
Towards Generation of Adaptive Test Cases from
Partial Models of Determinized Timed Automata

(short paper)

Bernhard K. Aichernig
Florian Lorber

Institute for Software Technology, Graz University of Technology, Austria
{aichernig,florber}@ist.tugraz.at

Abstract—The well-defined timed semantics of timed automata
as specification models provide huge advantages for the verifica-
tion and validation of real-time systems. Thus, timed automata
have already been applied in many different areas, including
model-based testing. Unfortunately, there is one drawback in
using timed automata for test-case generation: if they contain
non-determinism or silent transitions, the problem of language
inclusion between timed automata becomes undecidable. In recent
work, we developed and implemented a technique to determinize
timed automata up to a certain depth k. The resulting timed
automata are unfolded to directed acyclic graphs (DAGs) up
to depth k. It was hardly surprising, that the unfolding caused
an exponential state-space explosion. Consequently, the language
inclusion algorithm we had developed for test-case generation
from deterministic timed automata did not scale anymore.

Within this paper we investigate how to split the determinized
DAGs into partial models, to overcome the problems caused
by the increased state space and find effective ways to use the
deterministic DAGs for model-based test case generation.

I. INTRODUCTION

Real-time requirements cause severe challenges for the
verification and validation of time-dependent systems. One of
the most common formalisms for specifying timed systems
are timed automata. They were introduced by Alur et al.
in 1994 [3] and in the years since there has been ongoing
work in both the theoretical and the practical aspects of
timed automata, including the topic of model-based test case
generation [8].

Model-based mutation testing is a specific type of model-
based testing, in which faults are deliberately injected into
the specification model. The aim of mutation-based testing
techniques is to generate test cases that can detect the injected
errors, if they violate the conformance relation. This means that
a generated test case shall fail if it is executed on a system-
under-test that implements the faulty model. The power of this
testing approach is that it can guarantee the absence of certain
specific faults. In practice, it will be combined with standard
techniques, e.g. with random test-case generation.

We already used timed automata for model-based mu-
tation testing, using tioco as conformance relation between
the specification and the mutants and detecting conformance
violations via language inclusion [2]. The approach was limited
to deterministic timed automata without silent transitions, as
non-determinism might lead our language inclusion to spurious

counter examples. This also limited the approach to using
one monolithic timed automaton, as the communication of
networks of timed automata introduces silent transitions.

In recent work, we found a way to remove silent transitons
and determinize timed automata, by unfolding the automata
and bounding the length of the traces we investigate. We
recently provided a technical report [7] with more information
about this determinization approach. The downside to this
technique is an exponential state-space explosion caused by
the unfolding. Consider the example presented in Figure 1. It
is the timed automata specification of a Car Alarm System
that consists of four communicating timed automata. The first
two automata handle the locks and the doors. If an input is
triggered, they pass on an internal signal to the third automa-
ton, that monitors the locks and doors, to arm the system, if
the doors are closed and locked for twenty seconds. The last
automaton handles the activation and manual or time-triggered
deactivation of the alarms, that are triggered if the doors are
violently opened while the system is armed. The network
contains four inputs (lock, unlock, close, open), five internal
signals (locked, unlocked, closed, opened) that become hidden
after building the product, and six output signals (soundOn,
soundOff, flashOn, flashOff, armedOn, armedOff). Altogether,
the example contains only 23 locations. Yet, unfolding its prod-
uct to the observable depth two already creates 11 locations,
without taking into account the locations that can only be
reached by traces ending with internal transitions. Unfolding
it one step further creates a total of 50 locations. The number
of locations grows exponentially, e.g. on depth 12 it is already
higher then three million locations.

At this point, applying our previous language inclusion is
not feasible anymore and can not be used for the language
inclusion check. In this paper, we propose two methods that
avoid the generation of the whole DAG and uses meaningful
sub-DAGs instead. The first method applies the mutation to
the unfolded DAG, instead of applying it to the original
specification, as done in our initial process. Consequently, the
position of the mutation in the DAG is known, and the check
whether the mutation violates the tioco conformance has to be
applied only to the sub-DAG beneath.

