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ABSTRACT

Automated control in Cyber-Physical Systems (CPS) gener-
ates behaviours that may surprise non-expert users. Relevant
explanations are required to maintain user trust. Large CPS
(e.g., autonomous car networks and smart grids) raise addi-
tional scaleability issues for the explanatory processes and
complexity issues for generated explanations. We propose a
multi-scale system modelling and explanation technique to
address these concerns. The idea is to increase the scale, or
abstraction level, of the modelled CPS, whenever possible
without loss of salient information, so as to produce smaller
system representations and hence to reduce the complexity
of the explanatory process and of the generated explanations.
We illustrate our proposal via an urban traffic case study,
modelling traffic at two different scales (i.e., modelling indi-
vidual cars at a lower-scale; and traffic jams at a higher-scale).
We show how a multi-scale explanatory process can use the
lower- and higher-scale models to generate either longer (more
detailed) explanations, or shorter (more abstract) explana-
tions, respectively. This proof-of-concept illustration offers a
basis for further research towards a comprehensive multi-scale
explanatory solution for CPS.
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1 INTRODUCTION

Cyber-physical systems (CPS), such as autonomous cars,
smart homes and power grids, are increasingly equipped with
Artificial Intelligence and autonomic controllers. This shifts
numerous adaptation decisions from the user to the CPS
(e.g., tuning a car’s speed depending on traffic; or scheduling
a smart device’s usage to minimise consumption). Such au-
tomation may lead to cases where CPS behaviour surprises
users, who notice a difference between the observed and
the expected CPS behaviour (e.g., why is my car driving so
slowly? why did the automatic blinds go down?). To maintain
user trust, CPS must provide pertinent explanations to such
questions, case-by-case [1]. The EU General Data Protection
Regulation (GDPR) goes as far as to evoke the “right to
explanation” for users of AI systems [10].

An increasing amount of research is carried-out in this
direction under the umbrella of Explanatory AI (XAI). The
focus is often on “opening the black box” of opaque AI models
(i.e., neural networks). LIME [16] or SHAP [13] methods for
example propose to explain classifier outputs in terms of
feature relevance – i.e., determine which feature of the input
data was most discriminating in the classifier result (e.g., a
person’s age was the prime decision factor in a bank’s loan
validation algorithm). Several XAI approaches were proposed
for various AI models and applications [3]. Still, most XAI
techniques feature significant limitations. Notably, they aim
to explain static AI models and hence cannot adapt to run-
time changes. This drawback becomes severe in CPS, which
often evolve by adding, updating or removing components
(e.g., cars joining and leaving platoons; or smart devices
plugged in and out of smart micro-grids). Moreover, most
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XAI explanations are unsuitable for end-users, as they require
low-level domain-specific expertise [14].

To address these issues, we previously proposed a generic
adaptive (but not multi-scale) approach for generating intu-
itive explanations for users: Decentralised Conflict-Abduction-
Simulation (D-CAS) [11], [7] (Cf. sec. 3.2). D-CAS gener-
ates explanations on-the-fly, by dynamically selecting Local
Explanatory Components (LECs) from a flexible pool and
composing their partial explanations into coherent answers.
Each LEC is linked to a CPS resource and holds specific
expertise for explaining that resource. When users ask a ques-
tion, a generic D-CAS coordinator, called Spotlight, forwards
the question to a LEC that holds relevant expertise for that
question. The LEC is identified based on key terms, or ‘pred-
icates’, in the question. Based on this LEC’s answer (again,
using employed ‘predicates’), the Spotlight identifies another
LEC to question for further explanations, sequentially, to
the LECs that hold relevant expertise for that question. The
Spotlight identifies these LECs dynamically (and is hence
adaptive), one-by-one: first based on key terms (or ‘predi-
cates’) in the user question; and then based on the predicates
in the previous LEC’s partial answer. The process is recursive
and guaranteed to end, at the latest, when all relevant LECs
have provided all their partial answers. At that point, the
Spotlight returns all partial explanations (composed in a
sequence) that it received from all questioned LECs.

