
An Ontology DSL for the Co-Design of Mechatronic Systems
Milan Cornelis

Milan.Cornelis@uantwerpen.be
Cosys-lab (FTI)

University of Antwerp
Belgium

AnSyMo/Cosys
Flanders Make

Antwerp, Belgium

Yon Vanommeslaeghe
Yon.Vanommeslaeghe@uantwerpen.be

Cosys-lab (FTI)
University of Antwerp

Belgium
AnSyMo/Cosys
Flanders Make

Antwerp, Belgium

Bert Van Acker
Bert.VanAcker@uantwerpen.be

Cosys-lab (FTI)
University of Antwerp

Belgium
AnSyMo/Cosys
Flanders Make

Antwerp, Belgium

Paul De Meulenaere
Paul.DeMeulenaere@uantwerpen.be

Cosys-lab (FTI)
University of Antwerp

Belgium
AnSyMo/Cosys
Flanders Make

Antwerp, Belgium

ABSTRACT
The complexity of mechatronic systems is vastly increasing. There-
fore, the design of these systems requires different engineering
domains, e.g., the mechanical, electrical, and control domains, to
work together. The different domains often work in parallel to gain
efficiency in this so-called co-design process. However, the design
choices made by engineers in one domain can influence parameters
in another domain. Too little or even no knowledge about these
cross-domain influences may later lead to system integration prob-
lems or to degraded system performance. Solving these problems
requires taking steps back in the development process, causing a
higher design cost. In order to improve this cross-domain collabo-
ration, we propose using ontologies to assist the co-design process
by explicitly capturing the design dependencies, both within and
across the engineering domains. However, designing ontologies
can be complex and is labor-intensive, especially if one relies on
generic ontology languages like the Web Ontology Language 2
(OWL 2). Therefore, we created a Domain Specific Language (DSL)
focusing on the essential complexity, which enables engineers to
design a cross-domain system ontology in a consistent and straight-
forward way. We elaborate on the metamodel for this DSL, discuss
the realization of a prototype tool, and demonstrate how one can
then reason on this ontology to derive new information about the
various cross-domain design relationships.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9467-3/22/10. . . $15.00
https://doi.org/10.1145/3550356.3561534

CCS CONCEPTS
• Software and its engineering → Domain specific languages;
• Computer systems organization → Embedded and cyber-
physical systems; • Information systems → Web Ontology
Language (OWL); • Computing methodologies→ Ontology
engineering.

KEYWORDS
Mechatronics, Domain-Specific Language, Metamodel, Co-Design,
Ontology
ACM Reference Format:
Milan Cornelis, Yon Vanommeslaeghe, Bert Van Acker, and Paul De Meu-
lenaere. 2022. An Ontology DSL for the Co-Design of Mechatronic Sys-
tems. In ACM/IEEE 25th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS ’22 Companion), October 23–28,
2022, Montreal, QC, Canada. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3550356.3561534

1 INTRODUCTION
The design of mechatronic systems like machines or vehicles entails
the collaboration between different engineering domains, such as
the mechanical, control, and embedded domain. As these mecha-
tronic systems are becoming more and more complex due to the
increasing demand for more functionalities, these engineering do-
mains become increasingly more intertwined, with their interac-
tions becomingmore andmore complex.While decomposing the de-
sign problem into different disciplines in a true divide-and-conquer
approach helps master the complexity of the design, it might ne-
glect important cross-domain system properties that are hard to
decompose, such as system performance, system safety, system
reliability, etc. Therefore, the classical design process risks losing ef-
ficiency or even consistency, and the resulting mechatronic product
risks becoming less effective.

Therefore, besides splitting the design problem into sub-problems,
one needs to adhere to a co-design strategy as well. Choices made

https://orcid.org/0000-0003-1707-6709
https://orcid.org/0000-0001-7871-2145
https://orcid.org/0000-0002-3854-5159
https://orcid.org/0000-0002-3706-6164
https://doi.org/10.1145/3550356.3561534
https://doi.org/10.1145/3550356.3561534
https://doi.org/10.1145/3550356.3561534

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Milan Cornelis, Yon Vanommeslaeghe, Bert Van Acker, and Paul De Meulenaere

by the engineers in the different domains strongly influence each
other. For example, when a mechanical engineer modifies the de-
sign, it affects the transfer function of the system. As a result, the
control engineer must modify the control algorithm, which in turn
impacts the embedded engineer, who must ensure that this con-
trol algorithm can still run on the embedded platform. In practice,
however, engineers are not sufficiently knowledgeable about the
influence of their design choices on the other engineering domains.
They simply “throw their design over the wall”. E.g., not commu-
nicating the mechanical adaptation, using different units or value
ranges, assuming infinite resources of the embedded platform for
the execution of a control algorithm, may result in errors or subop-
timal systems when integrating the total system. The only solution
is to iterate the design process, which costs time and money.

In this paper, we explore how ontologies assist in the co-design
of mechatronic systems and to what extend it can be automated. By
making implicit knowledge explicit by modeling it in an ontology,
engineers from different domains can find out what influences their
choices have on other domains, derive engineering contracts, find
for which competing design parameters trade-offs must be made,
guard consistency during the design, etc. This will both endorse
better communication between engineering domains and indicate
which design choices can safely be made without interference with
other disciplines.

A significant advantage of relying on ontologies for modeling
the cross-domain system design dependencies is that we can use
already existing ontology reasoners, e.g., HermiT [6]. In the current
work, we use the second version of the Web Ontology Language
(OWL 2) [25] to model ontologies. OWL 2 is the extension of the
OWL language and is developed by the World Wide Web Consor-
tium (W3C) to describe data for the Semantic Web. All kinds of
tools to develop OWL 2 ontologies have already been designed, of
which Protégé [14] is one of the most popular. However, the gener-
icity of such tools also brings a lot of accidental complexity for
the mechatronic design engineers. To put the focus on modelling
the essential complexity, i.e., making the dependencies between
design parameters from different engineering domains explicit, we
choose to develop a Domain-Specific Language (DSL), lowering the
complexity to model and to reason on the co-design problem.

The rest of this paper is structured as follows. First, Section 2
presents some related work. The running example during this paper
is discussed in Section 3. Then, Section 4 explains the DSL we
created, the model-to-model transformation to OWL 2, and the
capabilities of the reasoning tool. Finally, Section 6 concludes our
work and discusses future work.

