
 1/26

Optimistic Versioning for Conflict-tolerant
Collaborative Blended Modeling

FPVM workshop
July 4, 2022

Joeri Exelmans, Jakob Pietron, Alexander Raschke
Hans Vangheluwe, Matthias Thichy

 2/26

Versioning in model-driven engineering

= Central piece of technology in any kind of collaborative work
● Text-based versioning (e.g. Git) insufficient

– intended to take snapshots of textual concrete syntax (for code)
– for models, can only take snapshots of serializations (e.g. XML) of models
– introduces lots of accidental complexity

● Research in model versioning addresses this by recording history,
merging, detecting conflicts at the level of abstract syntax
– a 1:1 mapping between concrete and abstract syntax elements is assumed

(i.e. concrete syntax == abstract syntax “with icons”)
– very little “concrete syntax freedom”
– cannot support “Blended modeling” (next slide...)

 3/26

Blended modeling

= Ability to edit a model (= abstract syntax) through different representations (=
concrete syntax)
● Usability++ User can choose the representation that is most efficient for the

current task
– e.g. understanding links between elements -> observe visual layout
– e.g. renaming an element -> find/replace in textual CS

● Technical challenge: bi-directional synchronization between CSs and AS

 4/26

Running example: Blended modeling × Concurrent
edits

● Complexities:
– Non-trivial CS <-> AS mappings
– Bi-directional change propagation (CS <-> AS <-> CS)
– Concurrent edit operations

● Minimal, but representative of real-world scenarios

 5/26

Blended modeling × Concurrent edits

Two sources of complexity:
– Concurrency (branching, merging, detecting & resolving conflicts)
– Bi-directional change propagation (CS <-> AS <-> CS)

Want to keep these complexities orthogonal
... and we show that we can :)

 6/26

Big picture of solution

● CS and AS are independently versioned, and each have their own metamodel
– Inspired by: Y. Van Tendeloo: Unifying Model- and Screen Sharing (2018)

– Running example:
● CS (visual) metamodel: (vector) drawings
● AS metamodel: Statecharts (simplified)

● Record correspondence links between CS and AS elements in correspondence model
– Idea taken from Triple Graph Grammars
– Correspondence model is also versioned

 7/26

Running example: metamodels of CS, AS, corr

 8/26

Running example: metamodels of CS, AS, corr

 9/26

Running example: Evolving CS, Corr, AS

 10/26

Running example: Evolving CS, Corr, AS

 11/26

Running example: Evolving CS, Corr, AS

 12/26

Running example: Evolving CS, Corr, AS

How to parse &
render?

 13/26

Running example: Evolving CS, Corr, AS

 14/26

Running example: Evolving CS, Corr, AS

 15/26

Running example: Evolving CS, Corr, AS

=> just create new model
versions!

How to parse &
render?

 16/26

Running example: Evolving CS, Corr, AS

 17/26

Still unclear at this point...

● How do we parse & render?
● What exactly is recorded in history?
● How do we merge concurrent versions and resolve conflicts?

 18/26

Parsing and rendering must happen
incrementally
Meaning: a change to CS must only cause a corresponding change to AS
(instead of generating a new AS model), and vice versa.
● Reasons:

– for performance
– for layout continuity
– to deal with concurrency

● Fits nicely with operation-based versioning (= storing only the changes to
the model, as opposed to storing snapshots)
– in our case, we store simple CRUD operations on model elements (i.e. the effect

of edit operations and change propagations)
– a conflict is a simple overlap (update-update, update-delete, delete-require)

 19/26

Parsing and rendering interfaces

● Parsing:
– always deterministic

● Rendering:
– often not deterministic

● visual CS: what layout to use?
● textual CS: in what order to put declarations?

– coping mechanisms:
● postponing rendering (i.e. until CS is opened/requested)
● support human interaction

– additional tweakable parameter(s) in render function
(e.g. random seed, heuristic to optimize, ...)

– upon human disagreement (“how should this be rendered”), a conflict at the level of CS occurs.

 20/26

Persisting history

● Two data structures:
– Delta graph: set of deltas and dependencies between them

● delta = set of CRUD operations on model elements (effect of user edit or change
propagation)

● three types of dependencies: (1) update (2) delete (3) require
● a left-closed set of deltas == a snapshot

meaning: for every delta in the set, its dependencies are also in the set

● purpose of delta graph:
– efficiently detect conflicts

● a conflict is an overlapping (concurrent) dependency: update/update, update/delete, delete/require
– always have valid snapshots (e.g. when undoing, resolving conflicts)

● by enforcing left-closedness

● dependencies form a directed acyclic graph
● append-only!

 21/26

Running example: Delta graph

 22/26

Persisting history (2)

● Two data structures:
– Delta graph
– History graph: expresses order between snapshots

● order expressed by “parent” links (identical semantics to parent links in
Git)

● parent links for a directed acyclic graph
● append-only!
● snapshots can be merged by taking the union of their parent snapshots

guaranteed to also be left-closed

● we allow conflicting deltas in snapshots

 23/26

Persisting conflicting snapshots

Why are conflicts not just temporary, in-memory phenomena during the merge process, but instead
stored forever?
● Can record the steps taken in the resolution of a conflict (as a sequence of snapshots)

– what was the conflict?
– how was it is resolved?
– when was it resolved?

= valuable information!
● Conflicts do not have to be immediately resolved

– Editor should visualize conflicts, though

– Modeler can continue working on non-conflicting parts of the model
● Conflict resolution happens by creating a follow-up snapshot that no longer contains a conflict (e.g. by

excluding one of the conflicting deltas)

 24/26

Conclusion

● Presented an approach for optimistic versioning that
supports blended modeling and reuse of concrete
syntax metamodels and editors

● “Just record everything” (and impose nothing) philosophy:
– record CS, AS, correspondence
– record changes
– record snapshots
– record conflicts

Sandbox, possibly for empirical study

 25/26

Future work

● Investigating types of inconsistencies that can occur, at level of:
– CS
– AS
– Correspondence

● Having multiple intermediate layers between CS and AS
– Motivation: reuse of certain CS features: e.g. geometric “insideness” is a feature of several visual languages

● Prototype web-based implementation of running example

 26/26

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