While promising to address the above limitations, D-CAS
raises further issues when applied to large CPS (e.g., ur-
ban traffic analysis involving tens of thousands of cars; or
smart grids interconnecting millions of smart devices). In
such cases, both the scalability of the explanatory process
and the complexity of explanations provided to users may
severely reduce the usability of the approach. In this position
paper, we propose a multi-scale modelling and explanation
approach to start addressing the above issues. We base our
proposal on the fact that scalability and complexity issues
in large CPS partially stem from the sheer number of CPS
resources, and their associated explanatory concepts, that
must be considered as input / output to the explanatory
process. We aim to reduce this number via a multi-scale
approach [5], [6], applied to the XAI domain.

In brief, we consider an explanation as a statement1 – i.e.,
set of words, arranged sequentially according to some gram-
mar, and providing some semantics, or meaning, to the user
recipient. We further associate certain words2 – such as nouns,
verbs, adjectives and adverbs – to explanatory concepts – i.e.,
representations, conceived in the mind, of either: abstract
objects (e.g., ideas, principles and notions); or of concrete
cyber-physical objects (e.g., autonomous cars and smart de-
vices). This notion of explanatory concept corresponds, for
all practical purposes, to a type in a system’s meta-model.

1Statement definition based on the Sentence definition from the Oxford
dictionary online: “a set of words expressing a statement, a question
or an order, usually containing a subject and a verb.”
2Word definition from the Oxford dictionary online: “a single unit of
language that means something and can be spoken or written.”

Some might argue that in some cases an “open-world” frame-
work based on ontologies might be more appropriate. Given
our use of simulation, whereby a simulator implements the
operational semantics of a language whose abstract syntax is
specified by means of a meta-model, a “closed-world” frame-
work based on meta-modelling seems more suitable.

Further, we consider explanatory concepts to represent
objects at various abstraction levels, or scales (Cf. below).
We then propose to reduce the length of complex explana-
tions, when possible, by replacing several low-scale concepts
(i.e., representing less abstract or smaller objects) by a single
higher-scale concept (i.e., representing a more abstract or
larger – often aggregate – object). The higher concept is
supposed to convey the same kind of information as the set
of lower concepts it replaces, except in a more concise manner.
This simplifies explanations to users, while maintaining rele-
vant semantic content, under those conditions that the scale
change is a proper abstraction (i.e., preserving information
concerning properties of interest that is relevant in a given
context, and forgetting information that is irrelevant in that
context, concerning those properties of interest).

Generally, we define a scale as the granularity of obser-
vation of an object [5], [6]. E.g., traffic in an urban area
can be observed at the granularity of every vehicle, of dis-
crete platoons, or of continuous congestion level (density). A
coarser granularity corresponds to a higher abstraction level –
providing less detailed information about the observed object
– compared to a lower granularity. In this context, the notion
of multi-scale refers to the simultaneous observation of an
object at multiple scales. E.g., urban traffic can be modelled
simultaneously: at the scale of each car, of each platoon and
of its congestion level.

We apply the multi-scale notion to explanatory concepts
as follows. A lower-scale explanatory concept refers to an
object observed at a finer granularity (i.e., less abstract, often
smaller in space, or shorter in time), relative to a higher-scale
concept that refers to an object observed at a coarser granu-
larity (i.e., more abstract, often larger in space, or longer in
time). E.g., in urban traffic, the ‘car’ concept is lower-scale
relative to the traffic ‘jam’ concept, as it involves a finer ob-
servation granularity, at a smaller spatial scope. We employ
multi-scale explanatory concepts to attain scalable explana-
tions as follows. We consider that, to achieve its purpose
efficiently, an explanation must be: i) ‘relevant’ – i.e., solve
the problem raised by the question that demanded the expla-
nation; and, ii) as simple as possible (but not simpler) – i.e.
be expressed via the shortest description that is still relevant.
Hence, we propose to shorten explanations by employing
words associated with the highest-scale concepts, which still
ensure the explanation’s relevance to the user.