2 RELATEDWORK
As previously mentioned, the design of mechatronic systems typi-
cally involves different engineering domains, leading to a division
into domain-specific problems. This division, however, leads to sit-
uations where properties in different domains influence each other,
giving rise to dependencies. Qamar et al. [17] describe the nature
of these dependencies and how to model them, proposing language
constructs that take into account the nature of properties and their
dependencies. They make the fundamental distinction between

synthesis properties (SP), which are used to define design alterna-
tives, and analysis properties (AP), which constitute predictions.
In other words, a distinction between properties that are chosen
(SP), e.g., component dimensions, and properties that are predicted
(AP), e.g., component mass. They determine that while dependency
models add value, a considerable effort may be required to build
and manage them. As such, this effort needs to be compared to the
expected benefits. Additionally, they evaluate the systems modeling
language (SysML) [8] for the creation of dependency models, con-
cluding that it lacks the necessary complexity for this purpose. They
later propose a domain-specific language (DSL) to address this prob-
lem [16]. Their proposed dependency modelling language (DML)
allows engineers to model the dependencies between properties
referenced in different views on a system. However, the proposed
language did not yet support modeling these dependencies at dif-
ferent levels of abstraction. Additionally, they did not define the
operational semantics of the language formally. As such, analyzing
how dependencies propagate, for example, is not possible.

Törngren et al. [19] present a viewpoint integration approach
where these dependency models are used together with viewpoint
contracts and tool integration models, collectively referred to as
“support models”. The viewpoint contracts allow them to define the
vocabulary, assumptions, and constraints required for the commu-
nication between different stakeholders, while the tool integration
models capture the interrelations between different tools, making
it possible to express tool interrelations, such as data exchange,
traceability, etc. This unified approach allows them to deal with
viewpoint interrelations at three distinct levels: people, models, and
tools.

Several studies have also explored specifically how ontologies
can support the (co-)design of mechatronic or Cyber-Physical Sys-
tems (CPS). Vanherpen et al. [22] introduce the Contract-Based
Co-Design (CBCD) method as an extension to the already existing
Contract-Based Design (CBD) method introduced by Benveniste et
al. [1]. Here, ontologies are used to make implicit knowledge ex-
plicit, enabling to relate different engineering domains to each
other and also their design variables. They show how, with these
relationships and a predefined mapping contract, it can be deter-
mined how design variables relate, making it possible to derive
Assume/Guarantee (A/G) contracts between different engineering
domains.

In the product-assembly domain, ontologies have also been used
to overcome “interfacing problems”, e.g., error-prone manual data
handling, error-prone manual algorithm configuration, and limited
traceability. Van Acker et al. [20] attempt to address these problems
by creating a framework making use of a Knowledge Base (KB) to
assist in front-loading assembly knowledge to early stages of the
product design process. This KB is used to capture cross-domain
knowledge in the product-assembly design. A gearbox example
is used as a use case to validate the proposed method. Similar to
Qamar et al., they conclude that, while there are benefits, there
is still a trade-off between the time spent to build the KB and the
advantages gained by using it.

Lastly, Sales et al. [18] present the systems’ architecture ontology
(SAO), which allows users to define not only the architecture of
the system itself, i.e., hardware, software, and system components,

An Ontology DSL for the Co-Design of Mechatronic Systems MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

but also the relationships between these different parts. This al-
lows them to identify inconsistencies in architectural design and
component compatibility. Additionally, they present a tool which
enables the generation of architecture analysis and design language
(AADL) [5] models from a system ontology.

3 RUNNING EXAMPLE
Throughout this paper, we use the example of an Adaptive Cruise
Control (ACC) that employs a Model Predictive Controller (MPC).
MPC is a control algorithm that uses a (reduced) model of the sys-
tem under control in combination with an optimization algorithm
to predict the optimal control value at a certain time interval. The
optimization algorithm calculates a sequence of inputs over a con-
trol horizon C after which the sequence is held constant for P–C–1
samples, where P is the prediction horizon. This sequence of input
values is then fed into the model, which predicts the corresponding
output from the plant. The input values during the control horizon
are calculated such that the error between the predicted system out-
put and reference is minimal, i.e., minimizing a cost function [15].
This principle is shown in Figure 1.

t t+1

Control Horizon C
Prediction Horizon P

Past Future

t+2 ...

Predicted output
Input
Past input

Reference

Time Step

Figure 1: The basic principle of Model Predictive Control. A
sequence of control inputs is determined by an optimization
algorithm over a control horizon C. This sequence is then
held constant for the remaining prediction horizon P. Only
the first input of the sequence is sent to the plant.

To obtain an ACC that conforms to its objectives, it must meet a
number of predefined requirements. To keep the complexity man-
ageable in the context of this paper, we limit ourselves to the fol-
lowing requirements:

(1) The tracking performance of the ACC must have an Integral
Square Error (ISE) of at maximum 0.5

(2) A comfortable system must be guaranteed by keeping the
jerk standard deviation below 0.75m/s3.

(3) The system must react in 20ms to a change in distance or
velocity.

(4) After 20 s, the reference distance or velocity must be reached.
(5) The total cost of the system is at most €150.

Note that these values are chosen for demonstration purposes
and may not be representative of real ACC systems. Also, the max-
imum value of the jerk_std and ISE only counts for a single test
scenario in this case.

4 EXTENDING THE ONTOLOGY CONCEPT
Modeling an ontology directly in OWL 2 would be far too cumber-
some. First, the designer would need to have an extensive knowl-
edge of the language and its tools. This makes it difficult for begin-
ners to get started, as they first need to learn the OWL 2 language.
Second, everyone creates an ontology in their own way. If two
people build an ontology for the same problem, it may well be
that these ontologies look completely different. Finally, the manual
construction of ontologies in OWL 2 requires a lot of work. Each
new type of property has to be defined manually, characteristics
have to be added, a domain and range have to be assigned, etc.

In order to overcome these problems, we decided to create a
DSL of which the abstract syntax is given via the metamodel (MM)
shown in Figure 2. The DSL ensures that the modeling capabilities
are limited to the essential complexity. This hides the redundant
expressiveness of OWL 2 making it possible to build an ontology
model with no knowledge about OWL 2 itself. Also, this allows
relationships at different levels of precision, e.g., L1-Fuzzy, L2 and
L3, to be modeled directly without requiring workarounds. Using
the DSL also ensures that we can build all ontologies with the same
structure. This allows reasoning queries to be used consistently, as
their names are derived from the MM. All necessary relations are
already available along with their semantics.

