
  1/26

Optimistic Versioning for Conflict-tolerant
Collaborative Blended Modeling

FPVM workshop
July 4, 2022

Joeri Exelmans, Jakob Pietron, Alexander Raschke
Hans Vangheluwe, Matthias Thichy



  2/26

Versioning in model-driven engineering

= Central piece of technology in any kind of collaborative work
● Text-based versioning (e.g. Git) insufficient

– intended to take snapshots of textual concrete syntax (for code)
– for models, can only take snapshots of serializations (e.g. XML) of models
– introduces lots of accidental complexity

● Research in model versioning addresses this by recording history, 
merging, detecting conflicts at the level of abstract syntax
– a 1:1 mapping between concrete and abstract syntax elements is assumed

(i.e. concrete syntax == abstract syntax “with icons”)
– very little “concrete syntax freedom”
– cannot support “Blended modeling” (next slide...)
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Blended modeling

= Ability to edit a model (= abstract syntax) through different representations (= 
concrete syntax)
● Usability++  User can choose the representation that is most efficient for the 

current task
– e.g. understanding links between elements -> observe visual layout
– e.g. renaming an element -> find/replace in textual CS

● Technical challenge: bi-directional synchronization between CSs and AS
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Running example: Blended modeling × Concurrent 
edits

● Complexities:
– Non-trivial CS <-> AS mappings
– Bi-directional change propagation (CS <-> AS <-> CS)
– Concurrent edit operations

● Minimal, but representative of real-world scenarios
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Blended modeling × Concurrent edits

Two sources of complexity:
– Concurrency (branching, merging, detecting & resolving conflicts)
– Bi-directional change propagation (CS <-> AS <-> CS)

Want to keep these complexities orthogonal
... and we show that we can :)
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Big picture of solution 

● CS and AS are independently versioned, and each have their own metamodel
– Inspired by: Y. Van Tendeloo: Unifying Model- and Screen Sharing (2018)

– Running example:
● CS (visual) metamodel: (vector) drawings
● AS metamodel: Statecharts (simplified)

● Record correspondence links between CS and AS elements in correspondence model
– Idea taken from Triple Graph Grammars
– Correspondence model is also versioned
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Running example: metamodels of CS, AS, corr
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Running example: metamodels of CS, AS, corr
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Running example: Evolving CS, Corr, AS



  10/26

Running example: Evolving CS, Corr, AS
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Running example: Evolving CS, Corr, AS
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Running example: Evolving CS, Corr, AS

How to parse & 
render?
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Running example: Evolving CS, Corr, AS
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Running example: Evolving CS, Corr, AS
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Running example: Evolving CS, Corr, AS

=> just create new model 
versions!

How to parse & 
render?
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Running example: Evolving CS, Corr, AS
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Still unclear at this point...

● How do we parse & render?
● What exactly is recorded in history?
● How do we merge concurrent versions and resolve conflicts?
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Parsing and rendering must happen 
incrementally
Meaning: a change to CS must only cause a corresponding change to AS 
(instead of generating a new AS model), and vice versa.
● Reasons:

– for performance
– for layout continuity
– to deal with concurrency

● Fits nicely with operation-based versioning (= storing only the changes to 
the model, as opposed to storing snapshots)
– in our case, we store simple CRUD operations on model elements (i.e. the effect 

of edit operations and change propagations)
– a conflict is a simple overlap (update-update, update-delete, delete-require)
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Parsing and rendering interfaces

● Parsing:
– always deterministic

● Rendering:
– often not deterministic

● visual CS: what layout to use? 
● textual CS: in what order to put declarations?

– coping mechanisms:
● postponing rendering (i.e. until CS is opened/requested)
● support human interaction

– additional tweakable parameter(s) in render function
(e.g. random seed, heuristic to optimize, ...)

– upon human disagreement (“how should this be rendered”), a conflict at the level of CS occurs.
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Persisting history

● Two data structures:
– Delta graph: set of deltas and dependencies between them

● delta = set of CRUD operations on model elements (effect of user edit or change 
propagation)

● three types of dependencies: (1) update (2) delete (3) require
● a left-closed set of deltas == a snapshot

meaning: for every delta in the set, its dependencies are also in the set

● purpose of delta graph:
– efficiently detect conflicts

● a conflict is an overlapping (concurrent) dependency: update/update, update/delete, delete/require
– always have valid snapshots (e.g. when undoing, resolving conflicts)

● by enforcing left-closedness

● dependencies form a directed acyclic graph
● append-only!
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Running example: Delta graph
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Persisting history (2)

● Two data structures:
– Delta graph
– History graph: expresses order between snapshots

● order expressed by “parent” links (identical semantics to parent links in 
Git)

● parent links for a directed acyclic graph
● append-only!
● snapshots can be merged by taking the union of their parent snapshots

guaranteed to also be left-closed

● we allow conflicting deltas in snapshots
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Persisting conflicting snapshots

Why are conflicts not just temporary, in-memory phenomena during the merge process, but instead 
stored forever?
● Can record the steps taken in the resolution of a conflict (as a sequence of snapshots)

– what was the conflict?
– how was it is resolved?
– when was it resolved?

= valuable information!
● Conflicts do not have to be immediately resolved

– Editor should visualize conflicts, though

– Modeler can continue working on non-conflicting parts of the model
● Conflict resolution happens by creating a follow-up snapshot that no longer contains a conflict (e.g. by 

excluding one of the conflicting deltas)
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Conclusion

● Presented an approach for optimistic versioning that 
supports blended modeling and reuse of concrete 
syntax metamodels and editors

● “Just record everything” (and impose nothing) philosophy:
– record CS, AS, correspondence
– record changes
– record snapshots
– record conflicts

Sandbox, possibly for empirical study
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Future work

● Investigating types of inconsistencies that can occur, at level of:
– CS
– AS
– Correspondence

● Having multiple intermediate layers between CS and AS
– Motivation: reuse of certain CS features: e.g. geometric “insideness” is a feature of several visual languages

● Prototype web-based implementation of running example
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