We illustrate the viability of this approach via a concrete
case study targeting urban traffic (Fig. 1). First, we employ
a multi-agent simulation (subsec. 2.2) to provide an adaptive
multi-scale model of urban traffic. In the model, low-scale
concepts refer to individual cars and higher-scale concepts to
traffic jams. Further, we extend our D-CAS implementation
[7] with traffic-specific LECs, customised for cars and jams.

https://www.oxfordlearnersdictionaries.com/definition/english/sentence_1?q=sentence
https://www.oxfordlearnersdictionaries.com/definition/english/sentence_1?q=sentence
https://www.oxfordlearnersdictionaries.com/definition/english/word_1?q=word
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This D-CAS version is integrated with the traffic model via
monitoring data (i.e., the model provides information about
the positions and speeds of cars and jams on the roads).

A user can ask questions about the traffic to the explana-
tory system such as “why is my car driving so slowly?”. We
illustrate the multi-scale aspect of the explanatory system by
providing alternative answers. The first one uses the explana-
tory concept of ‘car’, and states that: the car is slow because
the car in front is slow, and so on, recursively, until a car at
the end of the line is found to have a mechanical problem
– this explanation employs low-scale concepts resulting in
a long statement. The second explanation variant uses the
explanatory concept of ‘jam’: the car is slow because there
is a jam in front, which is due to a front car that has a me-
chanical problem – this variant employs higher-scale concepts
resulting in a more concise response. This proof-of-concept
illustration provides an encouraging basis for further devel-
oping our multi-scale modelling and explanation approach,
so as to provide a scalable solution for explainable CPS.

2 APPROACH OVERVIEW

2.1 Generic Architecture

Fig. 1 depicts our generic system design. An Observed System
(i.e., urban traffic) is represented via a System Model to
highlight properties of interest (e.g., traffic fluency) under
various conditions (e.g., car number). An Explanatory System
enables Users to ask questions about the Observed System,
at run-time. To respond, the Explanatory System relies upon:

(1) monitoring data from the System Model, which it maps
into its domain-specific explanatory concepts, called
predicates (Cf. subsec. 3.2.3) – e.g. mapping car ‘speed’
data into ‘slow’ or ‘fast’ predicates;

(2) a reasoning process based on D-CAS and on expert-
specific abduction processes (Cf. subsec. 3.2.2).

The System Model may change dynamically to reflect
changes in the Observed System. The Model relies on con-
cepts (i.e., meta-models) that may also vary dynamically,
to improve the effectiveness and efficiency of the System’s
representation with respect to targeted properties of interest
within various contexts – e.g., via adaptive abstractions.

This follows Multi-Paradigm Modelling (MPM) principles:
to explicitly model all parts and aspects of a system, using
the most appropriate formalism(s) and abstraction(s). This
includes the explicit modelling of often complex workflows
[2].

2.2 Adaptive Multi-scale Model for Urban
Traffic

To illustrate our general proposal for multi-scale modelling
and explanations, we consider a concrete case study: urban
traffic. The transport network is modelled as a graph, with
nodes as departure/destination points and edges as routes
between them. Vehicles circulate at various speeds, which
depend on the network topology, their intended destinations
and interaction with other vehicles and road signs. When

too many cars attempt to pass through one node, they must
wait for each other, hence lowering their speeds and forming
a traffic jam.

This basic case study is relevant to our approach as it
allows traffic modelling at various scales, which may change
over time. When traffic is fluent, individual cars may travel
at various speeds. Hence, each car is modelled separately,
forming a low-scale model. Conversely, when cars are caught
in a traffic jam, they move at approximately the same speed.
Hence, a higher-scale model can aggregates all the cars in
a jam. When the traffic becomes fluent again the model
switches-back to its lower-scale version. Modelling adaptive
abstraction requires

• a model of the detailed dynamics (i.e., how the state of
the system evolves), in our case, describing individual
car dynamics;
• a model of a monitor which checks whether the condi-
tions for switching to a less detailed (more abstract)
model of the dynamics, are satisfied. In our case, if
a collection of cars are close to each other and have
almost the same velocities, and this for an extended
period of time, this collection of cars can be replaced
by a single jam;
• a model of how to transfer the states of the cars in the
collection to the initial state of the new jam;
• a model of the less detailed dynamics, in our case
describing jam dynamics (including how jams interact
with cars, with other jams, with traffic lights, . . . ).
• a model of a monitor which checks whether the condi-
tions for using the jam abstraction are still satisfied. As
traffic conditions change, the distribution of locations
and velocities of cars in the jam (encoded in the jam’s
state) may become increasingly smeared out. At some
point, the jam abstraction no longer makes sense;
• a model of how to transfer the state of a jam to the
initial states of individual cars the jam is made up of.