The second method is based on heuristic based pruning
of the DAG. Due to the fact that we are using tioco, which
supports partial models, pruning away transitions with input
labels leads to legal partial models. The test cases that can

Fig. 1. A network of four automata, specifying a car alarm system: The first two automata handle the locks and doors, the third triggers the arming of the
system and the fourth handles the alarms.

be received via pruning the system are far more adaptive than
the tests we generated in our previous test case generation
approach, as they still contain every trace that can be invoked
by the remaining inputs and do not lead to inconclusive
verdicts.

The rest of the paper is structured as follows: In the
next section we will give a very brief introduction to timed
automata, stating the properties we assume for the automata
we investigate. Then in Section III we explain model-based
mutation testing, again stating the problems caused by an
increased state space. In Section IV we illustrate our first
approach for selecting partial models, where we only select the
DAG affected by the mutation. Then in Section V we define the
second approach, that works via underspecification of inputs.
In Section VI we position ourselves in the context of related
work and finally, in Section VII we conclude our paper and
give an overview of future steps.

II. PRELIMINARIES

In this paper we consider timed automata with inputs and
outputs (TAIOs). Timed automata are finite automata extended
by real-valued clocks to measure the time that passes in the
locations. Each transition in a timed automata may consist of a
label, a set of clocks that are reset if the transition is traversed
and a guard over the clocks, specifying the time span in which
the transition is enabled. In the case of TAIOS, the labels are
divided into inputs, denoted by question marks, and outputs,
denoted by exclamation marks. The automata we consider in
the following sections are the result of our determinization
approach [7] and satisfy the following properties:

They do not contain silent transitons and are deterministic,
so each run through the automata invokes the same trace.

They are in the form of directed acyclic graphs, thus each
trace starts at the same initial state, and leads to a leaf after at
most k steps.

They are single, monolithic timed automata. Even if the
original specification was a network of timed automata, a
product of all its automata built and unfolded during the
determinization approach.

III. MODEL-BASED MUTATION TESTING

In MBT, the system-under-test is seen as black box and
a specification model formalizing the requirements is used in
order to decide, wether the system conforms to the specifica-
tion. The specification model is explored in order to generate
test cases, to satisfy a predefined coverage criterion.

In contrast to classic approaches, which use coverage
criteria like transition coverage, model-based mutation testing
is a particular instance of fault-oriented testing where the test
cases are generated in a way that attempts to steer the system-
under-test towards intentionally introduced faults. Hence, the
idea behind this approach is to generate a set of mutated
models, that reflects common modeling errors. If a mutated
model does not conform to the original specification, the
mutation introduces enabled traces which were not in the
original model and these traces serve as the basis to generate
a test case. In case that the mutated model conforms to its
original version, the mutation does not introduce new behavior
with respect to the original specification, hence no useful test
case is generated. It follows that test cases are generated only
if the mutated model does not conform to its original version.

In previous work [2] we already developed a methodology
for model-based mutation testing from timed automata. We de-
veloped a tioco-conformance check between the specification
model and the mutated model via language inclusion. While
the mutation was allowed to introduce non-determinism, the
original specification was strictly required to be deterministic.
This was a severe drawback for applying the approach to real
industrial case studies, which was supposed to be revoked after
our determinization process.

Our determinization process needs to alter guards of transi-
tions that follow after a silent transition or a non-determinism.
Thus it can not be applied to general timed automata, but
only to such with bounded traces. Therefore, specification
models that are not bounded need to be unfolded before
determinization. Due to the state space explosion during the
unfolding, the existing test case generator is not able to process
our examples within a reasonable time span.

We found some easy adjustments in our algorithms, to

handle the DAGs in a more efficient way. The most valuable
adjustment was building a separate step relation formula for
every depth of the DAG, taking only those transitions into
account, that were on the same depth. Yet, the effect of
these adjustments was marginal, compared to the exponential
increase in runtime.

