those two, from which
early analysis can be performed, is extremely beneficial since it
allows detection of design errors early in the process. This is what
we present in this paper. Our approach is based on the Architecture
Analysis and Design Language (AADL) and on a set of AADL mod-
els to represent both the application and the robot, including its
embedded computers and its many devices. Those models are gath-
ered into an open source AADL library from which ROS developers
can largely benefit.

CCS Concepts
• Computer systems organization → Embedded systems; Ro-
botics; • Software and its engineering → System modeling
languages.
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1 Introduction
Mobile robots for smart factories are complex systems. On the hard-
ware side, they gather many different parts, including high-tech
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mobile mechanisms, electro-mechanical devices, high precision sen-
sors and actuators, with associated electronic interfaces and power
electronic converters for control and regulation. On the software
side, they usually have to perform different tasks at the same time.
Beside their main mission, obviously reaching their destination,
they have to avoid unscheduled obstacles, to ensure safety for ev-
ery person on their path, and to interact with high-level control
software or supervisor. The sole navigation task involves several
essential services among which global and local path-planning, lo-
calization, mapping, possibly target tracking, etc. In addition, a set
of low-level tasks, one for each device attached to the robot, will be
running and communicating with the associated hardware drivers.

In the case of ROS [16], a specific service is associated with
all of these tasks. The role of this service is to transform low-
level messages to or from the device, to the asynchronous pub-
lish and subscribe based message passing mechanism implemented
in ROS. There, messages travel through topics, complying with a
well-defined standard format. This allows deploying services onto
different platforms, as long as a ROS distribution is available for
them. In fact, ROS was initially built on top of Linux/Ubuntu. It
is now supported by different operating systems and associated
computers.

Another benefit of using ROS is to gain access to a large set of
dedicated commands and tools for development, debugging, moni-
toring, and configuration, as well as accurate simulators like the
multi-physical GAZEBO. As a result, ROS is widely used in indus-
try, significantly reducing the time-to-market of many new robot
development projects.

But using ROS does not come without drawbacks. In fact, run-
ning a middleware, and especially, in the case of ROS2, on top of
another middleware, namely DDS (Data Distribution Service) to
tackle the publish and subscribe communication scheme, consumes
processing power. Embedded systems being naturally limited in
such power, we quickly reach their limits and what we observe are
robots executing slower than expected, missing their deadlines, or
completely failing their mission. In a navigation stack for instance,
when the costmap2D service fails delivering an obstacle map in
time, the robot stalls. Speed and accuracy are often the first criteria
to evaluate the overall performance, as used in [9] for trajectory
planning, or [6] for an automated vehicle application. While in-
vestigating the reasons behind such performance degradation, we
observe, for a full navigation stack like in [12], high CPU loads and
slowed down communications. We also observe more deadlines
misses for a number of tasks.

In those situations, either the hardware does not meet the ap-
plication requirements, even if this may be arranged by tweaking
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the application parameters, or the application is poorly deployed
onto the hardware resources as shown in [8]. Determining which
of the two reasons is the cause of the problem, and finding a fix to
this problem is not straightforward. We clearly need some help to
understand what is going on and what has to be done, and this is
where model based engineering comes in. To clarify, we need:

• A comprehensive view of the whole application, including:
– The software as a set of interacting ROS nodes,
– The hardware including the robot, its sensors and actua-
tors and embedded computer boards,

– The binding of software services to hardware resources.
• A tool to conduct performance analysis such as:
– CPU load,
– BUS load,
– Timing and in particular schedulability and latency.

We also want to be able to conduct those analyses as early as pos-
sible in the development cycle due to time-to-market and therefore,
the modeling of the application should be fast, and the analysis
should be quick to perform and accurate.

TheArchitecture Analysis and Design Language (AADL) [5, 10, 11]
quickly appeared as an excellent choice to cover our needs. It covers
the domain of Cyber-Physical Systems (CPS, including robotics)
with a focus on real-time embedded systems including:

• Software components (process, thread, data, port, etc.),
• Hardware components (processor, bus, memory, devices),
• Deployment specification with bindings indicating to which
hardware component a software component is bound to.

Besides, AADL embeds in its heart several paradigms, making it a
multi-paradigm modeling language allowing to cover several parts
of CPSs; it is Object-Oriented (OO), which is very helpful in building
component libraries, Synchronous Data Flow (SDF) through its data
port construct, and Discrete Event Dynamic Systems (DEv) through
its event data port construct and its DEVS Annex (DA) [1], among
others.