The above, combined with a simulation engine, gives an
adaptive abstraction simulation which offers both improved
simulation performance and higher explainability. For full
details on adaptive abstraction and our implementation using
the NetLogo agent-based platform ( NetLogo3) implementa-
tion, see [9].

3 GENERATIVE EXPLANATIONS:
BACKGROUND AND MULTI-SCALE
EXTENSION

3.1 Conflict Abduction Negation (CAN)
Explanation Method

According to [4], a user typically requires an explanation
to resolve a conflict between an expected and an observed
situation (e.g., traffic slower than expected). An explanation
consists of a chain of explanatory concepts, which represent
causes [15] of the perceived conflict. The explanatory pro-
cess identifies each cause individually, in sequence. It can

3NetLogo homepage: https://ccl.northwestern.edu/netlogo/

https://ccl.northwestern.edu/netlogo/
https://ccl.northwestern.edu/netlogo/
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Figure 1: Generic System Architecture: an Observed System is represented by a Model, which provides a basis
for an Explanatory System for Users. Our traffic case study uses a multi-agent NetLogo traffic model.

then return the resulting causal chain to the user as an ex-
planation for the perceived conflict. [4] proposes a generic
abductive method that can be employed to generate such
explanations – Conflict-Abduction-Negation (CAN). CAN for-
malises the above explanatory process via four generic steps
(to be implemented specifically for each system), executed
sequentially:

• conflict: detects a discrepancy between expectation
and observation and associates a necessity (intensity)
to it;
• abduction: identifies the most probable cause of the
conflict (using various abduction methods);
• negation: considers situations without the conflict
(‘counterfactuals’ [15]) and evaluates the consequences;
• solution: solves the conflict by reconsidering knowl-
edge (e.g., false-positive conflict), by acting on the
world (e.g., change the conflicting state) or by abandon-
ing the conflict (i.e., avoid blockage or infinite loops).

While providing a suitable reasoning process to obtain
explanations, CAN features several limitations when imple-
mented as a centralised, monolithic process. Notably, it can-
not deal with highly heterogeneous and dynamic systems
(e.g., traffic systems), where various resource types may be
included or removed dynamically. To address this require-
ment, we proposed a modular, decentralised CAN version,
called D-CAS.

3.2 Decentralised Conflict Abduction
Simulation (D-CAS) Explanation
Method

3.2.1 Key Design Objectives. To ensure the explanatory sys-
tem’s adaptability to the observed system, we aim to:

(1) Avoid hard-coded ontology : the employed vocabulary
(i.e., words and their semantics) should evolve at run-
time to reflect changes in the observed system (e.g.,
adding a ‘queue’ to a traffic model requires a new word);
as well as changes in the user’s perception (e.g., user-
and context-dependent semantics of the word ‘slow’).

(2) Avoid hard-coded reasoning rules: the employed ab-
duction logic should be adaptable at run-time, e.g., to

consider vocabulary updates and include new reasoning
methods.

These design objectives ensure the flexibility of the explana-
tory process – in contrast to methods where both vocabulary
and reasoning are tightly coupled to the observed system.
D-CAS proposes a generic framework that supports such dy-
namic vocabulary and reasoning processes. While its current
prototype still hard-codes vocabulary and provides simple
abduction methods, these initial implementations can be
replaced seamlessly by more flexible variants (Cf. [7]).

To achieve objective (1), system monitoring data is decou-
pled from explanatory concepts via events, predicates and
propositions (subsec. 3.2.3). These are specified in the Inter-
pretation Module of every LEC. To achieve (2), each LEC
supports a plug-and-play set of Abduction Modules, each
including a specific kind of abduction method (e.g., [7], [8]).

