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1. Initial purpose of the visit 
The STSM was intended for starting a cooperation based on fields of research represented 

by the Host, the Applicant and the IC1404 participants that can be brought together in order to 
improve threat-prevention approaches in complex networks. 
The research objectives of the mission were: 

 RO1: To define modelling standards for representing complex network structure including 
different types of relationships, multiple network layers and different types of entities and 
their characteristics important from the point of view of threat prevention. 
 

 RO2: To elaborate mathematical models of the spreading of threats in multiplex networks 
described using modelling standards resulting from RO1. The realization of this objective 
involved design and implementation of simulation methods as well as theoretical study of 
the dynamics of the studied phenomena. 
 

 RO3: To adapt one metaheuristic optimization method to using representations elaborated 
when realizing RO1 and understanding of the problem achieved when realizing RO2. 



2. Description of the work carried out during the STSM 
During the STSM a cooperation has been established between the Host (the BIFI team), the 

Applicant and the IC1404 participants. The work focused on problems that concern protection 
against a threat spreading in a multilayer network. In the context of CPSs a multilayer network can, 
for example, be a network of several different utilities in a smart city (power grid, 
telecommunications network, etc.) or a network of interconnected services or production facilities. 
The threat can be a computer virus, a technical or economical failure, delivery delay, etc. The 
spreading of the threat can be limited by protecting nodes of the network or links that connect them 
and an optimization algorithm is assigned a task of finding cost-effective ways of preventing the 
threat from spreading. 

From the research on complex systems (multilayer networks among others) it is known that 
certain parameters of the network, such as failure thresholds, probability of the spreading of the 
threat or the strength of the coupling between layers significantly influence the behaviour of the 
system. For example, it is not uncommon that with a small change of, let’s say, the probability of the 
spreading of the threat the system switches from easy to protect to very unstable and prone to 
failures. Such phenomena are known as phase transitions. Another studied phenomenon are 
occurrences of catastrophic failures, that is situations in which an initially small number of failed 
nodes grow rapidly and leads to the malfunctioning of all (or most of) the elements of the network. 

The work performed jointly by the Host and the Applicant focused on identifying 
phenomena occurring in multilayer networks (such as phase transitions and catastrophic failures) 
and their influence on optimization problems. The BIFI team started investigating methods for 
theoretical understanding of the spreading of a threat influenced by threat-preventing solutions 
found by an optimization algorithm. The work performed by the Applicant focused on experimental 
studies of various scenarios of threat prevention optimization in multilayer networks. 

In parallel, the cooperation between the Applicant and the participants of the IC1404 action 
has been established. The focus of this area of work was to determine applications in the area of 
Cyber Physical Systems which have a multilayer network structure (such as multilayer smart city 
infrastructure or complex service-oriented architectures). Resulting from these studies, a model was 
proposed which represents a multilayer CPS taking into account classes of objects, their attributes 
and behaviour that are important from the point of view of understanding the behaviour of the 
system as a complex network and for the optimization of threat-prevention actions. 

3. Description of the main results obtained 
This section summarizes the results obtained during the STSM. A more detailed description 

of the results is presented in Annex 1 later in this document. 
Based on the experience of the Applicant and the BIFI team, as well as a literature study, five 

optimization scenarios were defined which are applicable to multilayer networked CPSs and in 
which phenomena related to complex network structures can be observed. The optimization 
scenarios (described in more detail in Annex 1, section 2) were: 



 S1: The classical Firefighter Problem (FFP) in which a limited number of nodes Nf can be 
protected in each time step and the goal is to find the best sequence in which to protect 
nodes (maximizing the number of nodes saved). 

 S2: A multiobjective optimization scenario in which a trade-off is sought between number 
of protected and saved nodes. 

 S3: Optimization focused on decreasing the probabilities of the spreading of the threat 
between network nodes. 

 S4: Optimization focused on increasing resilience to the threat (failure thresholds) of nodes 
in the network. 