AADL is supported by different tools, among which the Open
Source AADL Tool Environment (OSATE) [20], which out of the
box provides the analysis capacities we are seeking. In fact, analysis
from AADL models relies on dedicated properties which values
have to be set. This involves the profiling and benchmarking of both
software and hardware components, on which we rely to develop
the AADL component library we present in this paper.

Our paper is structured as follows. We first present the workflow
of our approach, followed by the library of components created and
usedwithin this workflow.We then show how performance analysis
can be done from the complete model of a robotic application. Then
we present the related work and conclude the paper.

2 The workflow
The workflow we propose is depicted in Figure 1 in a notation
similar to the Process Model part on an FTG+PM (Formalism Trans-
formation Graph + Process Model) [15]. Activities are depicted as
blue rounded corner rectangles and the models they process as
green rectangles. Dashed arrows link the models with the activities
that require them while solid arrows represent control flows be-
tween activities. All these activities are performed manually for the

time being, although we plan to automate some of these activities
such as code generation in future work.

Figure 1: Workflow model.

The starting point is to specify the software application and the
robot (hardware) that it drives in terms of software and hardware
AADL models obtained from our library of components. While this
is being done, there are two possible situations. First, all the compo-
nents already exist in our library, which means that the complete
robot can already been modeled including the computer boards
it carries. Then we simply instantiate and interconnect the com-
ponents from the library and them we specify the deployment of
the software application onto the execution platform of the robot,
describing how every software component is deployed onto com-
ponents of the hardware. This is achieved using binding properties
to create a deployment model.

From this deployed system model, we can then run different
analyses depending on the properties that have actually been set in
the components models. We typically analyze the performance of
this model in order to find a better deployment of the application
on the robot hardware, or to find what is the reason for observed
failures.

These activities are performed iteratively, taking as input results
from the analyses to modify the initial models so that different
specifications and deployments can be evaluated, as well as differ-
ent sensors or computer boards if no solution satisfies the desired
system properties. Once a correct model has been developed, we
generate the software code and assemble the selected hardware to
implement the real system.

In case a component is not included in our library, we build a
model of this component according to our modeling approach for
ROS nodes describing its inputs, outputs and the different threads it
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will be running. This includes profiling the performance of our new
node on the hardware it might be deployed onto. From the results
of this profiling, AADL properties will be defined and added to the
component model to characterize its performances. If it is a new
piece of hardware that we are dealing with, we need to benchmark
its capabilities with respect to the analyses we intend to perform.

The profiling of ROS nodes with measurements has been dis-
cussed in former publications, specifically for CPU load analysis
[18] and bus load analysis [17]. It relies on standard tools and com-
mands from both Linux and ROS. Hardware counters are read from
Linux (cf perf, mpstat, etc.), while the CPU and operating system
are properly configured (cf cpufreq, taskset, chrt, etc.). Additional
classical developer tools like the valgrind suite may also be used.
In addition, ROS tools allow monitoring the application behavior,
message rates, bandwidth requirements (see rostopic, rosnode, etc.).

Once developed, the new component is added to our library and
the process of specifying the system is repeated until no more new
components are required.

Our approach, being simple, is also fast. A simple node can be
profiled in less than half an hour. Results obtained from the analy-
ses that follow are relatively accurate, with an average error under
5%. Adding a new implementation of a ROS node model to the
library is straightforward: an existing implementation of the associ-
ated AADL process and threads has to be duplicated, and required
properties values have to be refined for the new component.

Table 2 shows an extract from our catalog of AADL models for
ROS nodes. For each node, measurements are made to determine the
values for properties that allow to check if the way the application
is deployed on the hardware resources enables the robot to behave
as expected. Overloaded CPU or bus will lengthen the compute
execution times and deadlines will be missed. Even with a soft
real-time middleware like ROS, performances will be degraded and
mission objectives may not be achieved.

Performance actually depends on the robot’s embedded com-
puter system. Changing the hardware could help solve problems,
and our library of models precisely allows us to check that. Indeed,
measurements are made for different single board computers, as
shown in Table 2. The model for a ROS node comes with several
implementations, carrying different set of analysis related parame-
ters. Once a board is chosen, and integrated in the robot’s complete
model, deployment solutions can be evaluated.

3 The Library
3.1 Overview
A typical robotic application involves several services : some are
deployed on the robot with its embedded computer board(s). Oth-
ers might be deployed on a remote computer for control purpose.
In ROS, a service is implemented as a node. Nodes communicate
through virtual channels called topics. A node may publish on a
topic, subscribe to a topic, or do both at the same time.