3.2.2 D-CAS Design. Decentralised Conflict, Abduction, Sim-
ulation (D-CAS) is a decentralised version of the CANmethod.
It proposes to implement CAN’s Negation step via Simula-
tion. D-CAS features a modular plug-and-play design (Fig.
2), where vendor-specific expert components – called Local
Explanatory Components (LECs) – can be integrated and
employed within the explanatory process on-demand, when-
ever relevant to an explanation. We associate one LEC with
each type of observable system resource that is of interest to
the explanatory system. Each LEC holds:

(1) a vocabulary (i.e., a set of explanatory concepts, or
‘predicates’) for statements about the associated re-
source (e.g., ‘car’ and ‘slow’ for a Car-specific LEC).
The LEC interprets these predicates dynamically, based
on monitoring data from the system model (e.g., a car
is considered slow if its monitored speed is lower than
a threshold);

(2) a set of abduction techniques for finding the causes
of conflicts that are related to the associated resource
(e.g., a problem’s cause is: the last memorable event
[7]; same as last time; indicated by a causal Bayesian
network [8]).

To select LECs that are relevant to each explanation and to
compose their answers into a coherent response for the user,
we introduce a generic coordinator, called Spotlight. The
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Figure 2: D-CAS Generic Architecture, exemplified
for the Urban Traffic case study

Spotlight’s role is similar to that of a Naming and Directory
Service, or Repository (e.g., Yellow Pages). It keeps track of
all LECs in the system and of the kind of problems, or con-
flicts, that they can address. In brief, when the user questions
the Spotlight, the latter: i) identifies the LECs that hold the
expertise relevant to that question; ii) questions the identified
LECs sequentially; and, iii) returns their composed answers
to the user, as a single coherent statement. Importantly, the
Spotlight ignores all details related to the system resources
and their explanations (these are only encoded into the LECs’
Interpretation and Abduction Modules). This means that
though centralised, the Spotlight remains a lightweight and
generic entity that does not need to evolve and adapt to
various systems, or to their run-time changes. D-CAS ap-
proach is similar to an expert system that relies on a set of
problem-specific experts, which can be added, removed and
updated at run-time. To answer a question (or solve a prob-
lem) the relevant experts can be identified and questioned
case-by-case. This modular and loosely-coupled design helps
to address some of the scalability and adaptability issues
inherent in the original CAN version.

The formal D-CAS process for LEC selection and coordi-
nation is listed in Algorithm 1. In more detail, the Spotlight
receives a question in the form of a conflict (subsec. 3.1).
It identifies the LEC holding expertise about that conflict
(based on contained predicates) and forwards the question
to this LEC. E.g., the question ‘why a car is slow’ will go to
a Car-specific LEC, provided by the car vendor (as it is the
expert on its cars). Next, the LEC checks whether the conflict
is valid based on its monitoring data (e.g., is the car slow
according to its speed?). If the conflict is invalid, the LEC
returns this fact to the Spotlight, which informs the user.
Otherwise, the LEC uses its abduction logic to determine the
cause of the conflict (e.g., the car in front is also slow). The
LEC returns the cause to the Spotlight, as a new conflict,
which will be forwarded to an appropriate LEC.

The process continues, recursively, forming a sequential
reasoning chain, until a LEC provides an answer that can no
longer be followed (e.g., invalid conflict; or, conflict solved by

an action; or, no further expertise is available to continue the
reasoning chain). This guarantees the end of any reasoning
chain. The causal chain obtained from the LECs’ questioning
sequence is returned to the user as an explanation (e.g., Fig.
3). When a reasoning chain is completed, the Spotlight may
also question previous LECs again to provide an alternative
cause. This starts a new reasoning chain and results in a
tree-like topology (rather than a line) for the Spotlight’s
questioning sequence – not shown here, Cf. [7].