The root element of the Domain-Specific Language is the ‘De-
signProblem’, which represents the problem that engineers need to
solve. This also refers to the system under design, e.g., an ACC or a
drone. As said before, developingmechatronic products requires the
cooperation of different engineering domains. Therefore, the class
‘EngineeringDomain’ is included. With this class, we can define
all different engineering domains incorporated in the project. Note
that the system-level itself can also be an engineering domain, as
there might be some over-arching parameters related to the overall
system under design. On the left and right side of the figure, we see
the ‘PropertyOntology’ and the ‘DependencyModel’. These are the
two main building blocks, as they contain all information about the
system under design. They are further discussed in Section 4.1 and
Section 4.2 respectively. Figure 3 shows a graphical representation
of the ontology for the running example. Please note that such
graphical representation is for illustration purposes only, and does
not contain all details stored in the ontology. Also, it is not currently
a feature of the presented prototype tool.

4.1 Property Ontology
Properties can be seen as ontological concepts of a (mechatronic)
product. They tell something about the product as a black box, i.e.
without the need to know its implementation details. Properties can
therefore be regarded as requirements. For example in Figure 3, the
property Safe? expresses whether or not the full system complies to
a set of functional safety requirements. This may entail subtending
properties, such as Schedulable?, which expresses whether or not the
total set of software tasks can be scheduled on the embedded system.

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Milan Cornelis, Yon Vanommeslaeghe, Bert Van Acker, and Paul De Meulenaere

DesignProblem

name : EString

PropertyOntology DependencyModelEngineeringDomain

domainName : EString

Property

name : EString

Requires DomainModel

Variable

name : EString
unit : EString

DesignRelation

DesignParameter

minValue : EDouble = 0.0
maxValue : EDouble = 0.0
initialValue : EDouble = 0.0
stepSize : EDouble = 0.0

L1 L1_Signed

sign : Sign = Negative

L1_Fuzzy

fuzzyValue : EDouble = 0.0
sign : Sign = Negative

L2

sign : Sign = Negative
sensitivityValue : EDouble = 0.0

L3

equation : EString

PerformanceValue

value : EJavaObject
goal : ObjectiveValue
= MINIMIZE

Relation

ConformsTo

DecisionFunction

[0..1] hasDepenencyModel

[0..1] hasPropertyOntology

[0..*] hasEngineeringDomain

[0..*] hasProperty

[0..*] hasRequires [0..*] hasDomainModel

[0..*] hasInterdomainRelation

[1..1] source

[1..1] destination

[0..*] hasVariable

[0..*] hasDomainRelation

[1..1] source

[1..1] destination

[1..1] isDomainOntologyOfDomain

[0..1] containsDomainModel

[1..1] isVariableOfDomain

[0..*] containsVariable

[1..*] isPropertyOfDomain

[0..*] containsProperty

[1..1] performanceValue

[1..1] property

[1..1] hasDecisionFunction

[1..1] hasInput

[1..1] hasValue

[0..*] hasDecisionFunctions

Figure 2: The metamodel of the Domain-Specific Language. It contains two main parts: the Property Ontology and the
Dependency Model. The Property Ontology consists of high level properties and the ‘requires’ relations between these, whereas
the Dependency Model consists of the low level design variables and the relations (i.e. dependencies) between these.

This may on its turn depend on the requirement whether or not the
processor bears an acceptable load, i.e. AcceptableProcessorLoad?.

As we can see, one property can depend on several other prop-
erties. The above example is only within one domain. However,
it is important to note that these dependencies can also go across
different domains. The ACC has to react within 20ms response
time (control domain). In order to achieve this ResponseTime?, the
system requires that it can execute FastEnough? which again re-
quires a PerformantProcessor? (embedded domain). Because these
properties and their dependencies are often implicit knowledge
of an engineer, other engineers from possibly other domains are
unaware of them. As a result, unrealistic assumptions are often
made, causing problems during implementation [12, p. 31].

We see that the system can be divided into properties, belonging
to one or more domains, and a requires-relation between these
properties. The principle of connecting properties with requires-
relations and the semantics behind it is based on the Contract-
Based Co-Design (CBCD) method created by Vanherpen [21]. The
resulting model is the so-called ‘PropertyOntology’.

As mentioned, properties can be derived from the system re-
quirements, or they are new properties that are required by other
properties in order to be true. Indeed, if all properties are true, i.e.,
the root property (ControlledSystem?) is true, then all system re-
quirements should also be met. Generic requirement engineering
techniques might help to identify the properties that must be incor-
porated in the ontology. How the properties obtain their Boolean
value is further elaborated in Section 4.3.

An Ontology DSL for the Co-Design of Mechatronic Systems MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

Control
Period

Prediction
Horizon

Control
Horizon

Algorithm
Iterations

Sensor
Precision

Sensor Data
Word Length

ISE

Jerk_std

Settling Time
2%

Number of
Instructions

Required
Memory

Clock
Frequency

Instructions
per Cycle

Word
Length

Available
Memory

WCET WCRT

Cost

Memory
Utilization

Schedulable?

PerformantProcessor?

Acceptable
ProcessorLoad?

EnoughMemory?

ControlledSystem?

LowCost?

Comfortable?

FastEnough?

ResponseTime?

Safe?

Stable?
TrackingPerformance?

Processor
Utilization

+
+
-
-

+
-

+
-

++
+
+

+
++ +

-
-

-

+

+

+

+
+
+
+

+

-

+

Design
Parameter

Performance
Value

(no conforms to)

Performance
Value

(conforms to)

Legend
𝕃1

𝕃1-Signed
Conforms to

Property
Requires ±

Property Ontology

Dependency Model Control Domain Embedded Domain

(Minimize)

(Minimize)

(Minimize)

(Minimize)

(Minimize)

(Minimize)

(Minimize)

Figure 3: The total ontology of the MPC for ACC running example. On the top, the property ontology is shown, while on the
bottom, the dependency model is shown. Only two engineering domains are considered, which are the control domain and the
embedded domain.

When only provided with the property ontology, engineers can
already infer which domains are going to communicate with each
other and possibly also about which system properties. This helps
with the further design of certain parts of the system. The inverse
relationship of ‘requires’ is ‘influences’, meaning that if a property A
requires a property B, then property B influences property A. Via
this inverse relationship, engineers can obtain hints about their own
influence on other domains. Knowing in advance which properties

depend on each other can also allow for better synchronisation
between different engineering teams during the design phase.