The model of a ROS-based application must reflect this set of
nodes with their interconnections. Hence we provide a set of pack-
ages with models for different robotic services, aka nodes in ROS.
Figure 2 shows the model of a typical target tracking application
using these packages. An AADL model is not limited to a graphical
representation of an assembly of components, since it provides both

a graphical and a textual notations so that users can use whatever
notation best fits their needs. Every component, connection, and
port can be typed and the compatibility of connecting one compo-
nent with another is constantly checked while building the system.
Moreover, different parameters or properties can be added to the
models, being easier to visualize with the textual notation. Such
properties allow for performing the different analyses that will be
presented in the following section.

Figure 2: The AADL model of a tracking application: ROS
nodes are modeled as process components.

Figure 3: Pioneer 3DX model.

Figure 3 shows an excerpt of the model of the Pioneer 3DX robot
from Generation Robots that we use in our lab, and for which we
have developed a complete model. In the center of this figure is
a component for the Odroid XU4 Single Computer Board (SBC)
from HardKernel. The XU4 contains different components that we
have included inside its model, but that are not displayed here to
keep the figure small. Among those components is the Exynos
5422 from Samsung, which is a heterogeneous octo-cores System
on Chip (SoC), included in our library of hardware components.
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Like the Pioneer 3DX, a mobile robot generally includes two elec-
tronic boards. A powerful enough SBC is in charge of the heavy
processing services, typically the navigation stack in a mobile and
autonomous robot. It runs ROS and every needed services as ROS
nodes. Another board, often built around a micro-controller, for
instance the STM32 in Arduino boards, deals with tight control
of the actuators. Specific ROS bridge nodes are used to exchange
messages from the application on the SBC to the controller board.

Table 1 provides a list of robots and SBC for which we have
developed models. Any combination of boards and robots might
be tried to analyze how well the software fits on it. In addition
to this list, different SoPC have also been modeled: Virtex 5 and
Virtex 2 Pro from Xilinx, and Cyclone 3 LX from Altera. Those
programmable and re-configurable circuits include one or several
CPUs in the form of soft or hard cores (Naios, Micro-Blaze, Power-
PC).

Our library is organized as follows.

• A core ros package: our core ros package contains the
declaration of every component type and the associated
implementation that will be used in our library of ROS nodes.
Indeed, according to the AADL modeling style, inputs and
outputs of any component are declared in component types
and the internal structure of the component is declared in
component implementation(s) of a type.

• A collection of packages for different ROS nodes: one
AADL package is provided for each node we want to include
in our library. A node package includes the node declaration
as an AADL process, defining its inputs and outputs, and
its platform-independent implementation where its internal
structure is defined. In this implementation, every thread
in the node is declared as an AADL thread subcomponent,
together with its connections to other threads and to the
node’s input and outputs.
A node package also includes several platform-dependent
implementations for every thread in the node. Those im-
plementations carry AADL property values related to the
thread performances measured on different embedded com-
puter boards. For one computer board, properties might dif-
fer depending on the actual CPU cores on which the thread
is running, getting as many different implementations as
needed.

• A package for ROS messages: This package will contain
the declaration of types and associated implementations for
every kind of messages that the nodes in our library can
exchange.

• A set of packages for modeling the hardware: here we
find packages for different robots, as well as for single com-
puter boards and the system on chip or multiprocessor CPU
they carry.

In fact, our AADL library does not include a model for all nodes
that can be found in a given ROS distribution. To obtain such an
exhaustive library, several tens of nodes would need to be mod-
eled while we only use a fraction of them in our applications. As
explained in section 2, our approach is incremental: we add a new
AADL component to our library every time we use a new node. It
is the same for new hardware parts or single board computers.

As an example, Figure 4 shows an excerpt of the packages tree
used in the model of a robotic application running on the LeoRover
robot with a RaspBerry Pi4B SBC. The whole system is modeled in
the sys_rover package. It uses components from the sw_rover and
the leo_rover packages. This last one itself uses components from
the USB, ETHERNET, and Raspberry_PI4B packages.

Figure 4: Packages tree.