 S5: Increasing the delay before failure and decreasing recovery time in networks in which 
nodes can recover from failures. 

  
For selected optimization scenarios metaheuristic optimization methods were elaborated 

and implemented (thus realizing the research objective RO3).  In the experiments the following 
phenomena related to complex network structures were observed (see Annex 1, section 3 for 
details): 

1. In the optimization scenario S2 based on a two-layer network an abrupt increase in 
optimization problem difficulty was observed when probability of the spreading of the threat 
between layers Pcouple changed from 0 to a non-zero (positive) value. 

2. In the optimization scenario S1 a similar change in the quality of solutions has been observed 
around Pcouple = 0.0001 when the dependency between the number of nodes protected in 
each time step Nf and the best number of saved nodes found by the optimization algorithm 
changed from a linear to a nonlinear one. 

3. An abrupt change in the severity of cascading failures was observed in the model proposed 
by Burkholz et al. [BLGS15] between the values of the coupling strength parameter 10 = 0.4 
and 10 = 0.5 (at which catastrophic failure is likely to occur). 

 
In addition to the experimental work summarized above, a literature study was performed 

which, among others, suggests that in time-delayed networks the combination of multilayer 
structure and time-delayed propagation of the states can lead to a very complex dynamics 
[GKZJ16, SGJK15]. 

In parallel, we sought real-life examples of CPSs which have a multilayer network 
architecture and thus can be expected to experience the phenomena related to complex network 
structures described above. With the help of the IC1404 action participants the following scenarios 
were identified: 

1. Service based-systems oriented on service outsourcing [ENKP15] in which it is important to 
limit the effects of failures of individual services as well as prevent catastrophic failures. 

2. Process networks in which, for example, inventory planning can be optimized [GAWG16] thus 
lessening the effects of delivery delays. 



3. Virtual enterprises [NNMMM16] in which contract realization can be endangered by failures 
of peers in a collaboration networks to deliver required products or services. 

4. Infrastructure networks that are dependent on each other such as power grid and 
telecommunications [SW08], power grid and water supply network [DHW15]. Such 
infrastructure systems can get very complex. For example in the paper [RBJF15] a hierarchy 
of 31 networks is mentioned (6 air route networks, 2 energy networks, 13 rail networks, 5 
road networks, 4 river networks and 1 communication network). 

 
Based on the previously mentioned results a model was proposed which represents a 

multilayer CPS taking into account classes of objects, their attributes and behaviour that are 
important from the point of view of understanding the behaviour of the system as a complex 
network and for the optimization of threat-prevention actions (thus realizing the research objective 
RO1). This model is described in Annex 1, section 4. To facilitate collaboration on applying 
optimization methods in the context of multilayer CPSs some examples were prepared (see Annex 1, 
section 5) showing how to use the proposed model to represent a multilayer system in various 
scenarios. 

In order to realize the research objective RO2, a work was started with the BIFI team on 
mathematical modelling of multilayer networks discussed above currently focusing on discovering 
at what values of parameters (probabilities of spreading, couple strength, etc.) abrupt changes of the 
behaviour of the system can be expected. 

4. Future collaboration with the host institution (if applicable) 
At this point two areas of collaboration were identified. One is the development of 

mathematical models to help understand the behaviour of complex network systems with the intent 
to improve optimization methods. The other area is the collaboration with IC1404 participants on 
applications of the elaborated methods to networked CPSs, most likely in scenarios described in the 
previous section. This area of work includes solving real-life cases as well as further development of 
the proposed model and adaptation of optimization methods to the updated model. 

5. Foreseen publications/articles and other contributions 
The current work done in collaboration with the BIFI team and the IC1404 participants is 

expected to result in publications on improved optimization methods, models representing real-life 
CPSs cases as complex network systems and applications of optimization methods to threat-
prevention in these CPSs. 
 
