Feature-Oriented Requirements
Modeling and Analysis

Jo Atlee
Shoham Ben-David
Pourya Shaker

Sandy Beidu
David Dietrich
Xiaoni Lai

David R. Cheriton School of Computer Science
University of Waterloo

Rear Automatic Braking

Full-Speed Range Adaptive Cruise Control
Intelligent Brake Assist

Forward Collision Alert

Safety Alert Seat

Automatic Collision Preparation

Lane Departure Warning

Side Blind Zone Alert

Rear Cross Traffic Alert

Adaptive Forward Lighting

(]
O
©
=
o
(C
o
i
L4
(7))
(7))
<
=
(]
>
=
o

Super cruise))
(semi) autonomous vehicles - many features

many features

hmmm ... so many
excited user feature interactions

overwhelmed engineer

feature-oriented software development

feature: a unit of functionality or added
value in the product

Lane Departure Warning Lane Centering Control

Adaptive Cruise Control Automatic Lane Change Control

product lines

feature model = valid configurations

feature interactions

feature interaction: features influence each
other in defining overall system behaviour

» conflicts over shared context

» violations of global correctness properties
» emergent behaviours

feature interaction problem: the number of
potential interactions is exponential in the
number of features

in this presentation

modelling feature requirements
» feature modularity
> modelling intended interactions

composing features
» to obtain a product-line model

analyzing product-line model
» strategies to scale analysis
> properties for detecting feature interaction

FORM | : feature-oriented requirements
modelling language

world model behaviour model
a conceptual model of the state-machine models (of features)
problem world

— whose events, conditions and actions are
- defines possible world states expressions over world phenomena

— includes feature phenomena — and over feature phenomena

—and feature model

PhysicalObject
position: Coord
shape: Shape

RoadObject
speed: Int
acceleration: Int | IsOn 1 ['RoadSegment
orlent.amon:llnt) roadObj roadSeg| speedLimit: Int
direction: Direction

Drives Contains
Driver AutoSoftCar |

ignition: IgnitionState

«AutoSoft»
CcC
«AutoSoft» I | cruiseSpeed: Int
|
! BDS ! | computedAccel: Int
I «inputs» | «inputs»
i IgniteOn() 1 | SetCruiseSpeed() : | “Auﬁgom
I IgniteOff() ! | EnableCC() [
| Steer(value: Int) | ! DisableCC() ! |cruiseHeadway: Int
|
i Accelerate(value: Int) | Accelerate(value: Int)
| Decelerate(value: Int) |

I | «inputs»
| SetCruiseHeadway(value: Int)

modelling features

features are modelled as hierarchical state machines that
sense and control the world

' acceleration

t3: Accelerate+(0) /
al: AutoSoftCar.acceleration := acceleration()

Y

H waitAccelerate |

l t1: IgniteOn+(0) [true] / : -
~——, ai: [true] AutoSoftCar.ignition :='on_| deceleration
1 t4 > t3: Decelerate+(0) /

off | t2: IgniteOff+(o) / a1: AutoSoftCar.acceleration ;= deceleration()
al: AutoSoftCar.ignition := off | , l

.—H waitDecelerate |

' steering
| 15: Steer+(0) /

tranSition |abe|S: ' al: AutoSoftCar.steerDirection := steerDirection()
id: e [c] /id,: [c,] ay, .., id 1 [c] a, [

.—- waitSteer |

transition or action name

triggering event: a change in the world
guard condition: predicate over the world
action: a prescribed change to the world

a new feature may...

introduce behaviours
> via: new machines

eliminate behaviours
> via: new or stronger enabling conditions on
existing actions or transitions

substitute behaviours
> via: new pre-empting actions or transitions

a new feature may...

introduce behaviours
> via: new machines

Qiminate behaviours N
> via: new or stronger enabling conditions on
existing actions or transitions

substitute behaviours
_ via: new pre-empting actions or transitions)

intended interactions:
modelled as structural extensions at
extension points in existing features

a new feature may...