3.2 Modeling ROS Nodes
A robot software based on ROS is a constellation of nodes commu-
nicating through topics. As mentioned earlier, a dedicated package
is created for every node that we want to include in our library.
Every node in those packages will inherit from the high-level node
component type and implementation defined in our core ros pack-
age. A ROS node is modeled as an AADL process component that
includes several threads, mimicking the actual ROS node code. The
typical threads running in a ROS node are :

• The main thread in every node.
• The receiver, or subscriber, thread listens for incoming mes-
sages and pushes them on the callback queue after de-seria-
lizing them. Indeed, this thread is associated with a callback
function called to deal with the data received on the topic lis-
tened to. The callback function is placed in the FIFO callback
queue of the node.

• The spinner thread keeps taking the callbacks from the call-
back queue and executing them one by one in an infinite loop
acting as a “spinning” thread. The spinner thread can run
periodically or every time a message is received. One ROS
node has one spinner thread by default. However, several
spinners could be spawned to allow for multiple concurrent
executions of callback functions [21].

• A thread type to implement callback functions in nodes (from
[3]).

• A thread type to implement publishers in nodes. The pub-
lisher thread takes messages from the FIFO publisher queue,
which is filled every time a call to publish() is made.

• A thread to provide a ROS service to a requesting node.
• A timer thread to implement a ROS timer in nodes.
• A thread type to implement a broadcaster of Transformation
of Frames (TF), i.e. the position of one frame relative to
another, in nodes. One frame is associated with each part of
a robot. Keeping track of the position of every frame is one
hidden but essential service in a robotic application.
A dedicated node named tf will publish on the /tf topic with
many others in general in a robot application. Unlike in
[3], where /tf is modeled as an independent bus to which
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Table 1: Hardware models: Robots & SBC

robots maker SBC maker SoC maker Architecture
Pioneer 3DX Generation Robots Odroid XU4 Hardkernel Exynos 5422 Samsung Octo core ARM15 / ARM7
Rover Pro Rover Robotics Jetson Xavier Nvidia Carmel/Volta Nvidia 6-core NVIDIA Carmel ARM
TurtleBot 2 ClearPath Robotics RaspBerry Pi4B RaspBerry BCM2711 Broadcom Quad core Cortex-A72
LeoRover Kell Ideas RaspBerry Pi4B " " " "
WifiBot Nexter Robotics LE-376 Commel Atom D510 Intel Dual core Atom

different nodes require an access, we model it as a regular
topic that will be bound to the ROS virtual bus.

Like with AADL processes used to model ROS nodes, an AADL
thread component has one declaration where its inputs and outputs
are specified, and a "parent" implementation which defines its inner
structure. As many child implementations as needed will inherit
from this parent implementation to carry properties reflecting the
performance of the thread on different hardware targets and CPU
cores. The AADL OO paradigm and its extends mechanism is used
there. New AADL properties values will be declared with a new
set of performances for a thread. Those properties, namely MIPS-
Budget and Compute_Execution_Time, are directly issued from the
measurements presented in [18] and [17].

As an example, we provide an extract of the AADL model for the
usb_cam node found in many ROS distributions. This node takes
the video stream from a RGB camera plugged in the USB bus of the
computer board and publishes the video frames on a dedicated ROS
topic. The first part of our nd_usb_cam AADL package includes the
PIM definition: the node input and output in a process component,
and its internal structure in the associated implementation.� �
process usb_cam_nd extends r o s : : node
features
r gb_ s t r eam_ in : in event data port r o s _da t a : : v i deo_s t r eam . rgb ;
rgb_image_raw_out : out event data port r o s _da t a : : Image . rgb ;

end usb_cam_nd ;

process implementation usb_cam_nd . impl
subcomponents
image_b roadca s t e r : thread imagePub l i she r . impl ;
u sbSp inne r : thread usbcam_spinner . impl ;

connections
con1 : port image_b roadca s t e r . pub_msg −> rgb_image_raw_out ;
con2 : port r gb_ s t r eam_ in −> usbSp inne r . r gb_ s t r eam_ in ;

end usb_cam_nd . impl ;

thread imagePub l i she r extends r o s : : p u b l i s h e r
features
pub_msg : ref ined to out event data port r o s _da t a : : Image . rgb ;

end imagePub l i she r ;

thread implementation imagePub l i she r . impl
propert ies
Pe r i od => 33333 us ; −−@ 30 images / s

end imagePub l i she r . impl ;� �
The second part (PDM) shows the platform and CPU-dependent

implementation for theOdroid XU4 (fromHardKernel) board, which
includes ARM A15 and A7 cores. We chose to put the node Period
on the PIM implementation of the node, since it does not depend
on the hardware target, but on the RGB camera we use. The Com-
pute_Execution_Time property is set on the PDM side.� �
process implementation usb_cam_nd . xu4_a15 extends usb_cam_nd . impl
subcomponents
image_b roadca s t e r : ref ined to thread imagePub l i she r . xu4_a15 ;

