

Hierarchical Megamodels for Model Management in Architecture-Centric Virtual Integration Development

Dominique Blouin

LTCI Lab, ACES Group

Telecom Paris, Institut Polytechnique de Paris, France

dominique.blouin@telecom-paris.fr

Hierarchical Megamodels

ACMoM Framework

Conclusion

Institut Mines-Télécom

V-Cycle Model with Virtual Integration Activities (Architecture-Centric Virtual Integration Process)

From McGregor, Gluch, and Feiler, "Analysis and Design of Safety-critical, Cyber-physical Systems", 2017.

Institut Mines-Télécom

AADL & SAVI (System Architecture Virtual Integration)

From Feiler, Hansson, de Niz and Wrage. "System Architecture Virtual Integration: An Industrial Case Study", 2009.

Inctitut	N /	linoc			$\sim \sim$	in r	л
IIISUUUI	IV	mies-	пe	ны			1
in louicat		111100		-	~~		

Joint Common Architecture Demonstration ACVIP Shadow Effort

"Also, translation and exchange of models among different languages (e.g., UML, SysML, AADL, MatLab/Simulink and SCADE) and tools needs to be worked to allow government, integrators, and component suppliers to communicate seamlessly."

From A. Boydston, P. Feiler, S. Vestal and B. Lewis, "Joint Common Architecture (JCA) Demonstration Architecture Centric Virtual Integration Process (ACVIP) Shadow Effort", 2015

Institut Mines-Télécom

Need for Model Management

Many models are employed:

- Joint Common Architecture Demonstration ACVIP Shadow Effort
- PST project with ReqIF, SysML, AADL, etc.

Information overlap between models

- Consistency
- Information preservation
- Multiple teams manipulate models concurrently
- Different technical spaces (Ecore, XML, code, doc, etc.)
- Support continuous virtual integration (PST project)

V-Cycle Model with Model Management **Activities**

Predictive Analysis

From H. Giese and D. Blouin, miGMM DFG Project Proposal, 2016

Institut Mines-Télécom

Needs for Model Management Framework

What are the employed models, languages and tools?

How are they related?

- Simple traceability?
- Batch transformations?
- Synchronization?

What is the development process

- Workflows
- Modeling activities and constraints

Change management

- What model can be changed?
- By who?
- When?

Multi-Paradigm Modeling (MPM)

MPM main principles:

- Model every part and aspect of a system explicitly
- At the most appropriate level(s) of abstraction
- Using the most appropriate modeling formalism(s)

■ → Model model management

Hierarchical Megamodels

ACMoM Project

Conclusion

Megamodeling

- "A megamodel is a model with other models as elements". "A megamodel contains relationships between models." (Bézivin, 2003 / 2007)
- "... the idea behind a megamodel is to define the set of entities and relations that are necessary to model some aspect about MDE". (Favre 2004 / 2005)

PhD Thesis of Andreas Siebel (2012) System Analysis and Modeling Group

Hasso-Plattner-Institut für Softwaresystemtechnik GmbH Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam

Fachgebiet für Systemanalyse und Modellierung

Traceability and Model Management with Executable and Dynamic Hierarchical Megamodels

Physical and Logical Levels in MDE Environment

Institut Mines-Télécom

Hierarchical Megamodels for Model Management in Architecture-Centric Virtual Integration Development

TELECOM Paris

-%

Configuration and Application Megamodels

Institut Mines-Télécom

Hierarchical Megamodels for Model Management in Architecture-Centric Virtual Integration Development

-%m

Configuration Megamodel Metamodel

ArtifactType: abstract representation of a physical artifact type

- e.g., metamodel or metamodel element
- RelationType: captures and abstractly represents any physical dependency type between physical artifact types
 - n-ary connection between artifact types

Example Relation Type between Artifact Types

Institut Mines-Télécom

Deployment MDA (D-MDA) Case Study: Reference Architecture

Institut Mines-Télécom

Deployment MDA (D-MDA) Case Study: Solution Architecture

TELECOM Paris

Deployment MDA (D-MDA) Case Study: IT Infrastructure

Institut Mines-Télécom

Hierarchical Configuration Megamodel for D-MDA Example

Relation types between metamodels artifact types

Bottom-up context composition of relation types

• Lower relation can only exist if upper one does

Hierarchical Configuration Megamodel for D-MDA Example

Top-down context composition of relation types

• Higher relation can only exist if one of the lower ones exist

Execution of Hierarchical Megamodels

Purposes:

- Maintain traceability
- Perform model transformations
- Synchronize models

Two execution strategies

- Batch:
 - Relations of the entire megamodel are executed for every change event

Incremental:

Only the relations concerned by the changes (and dependencies) are executed

Tools Adapters

TELECOM Paris

-%m

Hierarchical Megamodels

ACMoM Approach

Conclusion

Institut Mines-Télécom

ACMoM (Architecture-Centric Model Management)

Support ACVIP (Architecture-Centric Virtual Integration Process)

US Army funded project

Ongoing, still a lot to do…

Reuse the best of each approaches

- Start from HPI approach
- Add megamodel fragments
- Workflow (from FTG+PM)

Prototyping and Case Studies

Eclipse Modeling Framework

AADL and its tools

- OSATE
- RAMSES

Mixed-Criticality Scheduling with the MC-DAG Framework

- Model Refinement and Code Generation with RAMSES
- AADL ADL FACE Mapping

Example: FTG+PM for Power Window

Advantages:

Includes process

Disadvantages

- Only transformations are modeled
- No hierarchy
- Execution aspect not much developed

TELECOM

1 劣師

Mixed-Criticality Scheduling with the MC-DAG Framework

Horizontal transformation

Bi-directional transformation

Static scheduling properties valued in original model

Example of RAMSES Refinement Rule

AADL ←→Face Mapping

- Standardized mapping provided by Adventium Labs
 - Bi-directional

Information overlap but does not coincide

TELECOM Paris

三般間

Conclusion

Model management is essential

Several approaches already exist

- Based on best known approaches
- Prototyped in Eclipse for the different case studies
- Ongoing first implementation

Future work:

- Complete ACMoM prototype
 - Comparison / collaboration with Open Flexo?
- Model change management for collaborative engineering
 - Authoritative Source of Truth (ASoT)
 - Model synchronization capabilities with respect to information preservation of tools
 - Benchmark started

