NECSIS: The Cross-Cutting Project

Zinovy Diskin

McMaster University, NECSIS

University of Waterloo

NECSIS Structure

- Unified conceptual framework for model management (MMt)
- Unification of terminology and notation
- Common design and reasoning patterns

To distillTo suggest

NECSIS Workshops

2

CC Results

- Unknown and unusual math based on mappings
- Unknown terminology and notation
- No tool support
- Tutorial are needed

A sound theory of MMt based on math

- Classification of MMt tasks
- Notation and terminology
- Spec/Structural design patterns
 - Normal vs. radical design
 - book What Engineers Know and How they Know It, 1990 by Walter Vincenti
 - Reasoning techniques (in progress)

Math for the modern SE

Math for the modern SE

Content

- Specification patterns for model management (40 min)
 - Model merge (Beh. modeling: choice) (15 min)
 - Model join/meet (Beh. modeling: concurrency) (5 min)
 - Relational algebra for source-to-target MT (15 min)
- Incremental BX and their taxonomy (0 min b/c of the upcoming NECSIS webinar on Mar 20)
- Foundations of feature modeling (8-10 min)*
 - *) Does not use category theory:)

Specification Patterns for Model Management

McMaster:

Hamid Gholizadeh,
Sahar Kokaly,
Tom Maibaum,
Zinovy Diskin

MDE adoption in industry

- The MDE idea is great but it may not fully fulfill its promise. Why?
- Tools may be a (big) issue.
- Why are tools not good?
- Jon Whittle's Studies (published at ICSE, Models)
 - Width: 19 interviews with 19 MDE practitioners from 18 companies
 - Depth: 10 interviews with Eriksson AB + 10 interviews with Volvo Cars

Quotes from Whitlle's papers

- "We do not have a fine-grained way of knowing which MDE tools are appointed for which jobs."
- "There is also a clear gap in the way that vendors market their than and their rea capabilities.
- "And suddent set tool doesn't do something expected that's an interview direct quote from an interview]

Whittle's Studies: some results

 Forty Issues preventing MDE adoption, and the miscommunication

```
    Technical defi

                                             \nablaE tools (17/4),
```

- Incremental model transf. (13/3),
- Ext (5/3),
- Nodel refactoring Soci
- unts to 25-50% per group Misco
- caning of words and you will avoid much discord" (René Descartes)

Specification patterns for MMt

- Intro
- Model merge via colimit
- Model join (meet, match) via limit
- Model translation via Cartesian monads:)
- Composing operations into workflows
- Summary

Model Merge after Match

Model Merge with Green/Orange Match

Merge without mappings

Merge with annotations

Merge via colimit vs. Merge with annotations

Merge via Colimit and Constraints

A great theorem of set merge

- Theorem. For any sets A,B and a corr. span R, there is one and only one (up to iso) set X together with maps e_A, e_B satisfying the three constraints.
 - Hence, operation $X = A +_R B$

- Thesis (a la Church-Turing). Any intuitive definition of set merge amounts to the formal operation $A +_{R} B$.
- \$\$\$ Question: Can the theorem, and the thesis, be generalized for richer structures: graphs, attributed graphs, Petri nets, models for a given metamodel?

N-ary merge

Four colors of model merge

Color Legend:

given data

model alignment/match (heuristics / Al / user interaction)

automatically computable

mixing green and blue is bad

Specification patterns for MMt

- Intro
- Model merge (BM: choice) via colimit
- Model join (BM: concurrency) via limit
- Model translation via Cartesian monads:)
- Composing operations into workflows

Synchronizing sets: Example 1

Synchronizing sets: Example 2

Abstraction: Synchronization as Pullback

Our concrete example

Categorical abstraction

Color Legend:

- given data
- additional data (heuristics / AI / user interaction required)
- rautomatically computable

```
M1 x_R M2 := \{(e1, e2): e1@M1,
                       e2@M2,
                  r1(e1) = r2(e2)} 24
```

Instantiation: Parallel composition as Pullback

Color Legend:

- given data
- additional data (heuristics / AI / user interaction)
- automatically computable

 $M1 x_R M2 := \{(e1, e2): e1@M1,$

e2@M2,

r1(e1) = r2(e2)} 25

N-ary join

Four colors of model join

Duality of join and merge (Pullback vs. Pushout)

M1
$$x_R$$
 M2 := {(e1,e2) @ M1xM2:
 $r1(e1) = r2(e2)$ }
AND-composition/Concurr.
NECSIS Workshops (limit)

$$M1 +_{R} M2 := (M1 U M2) / R$$

OR-composition/Choice (colimit)

Benefits of Merge & Join as Colimit (PO) & Limit (PB)

- Intelligent working with names
- Multi-ary complex merge & match are captured
- Separation of concerns (Blue vs. Green)
- Mathematical machinery to prove properties
 - PB is relational join. Hence, relational techniques can be applied
- Traceability mappings are always there

Specification patterns for MMt

- Intro
- Model merge (BM: choice) via colimit
- Model match (BM: concurrency) via limit
- Model translation via Cartesian monads:)
- Composing operations into workflows

Towards Relational Algebra for Model Translations (just started)

McMaster:

Hamid Gholizadeh, Sahar Kokaly, Tom Maibaum

Waterloo:

Krzysztof Czarnecki, Michal Antkiewicz, Peiyuan Sun

Zinovy Diskin

Source-to-target model transf.