4.2 Dependency Model
The dependency model is based on the work of Vanommeslaeghe et
al. [23]. It corresponds to the dependency model as proposed in [17].
The right part of the MM, Figure 2, shows the dependency model,
and the bottom of Figure 3 shows the example instance for the ACC.

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Milan Cornelis, Yon Vanommeslaeghe, Bert Van Acker, and Paul De Meulenaere

As can be seen, the dependency model consists of different domain
models, e.g., the control domain model. Each domain model in
itself consists of design parameters (DPs), performance values (PVs)
and their relations. As this dependency model describes system
concepts, like DPs and PVs, and the relations between them, it can
also be regarded as an ontology.

First, DPs, shown in blue in Figure 3, are the different “tuning
knobs” for the design of the system. The prediction- and control
horizon are variables tuned by the engineer to alter the behavior
of the MPC, and therefore, they are considered as DPs. Regarding
the embedded domain, engineers can change the clock frequency,
word length, etc., by choosing a different processing platform. DPs
all have a certain range of values with an associated step size. This
can be used later in, e.g., consistency checks and DSE.

Second, PVs, shown in white and green in Figure 3, are variables
which result from simulation or measurements with as input one
or more DPs and/or other PVs. The resulting values of the PVs can
be evaluated with a decision function (DF), to check if the PV is
within a specified range. The output value is a Boolean, representing
whether theDF is satisfied. As someDFs are derived from the system
requirements, we can compare whether a performance value meets
its corresponding system requirement or not. E.g., the requirements
in Section 3 stated that the total cost of the system must be less
than €150. As such, the PV ‘Cost’ from Figure 3 can be compared
with a DF ‘Cost ≤ €150’. Section 4.3 further elaborates on this.

Last, we have relationships between the different variables. These
relationships can be of different levels of precision [4, 23]:

• L1: only the fact of influence is known.
• L1-Signed: L1 relations are extended with a direction of
influence.

• L1-Fuzzy: L1 relations are extended with a fuzzy value in
the range [-1,1]. This value is rather intuitive and stems from
experience or discussion between engineers.

• L2: sensitivity information is known. This value is obtained
via sensitivity analysis.

• L3: an exact mathematical relationship is known.
The current ACC dependency model only contains L1 and L1-
Signed relations corresponding to the available reasoners in our
current implementation.

For example, looking at the control domain model, we can see
that the control period is connected via a positive L1-Signed rela-
tion to the ISE indicating that an increase in the control period does
increase the ISE. The opposite can be observed with the connection
between the prediction horizon and the jerk standard deviation. An
increase of the prediction horizon results in a decrease of the jerk
standard deviation. In other cases, we know that certain variables
influence each other, but not how. This is the case with the sen-
sor data word length and the worst-case execution time (WCET).
Therefore, these variables are connected with a L1 relation.

The precision level of the relations is not required to be fixed.
As the development process continues, engineers also obtain more
knowledge and details about the system, allowing them to further
refine the ontology. Some relationships can be given a higher level
of precision, while others can even be omitted completely because
they are negligible.

Similar to the property ontology, we can already infer a number
of things even if we only have the dependency model. Firstly, we

are able to check which engineering domains influence each other
and also in which way. This allows engineers to better cooper-
ate. Secondly, when we change the value of a DP, the dependency
model allows checking which other variables are influenced by this
change. The ontology can find new relationships through the tran-
sitivity of the known relationships. Hereby, one gains more insight
in what other parameters are affected, which may be from other
domains. Thirdly, if a precision level larger than L1 is used, the im-
pact on the system due to a change in a parameter can be assessed.
L1-Signed relations indicate if other parameters will increase or
decrease, L1-Fuzzy and L2 relations can tell us something about the
order of magnitude in which the other parameters will increase or
decrease, and L3 relations provide us with exact numbers. Fourthly,
this type of ontology can also give hints to Design Space Explo-
ration [23] and the automatic generation of workflows [24]. Fifthly,
when sufficient L1-Signed information is provided, trade-offs be-
tween conflicting PVs can be derived automatically. Finally, the
dependency model also allows us to derive A/G contracts between
engineering domains. This defines to which extent engineers from
different domains can work concurrently even though they depend
on each other. If the parameters are adjusted in such a way that
certain defined limits are exceeded, the ontology must be used to
find out who is affected and then also to inform the affected parties
correctly. Section 5.2 further elaborates on this.

4.3 Combining the Property Ontology and
Dependency Model

After modeling the discussed ontologies, we can connect them via a
‘conforms to’-relationship between a property and (the evaluation
function of) a PV. This is in particular the case if the property
and the PV are related to the same system requirement. The PV
is the measurable quantity behind that property. Via the Decision
Function DF, one can confirm whether the property is satisfied
or not. It is also possible that a certain property is not directly
derived from the requirements, e.g., ‘PerformantProcessor?’. Such
properties are then necessary conditions for parent properties to
become true. These can also be connected to a particular PV and
its DF.

Some PVs may not have a ‘conforms to’-relation to a property.
They are nevertheless useful for assessing certain performance
values at the design level, or may serve as intermediate parameter
between two other parameters. These are shown in white in the
example of Figure 3. Such PVs can be seen as an intermediate
performance variable. Nevertheless, this does not mean that the PV
can be omitted. In many cases, they provide a clearer connection
between certain variables in the dependency model, e.g., ‘Number
of Instructions’ which provides a clear connection between DPs in
the control domain and PVs in the embedded domain. They are also
useful when generating contracts which is discussed in Section 5.2.

It is important that all leaf nodes from the property ontology are
connected to a PV. Otherwise, this property nor its parents can ever
be assigned a Boolean value, and it will remain unknown whether
the corresponding system requirements are met. The ontology
reasoner can support this check for completeness. If such dangling
leaves are found, the engineer should either evaluate whether that
leaf property might be dropped, or add a missing PV and connect

An Ontology DSL for the Co-Design of Mechatronic Systems MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

to it, or connect child properties to it such that it is no longer
a leaf. Properties that are not leaves may have a ‘conforms to’-
relationship to a PV, but not necessarily. An example of such a
property is ‘AcceptableProcessorLoad?’. In order for this property
to be true, both its required properties, i.e., ‘PerformantProcessor?’,
and the decision function to which it relates need to be true.