propert ies
SEI : : MIPSBudget => 1 4 1 . 0 MIPS ; −− ( 1 9 7 MIPS ) / ( 1 . 4 IPC )

end usb_cam_nd . xu4_a15 ;

thread implementation imagePub l i she r . xu4_a15 extends
imagePub l i she r . impl

propert ies
Compute_execut ion_t ime => 2319 us . . 2319 us ;
Queue_Size => 512 appl ies to pub_msg ;

end imagePub l i she r . xu4_a15 ;� �
Table 2 shows an extract from our catalog of AADL models for

ROS nodes.

4 Analyses from AADL Models
Before beginning any analysis from our models, we need to specify
how the software is deployed on the hardware. This consists of first
specifying on which processor or set of processors every node of
the application will be executed.

The Actual_Processor_Binding property is used, for example
here to bind the previously mentioned usb_cam node to CPU #1
in the cluster of ARM15 processors in the Exynos 5422 SoC of the
Odroid XU4 board:� �
Ac tua l _P r o c e s s o r _B i nd i ng => ( reference ( p3DX . OdroidXU4 . Exynos_SOC .

b i g _ p r o c s _ c l u s t e r . b i g _p ro c 1 ) ) appl ies to rem_trk_sw . usbcam ;� �
Next, we must indicate which bus will transfer the data of ev-

ery connection between two nodes. This is specified with the Ac-
tual_Connection_Binding property in the AADL model of the de-
ployed implementation of our complete system; e.g. for the output
of our usb_cam node:� �
Actua l_Connec t i on_B ind ing => ( reference ( ROSbus ) ) appl ies to

rem_trk_sw . con6 ;� �
Those bindings properties are added to the high-level implemen-

tation model of the system, which includes the application model
and the robot model as subcomponents. From them, the follow-
ing analyses can be performed, using standard tools available in
OSATE.

Analyze Resource Allocations (Bound): The CPU load is com-
puted from the Compute_Execution_Time and Period properties
for each bounded thread. The MIPS demand for a thread is the
MIPSCapacity of the CPU (defined in the SBC / SoC model) times
the load. The total MIPS demand for the processor is the sum of
every bounded thread demand. Whenever this demand exceeds the
total capacity of the processor, an error is reported.

Analyze Resource Budgets (Not Bound): TheMIPSBudget
(SEI standard) property must be set for the process. The tool adds
the MIPS demands for every thread inside the process and checks
if the total does not exceed the budget. An error is reported if so.

Analyze Bus Load (Bound): Bus load analysis is performed
from the size of the messages to be transmitted and their frequency.
The first one is the Data_Size property, which is defined in our
ros_data package. We give below the definition for the 640x480
RGB images, 8 bits per channel, 3 channels, message stream from
the RGB camera that the usb_cam node of our former example is
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Table 2: Catalog of models (extract); bandwidth in 𝐾𝐵𝑦𝑡𝑒𝑠/𝑠, execution time in 𝜇𝑠

Odroid JETSON RaspBerry
XU4 XAVIER NX Pi4

CPU ARM A15 ARM A7 NVIDIA Carmel ARM A72
MIPSCapacity 2000 1100 2400 1500
frequency (GHz) 2 1.4 1.9 1.5

node measure computed AADL properties PIM
usb_cam Period (µs) 33333

IN: 640x480x3 Bytes Data_Size (bytes) 921000
MIPS (raw) 197.00 256 212.62 350
IPC 1.40 0.33 2.14 0.90

MIPSBudget 141.00 776.00 99.36 388.89
Compute_execution_time 2319.00 18500 2529 8411

CPU_load % 6.96 55.50 7.59 25.23
MIPS_demand 139 610 182 378
Bandwidth_demand 27630

pos_to_cmd Period (µs) 100000
Data_Size (Kbyte) 48

MIPS (raw) 1.03 1.12 1.00 1.57
IPC 0.12 0.12 0.13 0.35

MIPSBudget 8.62 9.34 7.69 4.49
Compute_execution_time 700 1060 288 104

CPU_load % 0.70 1.06 0.29 0.10
MIPS_demand 14.00 11.66 6.91 1.56
Bandwidth_demand 0.48

ocv_color_tracking Period (µs) 33333
Period OUT(µs) 100000

OUT : Point.impl Data_Size (bytes) 24.00
MIPS (raw) 4300 1450 370 321
IPC 1.95 0.85 2.34 0.95