Color Legend:

- given data
- computed data

Model translation w/out traceability mappings

Model translation w/out traceability mappings

Model translation with traceability mappings

NECSIS Worland wo-valued (instance x map) functions generated by T_{1,2}

Summary 1: Mappings

- Traceability mappings are a semantic rather than just technological component of MTs
- Provide several benefits:
 - hold useful info about MTs
 - carry basic Boolean operations
 - help to understand MTs
- Should be treated as first-class citizens

Typing: What we have

Typing: What we want

Dynamics via mappings: Queries

Algebra and reuse

Relabeling as "pulling Q(M) back" (pullback)

Algebra of MTs: T₁ V_{disj} T₂

Algebra of MTs: $T_1 \wedge T_2$ and $T_1 \vee T_2$

Algebra of MTs: $T_1 \wedge T_2$ and $T_1 \vee T_2$

Algebra of MTs. Chaining (seq. composition)

Content

- Intro
- Model merge (BM: choice) via colimit
- Model join (BM: concurrency) via limit
- Model translation via Cartesian monads:)
- Composing operations into workflows

Composing operations into workflows

- The diagram above (a megamodel) is an algebraic term in diagram algebra
 - -- continuity is to be respected!
- Can be executed
- Allow term rewriting (based on laws), hence, optimization

Content

- Intro
- Model merge (BM: choice) via colimit
- Model join (BM: concurrency) via limit
- Model translation via Cartesian monads:)
- Composing operations into workflows
- Summary

Two Dimensions of Mappings

- Mappings are sets of links
- Mappings are directed entities
 - composable

can be assembled in diagrams with special R properties (arrow patterns)

Α

B

[PO]

48

Mapping Management

- Model Management ≈ Mapping Management
- Mapping Management reads
 - conceptual framework
 - terminological framework
 - reasonable notation
 - reasoning techniques
 - culture of building and manipulating mappings
- Hence the current tooling
- Mathematics of mappings = Category theory

Math for the modern SE

Content

- Specification patterns for model management (18-20 min)
 - Model merge (Beh. modeling: choice) (15 min)
 - Model match (Beh. modeling: concurrency) (5 min)
 - Relational algebra for source-to-target MT (22 min)
- Incremental BX and their taxonomy (0 min b/c of the upcoming NECSIS webinar on Mar 20)
- Foundations of feature modeling (8-10 min)*
 - *) Does not use category theory:)

Modeling Product Lines with Kripke Structures, Modal Logic and Formal Languages

```
Ali Safilian<sup>1</sup>,
Shoham Ben-David<sup>2,3</sup>,
Tom Maibaum<sup>1</sup>,
Zinovy Diskin<sup>1,2</sup>

<sup>1</sup> McMaster <sup>2</sup> Waterloo <sup>3</sup>GM
```

What's (if anything) wrong with Boolean semantics

Boolean semantics

FMs and their PPL semantics

Instantiate to completion (I2C)

Logic and semantics: fCTL and fKS

Results

- Any fm M (with all CCConstraints) can be translated into an fCTL theory Φ(M)
- Th.1 (soundness): $PL(M) = \Phi(M)$
- Th.2 (completeness): $K = \Phi(M)$ iff K = PL(M)
 - analysis of FMs => analysis of $\Phi(M)$ s
 - => model checking
- Feature modeling ≈ Event-based behavior modeling (in progress)

FM and Formal Languages

FM with cardinalities, cFM

$$M = (D, C)$$
grant_appl.

local int
$$(2,*)$$
markA pub

$$R_{appl} = local + R_{int}$$
, where
 $R_{int} = int.(R_A + R_p + R_A \cdot R_p + R_p \cdot R_A)$
 $R_A = markA^2 \cdot markA^*$
 $R_{pub} = pub \cdot pub^*$

- A product is a set of strings, a PL is the union of products (a language)
- Algorithm D ---> R(D)
 - PL(D) = Lang R(D)
 - Preserves the hierarchy in D
- C ---> Lang(C)
 - Lang(M) = Lang(R(D)) \cap Lang(C)
 - A hierarchy of cFM classes (Chomsky)
- FM analysis => FL analysis
 - Off-the-shelf tools
 - Some analysis operations are **not** decidable in all classes of cFMs

Regular Expressions

Questions?