The property ontology and the dependency model complement
each other. If no direct ‘conforms to’-relationship can be made,
the ontology reasoner can still support engineers to think further
about the system to discover new properties or PVs. We clarify
this with an example. Suppose that in the embedded domain of the
dependency model, we forgot to add the PV ‘Memory Utilization’.
This introduces several problems. First, we now have an empty
leaf: ‘EnoughMemory?’. We assume that the embedded engineer
thought about this property while reasoning about the system. Sec-
ond, in the control domain, ‘Required Memory’ no longer has a
relation to a PV. We can solve these problems by reasoning about
both ontologies. If the property ‘EnoughMemory?’ is considered
to be important, we cannot simply omit it from the property ontol-
ogy. Therefore, we need to check either whether there is possibly
a (new) PV that we can connect to it or whether we can add a
new child property to the current property which relates to an
existing PV. In the current example, we choose to add a new PV.
The property ‘EnoughMemory?’ is clearly related to the embedded
platform memory which should be large enough to run the control
algorithm. This requires a relationship between ‘Required Memory’
and ‘Available Memory’. The latter is however a DP and not a PV.
Adding the ‘Memory Utilization’ PV solves both problems. The
property ‘EnoughMemory?’ gets a conforms to relation to the PV,
so it is no longer a blank leaf and ‘Required Memory’ now also gets
a relation to a PV.

The combination of the two graphs can also be used to validate
whether all connections are present. Relationships that exist at the
dependency model level should also exist at the property ontology
level, otherwise, one of the ontologies is incomplete. We there-
fore rather need influence relationships at property ontology level
instead of ‘Requires’-relationships. These influence relationship
can simply be achieved by reversing the arrows of the ‘Requires’-
relationships. In order to know if the relations exist at both ontology
levels, we again use the ‘conforms to’-relationships. However, this
check for consistency between both levels still has to be validated
in future work.

In summary, the proposed system ontology that consists of a
property ontology and dependency models allows for system-level
analyses such as completeness, consistency and decomposition. At
the same time, isolated analysis on the property ontology alone or
on the dependency model alone remains possible. To achieve these
analyses, we can rely on elementary operations from the world of
ontologies or other graph-related models. Table 1 shows a summary
of the above discussed analyses types and the required reasoning
operations.

5 PROTOTYPING TOOL
After we created an ontology model, it should be possible to extract
additional information from it by using an ontology reasoner. In

DSL MM OWL 2 MMATL MM

Ontology model
(.xmi)

OWL 2 model
(.xmi)

conformsTo conformsTo

DSL2OWL.atl
 transform

conformsTo

Modeling + ATL Transformation

OWL API
{extension}

OWL API SWRL Rules

add

OWL 2 ontology
(.owl)

output

Serialization
RDF/XML

uses

Serialization

CogniPy DSL
Reasoner

uses

input
Reasoning Tool

consistency check

Legend

EMF Java Python

Metamodel -
Code - Library

Artifact
(file type)

input

Figure 4: The architecture of the prototyping tool. Creating
the ontology from the ontologymetamodel and transforming
it to an instance of the OWL 2 metamodel is done in the
Eclipse Modeling Framework (EMF). This instance is then
serialized to the RDF/XML format, which can be used by the
DSL reasoning tool. Based on [7, 10].

order to automate and facilitate this retrieval of information, we
developed a reasoning tool.

5.1 DSL to OWL 2 Transformation
As discussed in Section 4, we created a DSL to facilitate the model-
ing of ontologies. Of course, this does not come without a drawback.
The ontology created with the DSL does not have the proper seman-
tics to be used by OWL 2 tools. They require the ontology format
to be in an OWL 2 format, e.g., RDF/XML or OWL/XML. Therefore,
to allow the use of existing reasoners, the ontology first needs to
be transformed to an OWL 2 ontology. Transforming from the DSL
to OWL 2 also means that we go from a Closed World Assumption
(CWA) to an Open World Assumption (OWA). When modeling our
ontology in the DSL, we assume the data to be complete, i.e. CWA.
However, we transform to OWL 2 which means going to an OWA.
Here, the provided data is not assumed to be complete. Therefore,
we can derive new information from the ontology by using the rea-
soners. The two upper rectangles in Figure 4 show the architecture
for the DSL to OWL 2 model transformation. The different steps in
this process are further described below.

We start with an instance of the DSLMM, i.e., the ontologymodel,
which needs to be transformed to an instance of the OWL 2 MM.
For this model-to-model (M2M) transformation, we base ourselves
on the much more common UML to OWL 2 transformation. More
specifically, on the work by Haasjes [7], who describes in detail
how a UML model can be transformed to an OWL 2 model and vice
versa. However, to perform this transformation, we need a MM of
the OWL 2 language. As the one listed on the W3C Wiki [2] does
not conform to the latest specifications of the language, we use
a more recent version obtained from [7], which incorporates the
latest (at the time of writing) structural specification of December
11, 2012 [13]. To define the transformation rules between the two
MMs, we use the ATLAS Transformation Language (ATL) [10].

Except for the classes representing relationships, the general
structure of the MM is adopted when we transform to OWL 2.

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Milan Cornelis, Yon Vanommeslaeghe, Bert Van Acker, and Paul De Meulenaere

Table 1: Required information in the system ontology and the resulting analysis type

Required ontology relations Elementary Operations Analysis Results

L1 Transitivity (In)direct (cross-domain) dependencies
L1-Signed Fuzzy Cognitive Map sign rules Trade-offs between PVs
Between Properties Boolean logic Requirements compliance
’conforms to’-relations Graph theory Consistency and completeness
Domain relations Contract theory System decomposition

Thus, the MM classes are transformed to classes in OWL 2. Rela-
tionship classes as well as the connections between the different
MM classes, on the other hand, are transformed to object properties.
Furthermore, all instances of the MM classes, i.e. the objects of the
instance model, are transformed to instances of the corresponding
OWL 2 classes. The appropriate instances are also connected with
each other via the proper object properties. Their attributes are
transformed to data properties.

After the M2M transformation, an instance of the OWL 2 MM
is obtained. However, this is still an instance of an Ecore model.
To make this model compatible with existing reasoning tools, it
needs to serialized to an accepted OWL 2 syntax, such as RDF/XML,
OWL/XML, Turtle, etc. We opt to use RDF/XML as, as it is manda-
tory for OWL 2 tools to support this syntax [25], ensuring compat-
ibility with a variety of tools.