Input: A request req from the user
Result: A conflict-solving process whose trace can be

exposed as an explanation
Data: Pointers to the LECs in the system
C a set of examined conflicts, G a set of considered
give-ups
(P, N) ← analyzeRequest(req);

responsible ← locate(P);

while responsible ̸= self do
if responsible = null then

Backtrack() ;

end

answer = responsible.investigate((P, N)) ;

switch answer do
case ABDUCTION do

(P, N) ← Answer.Hypothesis ;

responsible← locate(P) ;

end

case GIVE UP do
Backtrack();

end

case ACTION do
simulator.run(Answer.Action) ;

Conflict ← waitForProblems() ;

end

end

end
Algorithm 1: D-CAS Algorithm: the Spotlight succes-
sively considers conflicts and forwards them to relevant
LECs

3.2.3 D-CAS Conceptual Formalism: Events, Predicates and
Propositions. Predicates are Boolean functions over events,
which are issued from the observed system’s data [12], [7].
Evaluating a predicate results in a Boolean proposition. E.g.,
in the urban traffic case study: a car’s model provides moni-
toring data about its speed; a Car LEC’s Slow() predicate
evaluates this data and returns a proposition Slow = true if
the car’s speed is lower than a threshold; and a proposition
Slow = false otherwise. Hence, predicates provide the map-
ping function for dynamically transforming the observed sys-
tem’s data into the explanatory system’s vocabulary. While in
the current implementation these predicates are hard-coded,
future versions will replace these by dynamically defined
functions (e.g., via online learning and dialogue).
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3.3 Multi-scale Explanations

To support multi-scale explanations, D-CAS simply needs to
integrate multi-scale explanatory concepts (i.e., predicates)
into its vocabulary. It may then reuse its existing abduction
methods to reason upon the new higher-scale concepts. Alter-
natively, it may integrate new abduction methods that are
specific to these higher concepts. The above extensions only
require to provide new LECs for the higher-concepts; the rest
of the D-CAS framework stays unchanged. The new LECs
may also reuse the generic LEC implementation provided
by D-CAS framework; and plug into it the specific Interpre-
tation and Abduction Modules for holding the higher-scale
vocabulary and abduction logic, respectively.

4 TRAFFIC SIMULATION
CASE-STUDY

4.1 Multi-scale Model

To provide the multi-scale system model, we relied on a multi-
agent implementation (in NetLogo) of the traffic case study
in subsec. 2.2. The simulation provides adaptive abstractions
[9] (or scales) in the sense that it models each car individually
when traffic is fluent (i.e., low-scale concept) and aggregates
all cars caught-up in traffic congestion into a single jam (i.e.,
higher-level concept). One version (following the “puppeteer”
pattern) of the simulation keeps both high- and low-scale
models in parallel, so it can seamlessly switch between them as
the traffic context changes. This does not increase simulation
performance but makes generating explanations at different
levels easier.

The model provides data about each simulated car (e.g.,
carid, spatial coordinates, speed, travelled road). When de-
tecting a traffic jam ,the simulation adds to the model a
virtual aggregated car that represents all cars in the jam.
Jam data includes the jamid, position in space, affected road,
number and identity of contained cars. In one of our small
experiments, wee ran the simulation with 200 cars and 15
destinations linked in a star-like road network (Fig. 1); we
used traffic data from one of the roads. Initially, cars are
distributed randomly in the destinations and start moving
randomly via the roads available at each destination. Run-
time simulation data is stored in a log file, which is then
provided as input to the Explanatory System. An online
architecture whereby simulation data is taken from a running
simulator is also possible.

4.2 Multi-scale Explanation:
Implementation, Experiments and
Results

4.2.1 Design and Implementation overview. We reused the
generic Explanatory System implementation (in Python) in
[7] and customised it with domain-specific LECs for the urban
traffic case (Fig. 2). We implemented two types of customised
LECs: Car LEC and Jam LEC. These are based on the generic
LEC implementation [7] with specific modules for Abduction
and Interpretation (i.e., specific reasoning and vocabulary,

respectively). LEC instances were created for each car and
jam (i.e., by hand here but can be done dynamically upon
automatic car / jam detection in the model).

4.2.2 Predicates in the Interpretation Modules. The following
predicates were defined in the Interpretation modules of Car
and Jam LECs, respectively (i.e., the first four belong to the
Car LEC; the last two to the Jam LEC):

(1) Car(carid): true if the the car has the given ID;
(2) AheadOf(carid): true if the car is in front of another

car with the given ID;
(3) Slow(): true if the car to which the question is asked

moves at a speed that is lower than a given threshold
(i.e., 0.05 in the experiments, based on the simulation
values);

(4) OnRoad(roadid): true if the car to which the question
is asked drives on a road with the given ID;

(5) Jam(jamid): true if the jam has the given ID;
(6) ContainsCar(carid): true if the jam contains the car

with given ID.