  



Annex 1 – Results 
1. Overview 

The research carried out during the STSM focused on a scenario in which a CPS can be 
represented as a multilayer network [LMG15]. As shown in Fig. 1. such a system consists of two or 
more networks (in which connected nodes interact) with a coupling between the layers. A network 
structured in such a manner is easier to describe theoretically than a network with multiple 
connections of mixed types which allows, for example, drawing conclusions about the dynamics on 
the entire network by studying (a much simpler) network representing connections between layers 
each taken as a whole [SCM14].  

There are also numerous real-life examples of such networks, such as power grid and 
telecommunications [SW08], power grid and water supply network [DHW15]. In the paper [RBJF15] 
a hierarchy of 31 networks is mentioned (6 air route networks, 2 energy networks, 13 rail networks, 5 
road networks, 4 river networks and 1 communication network). 

 
Fig. 1. An ex ample of a multilayer network [LMG15]. Nodes in each layer are linked, and thus may interact (red and blue edges). There is also coupling between layers (thin black dashed lines). 

 
In the case of threat containment in such systems we assume that a threat is spreading in 

one or more layers which may also affect other layers due to the coupling between them. This threat 
can be a malfunction, a disease, a financial problem (e.g. a bankruptcy), etc. 

In the research described below it was assumed that we are interested in preventing the 
threat from spreading in the network. In the literature various actions are mentioned that can be 
taken to improve the resilience of the system. For example the paper [BD15] mentions increasing the 
capacity of selected links within layers, reducing the interdependencies between layers and 
increasing the capacity of the entire network. In the Firefighter Problem FFP [H95] it is assumed that 
the threat spreads in discrete time steps and in each time step it is possible to protect a limited 
number of nodes Nf. Depending on the problem formulation the goal is to protect the maximum 
number of nodes (in the original version of the problem) or to maximize multiple objectives 
calculated using several different values with which the worth of the nodes in determined [M14]. 



2. Optimization Scenarios 
The following scenarios were identified as interesting from the point of view of optimization 

research: 
S1: Classical Firefighter Problem (FFP) 

Assuming that a given number of nodes Nf can be protected in each time step, we are 
interested in determining which nodes to protect (and at what time step) to save as many nodes as 
possible. This optimization problem can be studied in a deterministic and non-deterministic variants 
depending on if the probability of spreading of the threat to adjacent nodes is Pspread = 1 
(deterministic) or Pspread < 1 (non-deterministic). 
S2: Trade-off between number of protected and saved nodes 

In this scenario we assume that we can protect as many nodes as we want, but each 
protected node incurs a given cost (for example a unit cost, that is, each protected node costs 1). We 
are interested in minimizing the cost of protection and maximizing the number of saved nodes. 
Similarly as in the previous scenario the problem can be deterministic (Pspread = 1) or non-deteministic 
(Pspread < 1). 
S3: Probabilities 

In every model which involves non-deterministic spreading of the threat, we can assume that 
the probability of the spreading of the threat can be decreased at a certain cost. The optimization 
problem is then to minimize the losses while also minimizing the costs of making the spreading of the 
threat less probable. 
S4: Thresholds 

The model described by Burkholz et al. [BLGS15] describes spreading of failures in a two-layer 
network in which a node can withstand the damaging influence of the failed neighbours up to a 
certain threshold. An easily seen target for optimization in this model is the height of the thresholds. 
In the economic setting described in the aforementioned paper, the interpretation is that companies 
can use various precautions to protect themselves, but, obviously, this incurs costs. This scenario 
may concern traditional companies as well as virtual enterprises [NNMMM16]. 
S5: Increasing the delay before failure, decreasing recovery time 

In a network in which nodes can resist the damaging influence from other nodes for a certain 
time we can assume that this capability can be increased by investing some resources (e.g. money) 
in selected nodes. An example of this approach can be the optimization of inventory in process 
networks [GAWG16]. Increasing inventory levels incurs costs, but protects, to a certain extent, from 
suppliers failing to provide needed materials or components. Thus, the overall systemic risk can be 
reduced at a certain cost. Similar issues arise in modular production environment [JBW08] where 
delays or failures in one component influence the others. Another area of applications could be 
virtual enterprises [NNMMM16]. In scenarios where nodes recover from failures the recovery time 
can be shortened, also at a cost. 