IV. MUTATION ON THE DAG

Originally, it was planned to mutate the original specifica-
tion before unrolling, thus avoiding the state-space explosion
in the mutants. The whole test-case generation process is
illustrated in Figure 2 (a).

However, the unfolded structure can also be utilized to
improve the mutation and language inclusion process: The
unfolding already enumerates the whole state space that is
needed for the test-case generation. By mutating the unfolded
specification, this information can be used: As the mutations
are introduced on purpose and systematically, their position in
the unfolded state-space is known. The only thing that needs
to be done is the check whether a mutation invokes a violation
of the tioco-conformance relation in the sub-DAG beneath it,
or not. Thus, the language inclusion check does not need to
start at the root of the DAG, but should rather start at the
mutation and explore only the sub-DAG beneath the mutated
action. This reduces the investigated state space drastically.
The updated process can be seen in Figure 2 (b).

In order to apply this approach, two steps need to be exe-
cuted: First, as the unfolded automata might contain infeasible
paths, a reachability-analysis is needed to check whether the
mutated location or transition can actually be reached from the
initial location. If the path from the initial state to the mutated
location is in the form of a tree, i.e. every location along the
path has exactly one incoming transition, the reachability is
comparatively easy and only the guards and clock resets along
the trace have to be checked for satisfiability. The constraints
that are created on the clocks need to be stored, so they can
be attached to the initial state of the tioco check. If there are
several traces leading to the mutated state, there is not only
one constraint, but one per different trace. As only one of them
has to be satisfiable for the mutated state to be reachable, a
disjunction of all these constraints is stored.

After finishing the reachability analysis, the DAG can be
pruned, leaving only the subgraph below the mutation. Then
the language inclusion check can be applied, with the mutated
location as initial location, to see if the mutation propagates
to a real fault. The only change to the classical check is that
the clocks are not set to zero at the initial location, but are
defined by the constraints calculated in the last step.

If a counterexample is found, the test-case generator
merges the trace(s) calculated in the reachability check with
the counter-example found by the language inclusion, to gain
a time-adaptive test case from the initial state to the tioco-
violation.

This check naturally allows to reach far higher depths in
the k-bounded language inclusion of the DAGS than could be
achieved otherwise, as the exponential growth of the complex-
ity only starts after the mutation.

V. PRUNING THE INPUTS

Partial specifications are valid resources for test-case gen-
eration, as long as the partial models still conform to the
complete specification. Tioco allows the underspecification
of inputs, thus by pruning inputs in the DAG, the tioco
conformance is not violated, while removing any observables
would. There are several possibilities for the pruning approach:

• Prune according to a manually predefined test purpose.

• At each depth, pick a subset N of all inputs, either
randomly or according to some predefined distribu-
tion, and prune every input which is not contained in
N .

• At each depth, only allow exactly one random con-
trollable and prune the rest.

Note that these pruning options can already be applied
during the determinization, thus the pruning does not only
decrease the complexity of the test-case generation, but can
already increase the efficiency of the unrolling and determiniz-
ing. In the following, we want to present these approaches in
detail:

A. Test purpose

Our test purposes we have in mind are defined as sets of
inputs for each depth, so that at each step only the defined
inputs are explored. The test purposed have to be defined
by the test engineer, which requires some knowledge about
the system, but ensures that the DAG only covers the parts
relevant for the user. For the car alarm system presented in the
introduction, a test engineer might want to avoid those parts
of the DAG that start with alternating locking and unlocking
of the doors. A well chosen test purpose to avoid this is
{lock}, {close}, {}, {open, unlock}. This prunes the DAG to
locking and closing the doors in the first two steps, and avoids
any inputs in the third step (thus the empty set). Thus, in the
third step only outputs are received, and the DAG only covers
the branch that arms the alarm system. Opening the door in
the fourth step will cause the alarms to start and unlocking
it will trigger the transition for unarming the system, so both
important branches of the DAG are covered.

