Flexible Product Line Engineering
With a Virtual Platform

Michat Antkiewicz

-f' | UNIVERSITY OF IVIar 10, 2015
%) WATERLOO

Do _
s ne(s!s

D lp tLb

http://gsd.uwaterloo.ca http://necsis.ca

http://gsd.uwaterloo.ca/
http://gsd.uwaterloo.ca/
http://gsd.uwaterloo.ca/

Flexible Product Line Engineering with a Virtual Platform

Michat AntkiewiCZ. Wenbin Ji,

Thorsten Berger. Krzysztof Czarnecki
University of Waterloo, Canada

Stefan stanciulescu, Andrze] quonv:lski

T University of Copenhagen. Denma

ABSTRACT

Cloning 18 widely used for creating new product variants.
While it has low adoption costs, it often leads to maintenance
problems. Long term reliance on cloning 18 d'\scouragcd in
favor of sysu‘nml.ic reuse offered by product line engineering
(PLE) with a central platform integrat
Unfortunatc_\'. adopting an in
risky and costly migration. Howev
shows that some benefits of an 1
achieved by properly managing a set of

In this paper, W¢ an incrcmcma\ and minimally in-
vasive PLE adoption st lled virtual platform. Virtual
= = yvers a spectrum of strategies between ad-hoc clgne

- ted platform divided

Thomas gchmorleiz. Ralf Lammel
Universitat Koblenz-Landau, Germany

Ina gchaefer

Technische Universitat Braunschweid, Germany

Despite having low adoption costs and allowing indeps
dence from other developers, cloning easily leads to incon
tencies, redundancies, and lack of control. In the literat
using cloning in the longer term has been considered a ha
ful practice (8]. It has been traditionally ro.commondod t
organizations adopt a more systemmic. strategic reuse off
by product line engineering (PLE) (10 based on a cen
platform. Such a platform should integrate the reus
assets and it should be used for deriving new varian
products. Existing 'mcremcmal PLE adoption strategic
6] discourage relying on cloning due 10 maint ainability ¥
However, as shown by industrial practice, climinating clc
and adopting the integrated platform is not always desi
nor beneficial as it requires high-risk migration proces

In this paper, W¢ present an incremental and mint

BA M SIS v for adoption of product-\'mc engine
S Nows organi

“Virtual Platform” is ...

an incremental and minimally invasive
strategy for adoption of product line
engineering

Organization

Project 1

Variant 1

Component
Library

Framework

Project 2

Organization

Project 1

Asset Variant 1

Component
Library

Framework

Project 2 Variant 2

Organization

Cloning | Product-Line Engineering

Project 1

Asset

Component
Library

Framework

Project 2

| Project 1

| Asset

Integrated Platform

Variant 1

Component
Library

Variant 2
Framework

Project 2

Asset

+independence +scale

+flexibility +propagation

+low
redundancy

+innovation

+speed @ tnew
variants

+low costof 4configuration
initial reuse over

implementation

“Make the distributed assets reusable
instead of integrating them into a platform”

Clone Management Framework

Rubin et al., SPLC’12, ICSE NIER’13,
SPLC’13 (Best Paper Award)

“Offer incremental benefits for
incremental efforts”

Virtual Platform = 6 Governance Levels

For each level

* Description

* Advantages

* Disadvantages

* Tactics

* (Example)

* Recommendation

Governance Levels

L6: PLE with a Fully Integrated Platform

L5: PLE with an Integrated Platform and
Clone & Own

L4: Clone & Own with a Feature Model

| 3: Clone & Own with Configuration

| 2: Clone & Own with Features

| 1: Clone & Own with Provenance
0: Ad-Hoc Clone & Own

13

“Each level is ‘good’ given the
specific needs”

"Cloning Considered Harmful"
Considered Harmful

Kapser and Godfrey, WCRE '06

“Integrated Platform not Always
Desirable”

Dubinsky et al., CSMR, 2013
(Best Paper Award)
Stallinger et al., PLEASE, 2011

Organization

Project 1

Project 1

Integrated Platform

Project 2

Project 2

Feature pro

Feature uqozu@—@

Feature propagation
. Start
Release

0.3.4 ¢

2.

S
T
@)
=

S

Q
G
©
@

Release
033 9

Release
0.3.2 A ¢

Feature

Case Study

Visualizer@
Platform

Configurator

Maintaining Feature Traceability
with Embedded Annotations

wenbin Ji, Thorsten Berger. Michat

Generalive Software
University

Email:

Abstract—Features are commonly used by developers and
users 1o describe the functional and mn-[uncliunul aspects of
oftware. While widely used in gencral, the notion of features is
redominant in <oftware product lines. where features are use
for distinguishing among variants of software. As such, features
are often the main units of software reuse abstracting over
implcmt'ma!ion details. To effectively ev olve and reuse features.
their Jocation in wets—such a8 r\‘quirl'nwms'. code,
tests, build systems—= n. However, locating features
is often difficult given their crosscutting. pon-modular nature.
Once @ feature is implcim-mrd. the knowledge about its location
quickly deteriorates when the software evolves or development
teams changc—-n'quiring expensive recovering of these locations.
We present @ annotation approach to record
feature traceability jon throughout the dev clopment.
It is based on & prim'iplc that features belong (o softwarc
asscls: traccability information should be declared, embedded.
and evolved together with the software assets implemen
features. We apply our annotation approach in a cas
imulating the development of a set of clunodlforkrd projects.
investigate cost and benefit of these annotations for propagming
features. maintaining 1 i and migrating cloncd
features into an integra platform. Our results
<how that the cost of adding and maintai notations is smal
ared to the actual development cost, while they enhance
- . . of clones into A platform.

{w6ji .lbcrgcr.mamkicw.

AntkiewicZ, Krzysztof Czarnecki
Development Lab

of Waterloo. waterloo, Canada

kczamec) @gsd.uwatcr\oo. ca

featurcs arc implcmcmcd in a specific project or variant. This
representation allows comparing | level of abstraction
higher then code, i S akecholders in
keeping 2 commo i

Performing tasks on features, such as, fixing bugs. modifying.
refactoring. disabling. reusing. and clonin ires knowing
the location of the features i . feature
location is considered on¢ of the most com jvities of
developers (12]. [13). 114}

Organizations that rely on ced with the difficult
question: “How 10 € ecrively maintain traceability perween the
features and the corresponding software assets?” Two strategics
are possible: either organizations record feature traceability
information during the development of the features (the eager
strategy). or they retroactively recover such information when
pecded (the lazy strategy)-

In the ¢a
features when they perform

rd the location of

tasks related to these features

or shortly {hereafter, when the knowledge is still fresh in

their memory- In the lazy Sratcgy. if memory has deteriorated,

developers recover the location of features by reading the code
or by applying scmi-automa\cd feature location i

A\ hoosing the eager strategy. organizations
e e cability informarionf' %

Conclusions

A roadmap for organizations

« Justifiable effort / expected benefits
e Ability to scale up reuse

A way to achieve some benefits
of PLE by SMEs

* Feature-oriented development

* Proactively or retroactively

Component |
teary |9

Asset

Thank You!

L6: PLE with a Fully Integrated Platform

LS: PLE with an Integrated Platform and
Clone & Own

Governance Levels [Fometn] .
L4: Clone & Own with a Feature Model
L3: Clone & Own with Configuration

AL

L1: Clone & Own with Provenance 1 =0
LO: Ad-Hoc Clone & Own I

Frequency of Reuse
Preparation Effort