The serialization is implemented in Java, making use of an ex-
tended version of the OWL API [9] created in [7]. We also add
Semantic Web Rule Language (SWRL) rules when mapping the
ontology to the OWL API. SWRL rules allow us to make the OWL
ontology even more expressive. An example of this is the combina-
tion of L1-Signed relations. A SWRL rule can define that a direct
positive relation followed by a direct negative relation is combined
as an indirect negative relation.

X +−−−→ Y −−−−→ Z ⇒ X −−−−→ Z

Another use of SWRL rules is to identify trade-offs. By using SWRL
rules, we can check how—positive or negative—DPs influence PVs.
If a DP has conflicting influences on PVs (i.e., desirable/undesirable),
then it is a trade-off parameter. In this case, several SWRL rules are
used in combination to find out if a DP is a trade-off parameter or
not.

Although it may seem that this transformation brings additional
complexity at first glance, it does not. The model transformation
and serialization is generic because the transformation rules are
specified at the MM level of the DSL and OWL 2. Therefore, one
does not have to touch these for each ontology.

5.2 Reasoning Tool
After modeling, transforming and serializing the ontology, a rea-
soner can be used to obtain information about the modeled knowl-
edge. In order to make this reasoning more easy and user-friendly,
we developed a reasoning tool, shown at the bottom of Figure 4.
Currently, the tool can be used via a command line interface (CLI)
and is implemented in Python. In order to load and reason about
ontologies, the CogniPy library is used [3].

CogniPy, a Python implementation of the Fluent Editor tool cre-
ated by Cognitum Services S.A., can be used to create and reason
about ontologies described in a controlled natural language (CNL).
This makes CogniPy intuitive and user-friendly. Creating queries
is also done using this CNL, meaning that there is only a small
learning curve for inexperienced users to create them themselves
if necessary. Additionally, as it is OWL 2-based, it must, as already
mentioned, support RDF/XML files. This allows us to load the seri-
alized ontology without requiring additional transformations.

The current version of the reasoning already provides some basic
functionality:

• A user interface providing some basic features, e.g., loading
the RDF/XML file or creating a graph from the ontology (in
OWL 2 format).

• Showing which engineering domains influence each other.
• Showing to which variables a chosen variable has a relation.
• Obtaining the trade-offs per variable.
• The generation of engineering contracts between two do-
mains.

The following sections describe these options more in depth.

5.2.1 Showing Domain Influences. As the description implies, this
shows the user which engineering domains influence each other.
A SWRL rule is used to check for the condition where a variable
belonging to domain A has a relationship to a variable belonging to
domain B. If this condition is met, a new relation is automatically
established between the two domains. As such, we only need to
query for this newly added relationship.

Taking a look at the MPC for ACC case, we can see that there are
some relations crossing the domain boundary at the dependency
model level. This means that variables from one domain influence
variables from the other domain, thus, the domains influence each
other. As the relations go in both directions, we determine that the
control domain influences the embedded domain and vice versa.

Note that while we currently only use the dependency model
for this, it should be possible to also use the property ontology. As
the properties also belong to one or more domain, and the inverse
relation of requires is influences, enough information is available
to derive domain influences. These to methods would provide the
same results, provided the two ontologies are consistent.

5.2.2 Showing Variable Relations. This allows the user to query
which variables are influenced by a variable of interest.

5.2.3 Deriving trade-Offs. When sufficient L1-Signed relations are
available, we are able to derive trade-offs between PV from the
dependency model. This is based on the sign of the relations and
the goal associated with the PVs. Indeed, based on the L1-Signed

An Ontology DSL for the Co-Design of Mechatronic Systems MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada

relations, we can determine whether a change in value of a specific
DP would affect certain PVs desirably or undesirably. E.g., if the
goal of the ISE is to minimize it, we know that a rise in prediction
horizon (P) is undesirable as it will increase the ISE. However, this
increase in P also decreases the jerk_std, which is desirable. As
such, there is a trade-off between ISE and jerk_std when changing
P. Several SWRL rules use are used to determine these trade-offs.
As such, we only need to query for them. In the ACC example, there
are such trade-offs available. A few of them are shown below:

(1) Clock Frequency has trade-off with:
- Settling Time
- WCRT
- Processor Utilization
- Cost

(2) Control Horizon has trade-off with:
- Jerk_std
- WCRT
- Integral Square Error
- Processor Utilization
- Settling Time
- Memory Utilization

Currently, we only support minimize/maximize goals. However, in
future work we intend to extend this to also work with constraints.

5.2.4 Generating Assume/Guarantee Contracts. Engineering con-
tracts can be used to enable engineers to work concurrently on
different system components in a consistent way. It solves the prob-
lem that engineers make incorrect assumptions about parameter
values from other domains and avoids consistency problems. As-
sumptions define under which conditions a component operates,
i.e., the environment (preconditions). The Guarantees, however,
specify what conditions the component must meet (postconditions)
[1]. An example for the embedded domain would be that a software
program is maximum 1000 instructions long (assumption). The
embedded engineer must guarantee that this code is run in 10ms.

The generation of contracts by making use of ontologies is based
on the principles of the CBCD method [21]. First, we need to derive
the guarantees of each contract. The guarantees of a contract are all
the variables of the domain to which that contract belongs. This is
based on the fact that these variables, along with their chosen range
of values, ensure that the implementation meets the requirements
of the system. During a negotiation phase between the different
domains, these values were agreed upon. In the case of the running
example, it was agreed that the ACC is implemented using MPC,
running on a single embedded platform. Therefore, each domain
must guarantee that they meet their own domain related conditions.
As can be seen in Table 2 and Table 3, the guarantees correspond
to their respective variables in Figure 3.