To complete the test case with all outputs that are triggered
immediately after the test purpose, the test purpose can be
completed by adding some empty lists at its end. Thus, in the
final steps no new input is triggered, but all outputs are still
captured. Contrary, if the test purpose should only be used to
prune the first few steps of the DAG, and the unfolding should
be continued afterwards, it suffices to add sets with all inputs,
until the desired depth is reached.

B. Automated picking of inputs

Picking a set of inputs N for each depth, either per ran-
domization or according to some distribution, is very similar to
the manual approach in the previous subsection. The main ad-
vantage is that no knowledge about the specification is needed
and the partial model can be created purely automatically.

The random approach of selecting the enabled inputs needs
the least effort, even though it needs to ensure in some way,

(a)

(b)
Fig. 2. Our test-case generation process: (a) illustrates the original process (b) shows the updated process, where the language inclusion is only applied to a
sub-DAG of the specification and the mutants.

that the chosen inputs are actually enabled in some parts of
the DAG in the current depth.

Choosing the inputs via statistical measures helps steering
the partial model in the right direction. If locking and closing
the doors has a higher priority then opening and unlocking,
the probability for arming the system in the selected partial
model is very high.

Alternatively, the inputs can also be chosen for each
location in the DAG individually, instead of using the same
inputs at each depth. This would allow specifying the priority
of the inputs in the specification, dependent on the current
location. Thus, for instance, the priority of lock and close
might be higher in the first few locations, and might decrease
as the inner parts of the model are explored.

C. One input per depth

Choosing exactly one input per depth is a special case of
the approach described in the previous subsection, where |N |
is set to one. Again, the selection can be done randomly or
steered by heuristics. The partial models constructed by this
approach are in fact already adaptive test cases: They provide
one fixed sequence of inputs, and contain every branching
caused by the outputs. Given a test driver that can handle
adaptive tests, theses tests could immediately be executed on
a system-under-test.

While these partial models can not be used for generating
a test suite via model-based mutation testing, as they already
are in the form of test cases, the model-mutations still can be
used to assess the quality of these random tests, i.e. to check
how many mutants are killed by the adaptive test cases. The
mutation analysis could also be used as a stopping criterion
for the test-case generation, indicating when enough test cases
have been generated.

Note that we distinguish between two types of non-
determinism: deterministic automata, where two transitions

with the same label are enabled at the same time, and
non-deterministic systems, where the system can chose non-
deterministically between different outputs. While our previous
approach was not able to handle the first case, the second
one did not cause problems. However, our previous test cases
only contained one specific trace through the system, and
hence unexpected outputs led the test case to an inconclusive
verdict. The test cases we receive by pruning the tree are fully
adaptive and contain every trace that can be invoked by the
chosen inputs.

VI. RELATED WORK

Test-case generation from timed automata is not a new
topic: The UPPAAL tool family contains a series of tools
working with timed automata. Three of them are directly used
for testing: UPPAAL Cover [5] generates tests offline and
allows the specification of observers to generate tests satisfying
pre-defined coverage criteria. Cover required the specification
to be deterministic. UPPAAL Tron [6] is used for online test-
ing, where inputs and delays are chosen non-deterministically
and executed on the system-under-test and the specification
simultaneously and all outputs that are received from the
system are checked for conformance on the model. UPPAAL
Yggdrasil is the newest testing tool in the UPPAAL family,
but so far no publication about it is available. Recently, Wang
et al. [9] published an approach for language inclusion from
timed automata which may contain non-determinism. Similar
to us, they unfold the automata, receiving an infinite tree. They
use zone-abstraction and lower-upper bounds simulation to
reduce the size of the tree before the language inclusion check.
Finally, they use the language inclusion for the verification
of timed patterns. Their approach does not consider silent
transitons and is not intended for test-case generation. Bertrand
et al. [4] published a paper about test-case generation from
non-deterministic timed automata. They apply an approximate
determinization via a game approach. Their determinization
does not preserve the exact language of the timed automata,
it only ensures tioco conformance between the original and