MIPSBudget 2205 1705 158 338
Compute_execution_time 37000 40000 4127 7283

CPU_load % 111 120 12.38 21.85
MIPS_demand 2220 1320 297 328
Bandwidth_demand 0.24

processing. In the PIM model of the thread imagePublisher given
earlier, we find that the format of the out event data port is refined
to this particular data size:� �
data implementation Image . rgb extends Image . impl

propert ies
−−640 x480x3 =921600 Bytes # 0 . 9 2 MBytes
Data_S i ze => 921 KByte ;
end Image . rgb ;� �
The frequency of themessage is the Period property of the thread

component that issues the message. From the period and data size,
the tool calculates the bandwidth demand for a publisher thread on
the bus onto which its output connection is bound. In our example,
that would be 921 KBytes× 1/33333𝜇s = 27.63 MBytes/s.

Bind and Schedule Threads: This tool from OSATE performs
a static scheduling analysis of the set of tasks in the application.
It uses the following few properties to be set for every thread we
want to consider:� �
propert ies

D i s p a t c h _p r o t o c o l => p e r i o d i c ;
p e r i od => 125 ms ;
compute_execut ion_t ime => 1 ms . . 25 ms ;
d e ad l i n e => 125 ms ;
p r i o r i t y => 7 ;
POS IX_Schedu l ing_Po l i cy => SCHED_FIFO ;� �

Real-time Scheduling Analysis: A dynamic scheduling analy-
sis is achieved with the help of the dedicated plugin Cheddar 3.x
[19]. This plugin, which might be run as an independent external

tool, also considers possible accesses to shared data and the associ-
ated priority inheritance mechanism if used. Then it simulates the
scheduling of the whole set of tasks, exhibiting possible deadline
misses although the system is found statically schedulable.� �
data data_rw

propert ies
P r i o r i t y => 6 ;
Concu r r ency_Con t r o l _P ro to co l => P r i o r i t y _ I n h e r i t a n c e ;

end data_rw ;� �
5 Related Work
Different works have recently studied the use of AADL for checking
robotic applications. Latencies are analyzed in [4], however regard-
less of CPU or bus load, which actually impacts a robot reaction
time. Besides, the approach is not dedicated to ROS-based appli-
cation. The authors in [14] focus on ROS components but have to
develop their own modeling language. They propose a modeling of
task chains to evaluate response times, but tasks are only assigned
to one CPU core and communication needs are not checked against
bus capacities.

The benefit of modeling and developing ROS-based robotic ap-
plication with AADL has been presented in [2] where an automatic
generation of ROS code from the model [3] is proposed. The AADL
model is only built for the software while hardware performances
are not considered.
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In [13], the author tackled, as we do, AADL modeling, hardware
profiling and deployment analysis at the same time. His approach
for measuring the compute execution time is however far more
complex since it involves modification and rebuilding of the soft-
ware. This is definitely something we do not want for our own
code, and even less for entire ROS on-the-shelf packages we use
in our applications. Besides being time consuming, this is also an
intrusive approach that impacts performances and should be evalu-
ated. Nodes are also considered independently, whereas we observe
a modification of performances when they are connected to each
others. Hence the necessity to profile a node in its proper usage
context. Moreover, MIPS budget properties are not determined,
which prevent from checking MIPS demand at the process level.

6 Conclusion
We have presented a multi-paradigm modeling approach and its
library of AADL components to allow early analysis of robotic
applications based on ROS. This library has been built during the
past two years but is far from being completed. We are indeed
constantly adding new models to our library to include freshly
available nodes for a given ROS distribution that we want to use in
our existing applications and for those we are currently developing.
Also, a new implementation of a node is appended whenever a new
computer board is evaluated.

Existing components might also be upgraded with new proper-
ties to allow further analysis that are not supported by our approach
yet: for instance we intend to add signal flows for each component
on a critical path of an application, and to profile reaction times
onto the hardware target it might be deployed onto.

Our intention is to share our library and allow multiple users to
extend it according to their needs. A link will be advertised on our
web pages to allow public access to our models.

Regarding future work, we have already begun to extend our
library to ROS2, the new version of ROS where the communication
mechanism has evolved to use DDS. Other short term perspectives
also include automatic code generation for ROS from our AADL
models, by developing an extension of the RAMSES (Refinement of
AADL Models for Synthesis of Embedded Systems) [7] automatic
code generation tool1.
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