Vanherpen stated that “deciding upon the assumptions of a
viewpoint-specific contract depends on how guarantees from one
viewpoint influence the guarantees of another viewpoint” [21, p. 65].
Our derivedmethods is based on this. As the variables in the domain
ontologies are guarantees in their respective contracts, we have to
look for variables from one domain that have a direct relation to
variables of another domain. These relations are the inter-domain
relations, as they cross the boundary between domains. When there
is such an inter-domain relation, the source variable becomes an

Table 2: Control Contract

Assumptions WCRT ≤ 20 ms

Guarantees

Jerk_std ≤ 0.75 m/𝑠3
Required Memory ≤ 5 MB
Integral Squared Error ≤ 0.5
Algorithm Iterations [30:1:50]
Control Period [5:1:15] ms
Number of Instructions ≤ 5000
Settling Time ≤ 20 s
Prediction Horizon [5:1:30] time steps
Sensor Data Word Length [8:8:32] bit
Control Horizon [1:1:5] time steps
Sensor Precision = 10 cm

Table 3: Embedded Contract

Assumptions

Sensor Data Word Length [8:8:32] bit
Control Period [5:1:15] ms
Required Memory ≤ 5 MB
Number of Instructions ≤ 5000

Guarantees

WCRT ≤ 20 ms
Memory Utilization ≤ 75%
Cost ≤ €150
Processor Utilization ≤ 69%
Available Memory [3:1:10] MB
Clock Frequency [250:50:750] MHz
Instructions Per Cycle [1:1:2] bits
WCET ≤ 15 ms

assumption of the contract belonging to the domain of the des-
tination. Taking a look back at the contract and ontology of the
running example, we also see that this is true. The WCRT has a
direct connection to all the PVs in the control domain. Hence, it
is an assumption for the control domain, and is listed as such in
the contract. For the embedded domain, we see that the required
memory, number of instructions, control period and sensor data
word length in the control domain all have a direct relationship to
variables in the embedded domain. Therefore, they are assumptions
of the embedded domain.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we discussed how ontologies can assist in the co-
design process of mechatronic systems and how we can automate
this. Because OWL 2 does not have the essential complexity we
need, a DSL is created to solve this. The DSL consists of two main
parts: the property ontology and the dependency model. With the
property ontology, system properties and the way they are related
to each other are expressed. The property ontology also provides
a view on the system requirements. With this information, it can
already be determined which engineering domains will have to
communicate in later stages of the design process, and about which
concepts they need to synchronize. The dependency model further
refines this property ontology. It consists of design parameters
and performance values, which are connected to each other via

MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Milan Cornelis, Yon Vanommeslaeghe, Bert Van Acker, and Paul De Meulenaere

relations with different levels of precision. By relating properties
with performance values via a ‘conforms to’-relationship, we can
check whether the ontologies are consistent and complete. The
dependency model can again be used to determine which domains
will need to communicate, but also to find out which variables
influence each other, to derive trade-offs between performance
values, and to generate engineering contracts.

Currently, we are only able to reason about L1 and L1-Signed
relations in the dependency models. In future work, we will also
implement relations with higher levels of precision in order to
extract additional detailed information from the ontology. Because
some of these relations have numerical weights, they are not directly
implementable in OWL 2. Therefore, other formalisms than OWL 2
might be used, such as Fuzzy Cognitive Maps [11] to reason about
this information.

As consistency and completeness checks are not automated yet,
we will also implement this in future work. The consistency checks
can be categorized into two main classes. The first class is a con-
sistency check for the ontology design itself, checking if there are
no opposing relations, e.g., a direct positive and indirect negative
relation, verifying that no relationships have been overlooked (only
if both ontologies are present), etc. The second class involves the
values of the DPs and PVs. If L3-relations are present, we can verify
if the chosen value ranges are still a valid implementation for the
system. E.g., if we have a software program with 1000 instructions
(𝐼) that must be completed in 1ms (𝑡), and the clock frequency (𝑓𝑐𝑙𝑘)
has a range [500 750] kHz, we know that this system is not suitable
due to the L3-relation: 𝐼 = 𝑓𝑐𝑙𝑘 ∗ 𝑡 . Regarding completeness, we can
check whether the relations in one ontology also exist in the other
ontology.

The DSL is still only a prototype and therefore evolving regularly.
By applying the DSL to multiple andmore comprehensive industrial
cases, we can check for usability, scalability and validity for these
design problems. This also allows us to better assess where and
when the tool can be used in, possibly different, design methods,
e.g. the V-model. Furthermore, these cases allow the DSL to become
more comprehensive by unveiling potential inconsistencies and/or
problems.

ACKNOWLEDGMENTS
This research was supported by Flanders Make, the strategic re-
search center for the manufacturing industry in Belgium, within
the Flexible Multi-Domain Design for Mechatronic Systems (Flex-
MoSys) project. This work was conducted using the CogniPy pack-
age, which is an open-source project maintained by Cognitum
Services S.A. (https://www.cognitum.eu).

REFERENCES
[1] Albert Benveniste, Benoît Caillaud, Dejan Nickovic, Roberto Passerone, Jean-

Baptiste Raclet, Philipp Reinkemeier, Alberto Sangiovanni-Vincentelli, Werner
Damm, Tom Henzinger, and Kim Guldstrand Larsen. 2015. Contracts for Systems
Design: Theory. Research Report [RR-8760]. Inria Rennes Bretagne Atlantique;
INRIA. 86 pages.

[2] Saartje Brockmans, Peter Haase, and Boris Motik. 2010. OWL 2 Web Ontology
Language MOF-Based Metamodel (Second Edition). World Wide Web Consortium.
Retrieved May 2022 from https://www.w3.org/2007/OWL/wiki/MOF-Based_
Metamodel

[3] Cognitum Services S.A. 2020. CogniPy for Pandas - In-memory Graph Database
and Knowledge Graph with Natural Language Interface. Cognitum Software

House. Retrieved March 2022 from https://cognitum.eu/cognipy/
[4] István Dávid, Joachim Denil, and Hans Vangheluwe. 2015. Towards Inconsistency

Management by Process-Oriented Dependency Modeling. (2015). https://www.
researchgate.net/publication/308967849

[5] Peter H Feiler, Bruce Lewis, Steve Vestal, and Ed Colbert. 2004. An overview of
the SAE architecture analysis & design language (AADL) standard: A basis for
model-based architecture-driven embedded systems engineering. In IFIP World
Computer Congress, TC 2. Springer, 3–15.

[6] Birte Glimm, Ian Horrocks, Boris Motik, Giorgos Stoilos, and Zhe Wang. 2014.
HermiT: An OWL 2 Reasoner. Journal of Automated Reasoning 53 (10 2014),
245–269. Issue 3. https://doi.org/10.1007/s10817-014-9305-1

[7] Ruben E.Y. Haasjes. 2019. Metamodel Transformations Between UML and OWL.
Master’s thesis. University of Twente, Enschede, The Netherlands. http://essay.
utwente.nl/79481/

[8] Matthew Hause et al. 2006. The SysML modelling language. In Fifteenth European
Systems Engineering Conference, Vol. 9. 1–12.