the determinized model. Thus, their determinization approach
avoids the state-space explosion we investigate in this paper.
Aichernig and Jöbstl [1] proposed splitting their refinement
check for action systems into a non-refinement check for
each action and a reachability check, if non-refinement was
detected. This contains similarities to the separated tioco and
reachability checks, we presented in Section IV. They applied
their check on-the-fly, during the exploration of the state space
fo their system, whereas we start our approach with a given tree
covering the whole state space. As their experiments showed
huge improvements in runtimes, we hope to be able to achieve
similar results for the timed case.

VII. CONCLUSION AND FUTURE WORK

Within this paper we proposed two methods to select
suitable partial models from timed DAGs, in the context of
model-based testing. The restriction to partial model helps
avoiding the exponential state-space explosion caused by un-
folding timed automata and thus will allow us the effective
language inclusion from unfolded and determinized timed
automata. This enables the application of our previous test-
case generation technique for deterministic timed automata
to deterministic timed automata with silent transitions. The
resulting test cases are adaptive, as they still contain all outputs,
and deterministic, as they were built from the determinized
system. In future steps we plan to evaluate both approaches
on industrial case studies and investigate their scalability in
the context of complex networks of timed automata.

REFERENCES

[1] Bernhard K. Aichernig and Elisabeth Jöbstl. Towards symbolic model-
based mutation testing: Combining reachability and refinement checking.
In Alexander K. Petrenko and Holger Schlingloff, editors, Proceedings
7th Workshop on Model-Based Testing, MBT 2012, Tallinn, Estonia, 25
March 2012., volume 80 of EPTCS, pages 88–102, 2012.

[2] Bernhard K. Aichernig, Florian Lorber, and Dejan Ničković. Time for
mutants - model-based mutation testing with timed automata. In Margus
Veanes and Luca Viganò, editors, Tests and Proofs, volume 7942 of
LNCS, pages 20–38. Springer Berlin Heidelberg, 2013.

[3] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126:183–235, 1994.

[4] Nathalie Bertrand, Thierry Jron, Amlie Stainer, and Moez Krichen.
Off-line test selection with test purposes for non-deterministic timed
automata. In ParoshAziz Abdulla and K.RustanM. Leino, editors, Tools
and Algorithms for the Construction and Analysis of Systems, volume
6605 of Lecture Notes in Computer Science, pages 96–111. Springer
Berlin Heidelberg, 2011.

[5] Anders Hessel and Paul Pettersson. Cover-a test-case generation tool for
timed systems. Testing of Software and Communicating Systems, pages
31–34, 2007.

[6] Marius Mikucionis, Brian Nielsen, and Kim G. Larsen. Real-time system
testing on-the-fly. In Kaisa Sere and Marina Waldén, editors, the 15th
Nordic Workshop on Programming Theory, number 34 in B, pages 36–
38, Turku, Finland, October 29–31 2003. Abo Akademi, Department of
Computer Science, Finland. Abstracts.

[7] Amnon Rosenmann, Florian Lorber, Dejan Ničković, and Bern-
hard K. Aichernig. Bounded determinization of timed au-
tomata with silent transitions. Technical Report IST-MBT-2015-01,
Graz University of Technology, Institute for Software Technology,
2015. Online. https://online.tugraz.at/tug online/voe main2.getVollText?
pDocumentNr=1003322&pCurrPk=83975.

[8] Jan Tretmans. Model based testing with labelled transition systems. In
Formal Methods and Testing, pages 1–38, 2008.

[9] Ting Wang, Jun Sun, Yang Liu, Xinyu Wang, and Shanping Li. Are timed
automata bad for a specification language? language inclusion checking
for timed automata. In Erika brahm and Klaus Havelund, editors, Tools
and Algorithms for the Construction and Analysis of Systems, volume
8413 of Lecture Notes in Computer Science, pages 310–325. Springer
Berlin Heidelberg, 2014.