can also be expressed as
extensions to existing features:
] new regions, new states,

new transitions,
weakened enabling conditions

~

introduce behaviours
> via: new machines

Qiminate behaviours

> via: new or stronger enabling conditions on
existing actions or transitions

substitute behaviours
_ via: new pre-empting actions or transitions)

intended interactions:
modelled as structural extensions at
extension points in existing features

adding behaviours
Cruise Control (CC)

extends BDS state

state-machine extension

transtion BDS{13}): [strengthen with ¢: not inState(main enabled main engaged main active) L driverOverride())

AN

new region

v

replacing behaviours

Headway Control (HC)

extends CC state new region includes pre-empting transition:
models HC intentionally prohibiting CC

CC{main.enabled.main.engaged}

t2: override(CC{t6}) [slowRoadObjectAhead()] /
al: AutoSoftCar.acceleration := acceleration(),
a2: CC.goalAccel := acceleration()

t1: SetHeadway+(0) /

S al: HC.headway := o.value =
inactive >& active

t3: SetHeadway+(0) / al: HC headway := o.valuej

product-based strategy

advantages
» parallel analysis

generate and analyze » can use existing analysis
each product in isolation techniques and tools

» sound and complete
O ::2:

. @ © o o disadvantages
» exponential number of
products to analyse

» sampling is not complete

» analysis is inefficient as it
doesn’t exploit
commonalities among
features

family-based analysis

compose features
into one product-line
model

advantages

» efficient analysis by
exploiting commonalities

» sound and complete

disadvantages

> huge model susceptible to
state-space explosion

» cannot perform parallel analysis
» requires new (modified) tools

composition is a product line

transitions, actions, clauses are guarded by presence
conditions (of their declaring feature)

| state-machine BOS{man) L.

product line = {BDS, BDS + CC, BDS + CC + HC}

composition is commutative

« order of composition does not affect behaviour
* enables incremental composition

semantics of feature-module Composition

the composition of feature modules is the
superimposition of their feature structure
trees (FSTs)

> FST - abstract-syntax tree of feature module

> superimposition — overlay of FSTs with merging
of nodes with same name and type

Feature Structure Tree (FST)

node name AutoSoft: SPL node type
|
non-terminal node \| BDS{main}: humdhr/

terminal node

t3: transition
on; state

- trigger

“Accelerate+(0)"

acceleration: region | ...

S S

s source | | destination al: action : initial-state waitAccelerate: state

“on.acceleration.waitAccelerate® “on..." - A “waitAccelerate®

:WCA a1: condition

"AutoSoftCar.acceleration = acceleration()*

: predicate

“true”

BDS FST

Feature Structure Trees (FST)

context from BDS

CC{t1}: transition | ...

CC{t1}: condition
*on.CC{main}.disabled" | CC{main}: region
“EnableCC+(0)"
Ttrue* disabled: state | | enabled: state

“on.C in}.enabled” i i
on.CC{main}.en *disabled"

“CC implies not inState(...) or ..* “strengthening"

Feature Structure Trees (FST)

context from BDS
context from C

HC{t1}: transition | ..

“on.CC{main} enabled main engaged HC{mam).inactive®

_ al: action

“on.CC{main} enabled main engaged HC[main} active®
al: condition
*HC headway = o.vake" |
active: state

“true®

HC FST

superimposition of FSTs

BDS FST

CC FST

the order of composing FSTs does not
affect the result of composition

feature composition in featureHouse

Java || C# || C || Haskell |Alloy | XML | FORML .. | FeatureBNF

Generator FSTGenerator

/\

~

Parser » L Composer ,,l - Pretty Printer Y

) du%. }ﬁ f}g !