[9] Matthew Horridge and Sean Bechhofer. 2011. The OWL API: A Java API for OWL
ontologies. Semantic Web 2 (2011), 11–21. Issue 1. https://doi.org/10.3233/SW-
2011-0025

[10] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. 2008. ATL: A
model transformation tool. Science of Computer Programming 72 (6 2008), 31–39.
Issue 1-2. https://doi.org/10.1016/j.scico.2007.08.002

[11] Bart Kosko. 1986. Fuzzy Cognitive Maps. International Journal of Man-Machine
Studies 24 (1986), 65–75.

[12] Edward Ashford Lee. 2017. Plato and the Nerd The Creative Partnership of Humans
and Technology. The MIT Press.

[13] Boris Motik, Peter F. Patel-Schneider, and Bijan Parsia. 2012. OWL 2Web Ontology
Language Structural Specification and Functional-Style Syntax (Second Edition).
World Wide Web Consortium. Retrieved May 2022 from https://www.w3.org/
TR/2012/REC-owl2-syntax-20121211/

[14] Mark A. Musen. 2015. The protégé project: a look back and a look forward. AI
Matters 1, 4 (2015), 4–12. https://doi.org/10.1145/2757001.2757003

[15] Khaled Nassim and Pattel Bibin. 2018. Practical Design and Application of Model
Predictive Control MPC for MATLAB® and Simulink® Users. Mara Conner. 249
pages.

[16] Ahsan Qamar, Sebastian Herzig, and Christiaan J.J. Paredis. 2013. A Domain-
Specific Language for Dependency Management in Model-Based Systems Engi-
neering. (2013).

[17] Ahsan Qamar and Christiaan J.J. Paredis. 2012. Dependency modeling and
model management in mechatronic design. Proceedings of the ASME Design
Engineering Technical Conference 2, 1205–1216. Issue PARTS A AND B. https:
//doi.org/10.1115/DETC2012-70272

[18] Diego Camara Sales, Leandro Buss Becker, and Cristian Koliver. 2022. The
systems architecture ontology (SAO): an ontology-based design method for
cyber–physical systems. Applied Computing and Informatics (2022). https:
//doi.org/10.1108/ACI-09-2021-0249

[19] Martin Törngren, Ahsan Qamar, Matthias Biehl, Frederic Loiret, and Jad El-
Khoury. 2014. Integrating viewpoints in the development of mechatronic prod-
ucts. Mechatronics 24 (10 2014), 745–762. Issue 7. https://doi.org/10.1016/j.
mechatronics.2013.11.013

[20] Bert Van Acker, Joachim Denil, Alexander De Cock, Hans Vangheluwe, and
Moharram Challenger. 2021. Knowledge Base Development and Application
Processes Applied on Product-Assembly Co-design. Companion Proceedings - 24th
International Conference on Model-Driven Engineering Languages and Systems,
MODELS-C 2021, 327–335. https://doi.org/10.1109/MODELS-C53483.2021.00055

[21] Ken Vanherpen, Paul De Meulenaere, and Hans Vangheluwe. 2018. A Contract-
Based Approach for Multi-Viewpoint Consistency in the Concurrent Design of Cyber-
Physical Systems. Ph. D. Dissertation. University of Antwerp.

[22] Ken Vanherpen, Joachim Denil, Paul De Meulenaere, and Hans Vangheluwe. 2017.
Ontological reasoning as an enabler of contract-based co-design. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 10107 LNCS (2017), 101–115. https://doi.org/10.
1007/978-3-319-51738-4_8

[23] Yon Vanommeslaeghe, Joachim Denil, Jasper De Viaene, David Ceulemans, Stijn
Derammelaere, and Paul De Meulenaere. 2021. Ontological reasoning in the
design space exploration of advanced cyber–physical systems. Microprocessors
and Microsystems 85 (9 2021). https://doi.org/10.1016/j.micpro.2021.104151

[24] Yon Vanommeslaeghe, Joachim Denil, Bert Van Acker, and Paul De Meule-
naere. 2021. Automatic Generation of Workflows for Efficient Design Space
Exploration for Cyber-Physical Systems. 2021 IEEE International Conferences
on Internet of Things (iThings) and IEEE Green Computing & Communica-
tions (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and
IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermat-
ics), 346–351. https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-
Cybermatics53846.2021.00062

[25] W3C OWL Working Group. 2012. OWL 2 Web Ontology Language Document
Overview (Second Edition). World Wide Web Consortium. Retrieved May 2022
from https://www.w3.org/TR/owl2-overview/

https://www.cognitum.eu
https://www.w3.org/2007/OWL/wiki/MOF-Based_Metamodel
https://www.w3.org/2007/OWL/wiki/MOF-Based_Metamodel
https://cognitum.eu/cognipy/
https://www.researchgate.net/publication/308967849
https://www.researchgate.net/publication/308967849
https://doi.org/10.1007/s10817-014-9305-1
http://essay.utwente.nl/79481/
http://essay.utwente.nl/79481/
https://doi.org/10.3233/SW-2011-0025
https://doi.org/10.3233/SW-2011-0025
https://doi.org/10.1016/j.scico.2007.08.002
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
https://doi.org/10.1145/2757001.2757003
https://doi.org/10.1115/DETC2012-70272
https://doi.org/10.1115/DETC2012-70272
https://doi.org/10.1108/ACI-09-2021-0249
https://doi.org/10.1108/ACI-09-2021-0249
https://doi.org/10.1016/j.mechatronics.2013.11.013
https://doi.org/10.1016/j.mechatronics.2013.11.013
https://doi.org/10.1109/MODELS-C53483.2021.00055
https://doi.org/10.1007/978-3-319-51738-4_8
https://doi.org/10.1007/978-3-319-51738-4_8
https://doi.org/10.1016/j.micpro.2021.104151
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics53846.2021.00062
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics53846.2021.00062
https://www.w3.org/TR/owl2-overview/

	Abstract
	1 Introduction
	2 Related Work
	3 Running Example
	4 Extending the Ontology Concept
	4.1 Property Ontology
	4.2 Dependency Model
	4.3 Combining the Property Ontology and Dependency Model

	5 Prototyping Tool
	5.1 DSL to OWL 2 Transformation
	5.2 Reasoning Tool

	6 Conclusions and Future Work
	Acknowledgments
	References