4.2.3 Causal Propositions in the Abduction Modules. The Car
LEC’s Abduction Module specifies two alternative causal
propositions (note: not to be confused with Boolean ‘propo-
sitions’ in the vocabulary) to determine the causes for a slow
car: either due to a slow car in front (CausalP ropositionA),
or because there is a jam in front (CausalP ropositionB).
A further proposition (CausalP ropositionC , not simulated)
states that a jam’s first car (i.e., the car with carid = 95
in our example) is slow because of a MechanicalF ailure.
More precisely, the Car LEC’s Abduction Module provides
the following alternative causes for questions containing the
Slow predicate:

• CausalP ropositionA: the cause is the car in front of
the car in question (i.e. via the AheadOf predicate);
• CausalP ropositionB : the cause is the jam that con-
tains the car in question (i.e. via the ContainsCar
predicate);
• CausalP ropositionC : if the car in question has carid =
95 then the cause is a MechanicalF ailure.

The Jam LEC’s Abduction Module includes a causal propo-
sition (CausalP ropositionD) which states that the jam is
slow because of the first slow car that it contains (i.e., car95
in our example). Hence, when asked a question that con-
tains the Slow predicate, the Jam LEC’s Abduction Module
provides the following cause:

• CausalP ropositionD: the cause is the first car in the
jam, which is car with carid = 95 in our simulation.

4.2.4 D-CAS Experiments. In brief, the overall explanatory
process was obtained as follows. The traffic simulation (subsec.
4.1) was executed and monitoring data on cars and jams were
recorded in a log file. This log data was then transferred to the
Explanatory System’s knowledge database (BDD Redis) (Cf.
details in [7]). We then sent commands to the Explanatory
System to create the Car and Jam LECs, configured with
the special-purpose Interpretation and Abduction modules
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specified above. At this point, the Explanatory System was
operational and ready to answer questions. Before running
an experiment, we select, by hand, one of the two causal
propositions for the Car LEC’s abduction module. This choice
should be performed automatically in the future; the current
experiments are illustrative. This results in two kinds of
experiments:

• Lower-Scale Explanation Experiment :
uses CausalP ropositionA to determine causes based
on individual cars;
• Higher-Scale Explanation Experiment :
uses CausalP ropositionB to also employ the higher-
scale jam concept.

At the start of each experiment, we asked the follow-
ing question to the Explanatory System’s Spotlight: “W hy
Car(422) Slow()”, where 422 was the carid of a car that
entered a jam in the traffic simulation. This question may be
asked by the driver of the car in question. The Explanatory
System returned one of the alternative explanations in Fig.
3. In both experiments, the Spotlight received the question
and forwarded it to the LEC of car422 – the object of the
question. Afterwards, the answer given depended on which
casual proposition was selected in the Car LEC’s Abduction
Module.

In the Low-Scale Explanation Experiment, by means of
the CausalP ropositionA: the Car LEC’s Abduction Module
states that the cause of a Slow car status (i.e., the car’s
Slow proposition is ‘true’) is the car in front of the car
in question. Applying the AheadOf predicate determines
that the car in front is car419. Hence, the Spotlight for-
wards the correspondingly updated question to this car’s
LEC (“W hy Car(419) Slow()”). Thus, the explanatory pro-
cess repeats recursively, identifying all slow cars in the traffic
chain, one by one, and forwarding the updated question
to them. The process halts when reaching car95, which is
the first one in the jam. Its Abduction Module states (via
CausalP ropositionC) that the cause of the Slow state is a
MechanicalF ailure. As this cause does not correspond to
any predicate that can be handled by the available LECs,
the Spotlight halts the explanation and returns the list of
causes identified so far (Fig. 3a).