Sou rcé Code

-

Library of Composition Rules

FeatureHouse Architecture

product-line model checking

Classen, Heymans, Schobbens, Legay, Raskin, ICSE’10

Product Line
Model

PL Model
Checker

Property ana configurations +
holds? Counter Exgas

SAl-based product-line model checking

S. Ben-David, B. Sterin, J. M. Atlee, and S. Beidu, ICSE’15

previous PL model checking

implemented in BDDs
> BDDs have been outperformed by SAT-based methods

we have implemented PL model checking on

top of two existing SAT-based algorithms in
the ABC Verification tool

» IMC: Bounded Model Checking
e complemented with Interpolation

» 1C3: Incremental Construction of Inductive Clauses
for Indubitable Correctness

SAl-based product-line model checking

S. Ben-David, B. Sterin, J. M. Atlee, and S. Beidu, ICSE’15

SMV
-6

Model
|

ABC Tool

IMC [ox

SAl-based product-line model checking

S. Ben-David, B. Sterin, J. M. Atlee, and S. Beidu, ICSE’15

* we experimented with 3 models: two from the literature
(small) and an in-house one (large)

* results suggest improvement of 1 to 3 orders of magnitude.

Sample results:

Model Size BDDs
40
40
76
76

family-based analysis

advantages

compose features » efficient analysis by
into one product-line exploiting commonalities

model » sound and complete

disadvantages

» huge model susceptible
to
state-space explosion

» cannot perform parallel analysis
» requires new (modified) tools

teature-bpased analysis

advantages
each feature is » small model size
analyzed wrt open > linear analysis tasks

environment » can use existing analysis
techniques and tools

» parallel analysis

disadvantages

» cannot detect
feature
interactions

observations

* typically a feature is designed
to satisfy its requirements in
specific contexts

* features can be designed to
have interfaces

 some class of feature
interactions can be
automatically detected

mode-based pattern for features

90% of references
are to high level
modes

a new approach -
interface-based analysis

context/environment
feature of interest of feature of interest

partial product-line models

analyze each feature
with respect to its
minimal environment

a new approach -
interface-based analysis

H 5 —_—
_ —_—
/. N
P

benefits

» efficient analysis

» relatively small model size

» can detect feature interactions
» linear analysis tasks

» parallel analysis

challenge: deriving the
minimal environment
» should be as small as possible

» must preserve behaviour of
feature of interest

a new approach -
interface-based analysis

H 5 —_—
_ —_—
/. N
P

benefits

» efficient analysis

» relatively small model size

» can detect feature interactions
» linear analysis tasks

» parallel analysis

challenge: deriving the
minimal environment
» should be as small as possible

» must preserve behaviour of
feature of interest

we use model slicing to derive the
context of a feature of interest

model slicing
Slicing Step 1:

1.ldentify the variables that are read or written by the
slicing feature module.

Slicing Step 2:
1.Remove Irrelevant Variables
2 .Mark contributing transitions

a) Transitions that contain relevant variables
D) Irrelevant transitions that make the model executable

3.Remove non-contributing transitions, states and
concurrent regions

4 .Merge states if possible

model slicing

7

Arvs
plerfiomngOnineieree (40 spsemapelom - SCITE N0

-

-—-uw_ | .
A Sodal pestion = o e by o ¥ A B
R T
-

oo nie

e

Vo A [Wt et « Secigentt

_/“

—
—

Bt Pt s » B A UL POMON R
e

— =

o
e P o« A ot 1 PEATCH

-
biant ol potien » Aui® Podd UL POUTCR

Original

States 21

Transitions 53

interface rule

automatically generate property, Prop, from feature of interest

implies

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

properties

« desired behaviour of features
- conditional on whether feature is present
- accommodate intended interactions

> which affect whether a transition executes

t:ev[F,&cond & (F,=>cond2)]/x:=val

=

source

feature presence intended
conditions Interaction

properties

property for each executing transition:
» if transition executes, the effects of its actions are realized
> can be generated automatically from feature

t:ev[F,&cond & (F,=>cond2)]/x:=val

st

AG (t_execute -> AX:(x=val))

All pé‘f‘hs G’ibbally ne);(t state

summary of progress

O done

\ in progress

Feature Interaction
Property Generator

CTL
Property

Feature

Composer Translator Analyzer

B (&) G

Modelling Transformation