Alternatively, in the Higher-Scale Explanation Experiment,
by means of the CausalP ropositionB : the Car LEC’s Ab-
duction Module states that the cause of a Slow car sta-
tus is the ‘jam’ containing the car in question. Applying
the ContainsCar(422) predicate identifies the corresponding
jam410. Fig. 3b depicts the explanation obtained so far. If the
User further wishes to know the reason for the identified jam,
they may re-inquire the Spotlight (“W hy Jam(410)Slow()”).
The Spotlight forwards the question to LEC of jam410. The
Jam LEC’s Abduction Module (CausalP ropositionD) states
that the cause is the first car in the jam (i.e., car95). The
Spotlight forwards the question to car95, which states that
the cause is a MechanicalF ailure. The process ends and the
sequence of causes is returned as explanation to the user (Cf.
Fig. 3c).

These examples show how multi-scale explanations can
adjust the level of detail for explanations provided to users.
Higher-scale explanations (using jams) provide shorter, more
concise explanations; while lower-scale explanations (using
cars) provide longer, more detailed explanations.

5 CONCLUSIONS AND FUTURE
RESEARCH

This position paper proposed to use multi-scale models as a
means to generate multi-scale explanations about observed
systems. This multi-scale approach aims to deal with scala-
bility and complexity issues when explanations target very
large systems. The key idea is to model systems via fewer
higher-scale concepts, so as to replace, via abstraction, several
lower-scale concepts. Higher-scale models reduce the amount
of system facts to consider when generating relevant explana-
tions; and also simplify explanations returned to users. As the
appropriate scale for system modelling may vary dynamically,
we propose to use adaptive multi-scale models and associated
explanatory processes that can adjust the scales employed at
run-time.

We illustrated our proposal through a multi-scale simula-
tion of urban traffic (implemented in NetLogo). We extended
an explanatory framework from previous work (i.e., D-CAS)
to include multi-scale concepts for the traffic case. We exem-
plified the system’s multi-scale explanatory process by asking
a question about a slow car. Two alternative answers were
provided – a lower-scale one, considering all individual cars;
and a higher-scale one, considering jams as aggregates of sev-
eral slow-moving cars. This illustrated how the higher-scale
explanation was considerably shorter and simpler to produce
than the lower-scale one.

Future work will focus on determining the appropriate ex-
planation scale for each question, within each given context;
and switching between scales automatically during run-time.
Other aspects of the D-CAS framework will also be studied
to provide more advanced versions – e.g., automatic identifi-
cation of higher-scale explanatory concepts and multi-scale
abduction methods. The abduction logic is currently hard-
coded, yet could be implemented in a dynamic manner, e.g.,
via online learning or contrast-based methods. Initially, the
Explanatory System can dispose of all alternative causal
propositions and select among them based on a given criteria.
Such causal propositions can also be provided at run-time –
e.g., when the modelling system introduces the ‘jam’ concept
to provide a higher-scale traffic representation, the Jam LEC
can be automatically included into the explanatory system
and provide its alternative jam-based explanation.

An important criterion to select between multiple explana-
tion scales will rely on the fact that the answer to a question
should resolve the conflict raised by that question, while fea-
turing minimal complexity (e.g., as defined by Algorithmic
Information Theory). Intuitively, the explanation based on
the jam is simpler than the one based on the chain of indi-
vidual slow-moving cars, because its description is shorter.
Once the simplest explanation is given initially, the user may
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(a) low-scale explanation: individual cars only

(b) higher-scale explanation: jam only

(c) higher-scale explanation: jam’s cause

Figure 3: Explanation for a driver on why her car is slow: a) low-scale: long chain of individual cars moving
slowly in front (more detailed, complicated explanation); b) higher-scale: traffic jam in front (more abstract,
simpler explanation); c) jam cause (hybrid)

require further details by asking more questions (e.g., ‘why is
there a jam’ or ‘how long is the jam’). This proposal sets a pre-
liminary basis for developing more comprehensive multi-scale
explanation solutions for large CPS. We assume that LECs
are provided by CPS resource vendors (e.g., a car-specific
LEC, containing relevant explanatory predicates and logic,
bundled within an autonomous car). It is recognised that
if vendors do not provide these LECs, our technique is not
usable in practice. Given the increasing demand for explain-
ability, we believe that market demand will force vendors to
include LECs in their products. We realise that the Spot-
light is a potential bottleneck which might impede scalability.
Note that a large part of the scalability problem is addressed
by the multi-scale approach. A hierarchical organisation of
Spotlights should however still be investigated.
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