 

3. Phenomena in Multilayer Networks 
During the STSM several phenomena were studied that appear in multilayer networks 

and influence the quality of solutions obtained when optimizing resource allocation in the threat 
containment scenarios. One of the tasks that were undertaken in the STSM was to define common 
elements of the multilayer network description that can be used in modelling of a networked CPS 
and used for optimizing the system in order to increase its resilience to threats spreading in the 
multilayer network. The following points summarize the phenomena that were identified. 
 

3.1.  Influence of Coupling Strength 
Keeping the characteristic of each layer constant (the type of graph, parameters like density, 

threat spreading probability, etc.) it is interesting to see how the solutions of optimization problems 
change with the change of the strength of the coupling between layers. This strength can be defined 
in various ways, for example we can set the probability of the spreading of the threat between layers 
Pcouple [0, 1]. With this scenario in mind two series of experiments were performed. 
 
Quality of the solutions in multiobjective optimization 

In this experiment the optimization was performed using the NSGA-II algorithm [DPAM02] 
in the optimization scenario S2: minimizing the number of nodes requiring protection 
and maximizing the number of nodes saved at the end of the simulation. Experiments were 
performed for different values of the probability of the spreading of the threat between layers Pcouple 
and the probability of the spreading of the threat within each layer Pspread = 0.5. 

Quality of the solutions in multiobjective optimization was measured by calculating the 
hypervolume measure [ZTLF02] also known as the size of the objective space covered [ZT98] for a 
Pareto front of solutions generated by the optimization algorithm. For a given set of solutions P the 
hypervolume is the Lebesgue measure (area in R2, volume in R3, and the generalization of these 
concepts in Rm for m > 3) of the portion of objective space that is dominated by solutions in P 
collectively: 

 where: 
m - the dimensionality of the objective space, 
fi (·), i = 1, . . .m - the objective functions, 
r = (r1, . . . , rm) - a reference point, 
L(·) - the Lebesgue measure on Rm. 
 



The NSGA-II algorithm works iteratively, improving the solutions in consecutive generations. 
In Fig. 2 the quality of the solutions found by the optimization algorithm is shown. Each line 
represents the results obtained for a different value of the Pcouple parameter (the probability of 
spreading of the threat from one network layer to another). 
 

 
Fig. 2. The quality of the solutions found by the optimization algorithm depending on the value of the Pcouple parameter. 

 
Clearly, there is a difference between all scenarios in which Pcouple > 0 and the case in which 

Pcouple = 0. Even for the values as small as Pcouple = 0.005 the optimization problem is much harder than 
when Pcouple = 0 as evidenced by much lower hypervolume values. Experiments for Pcouple (0, 0.005) 
are currently ongoing with the aim of discovering what is the difficulty of the optimization problem 
between these values. Because of long running time of the simulations for small values of Pcouple the 
experiments, have not yet been finished as of the time of the writing of this document. 
 
Quality of the solutions in single-objective constrained optimization 

In another round of experiments the optimization was performed according to scenario S1, 
that is, with a preset value Nf of nodes that can be protected in each time step and the goal of 
maximizing the number of the nodes saved from the threat at the end of the simulation. These 



experiments were performed with Nf = 1, ..., 15 and the probability of the spreading of the threat 
within each layer Pspread = 0.5. 

In Fig. 3 the number of nodes that were saved in the best solution found versus the number 
of nodes requiring protection is plotted. Each line represents the results obtained for a different 
value of the Pcouple parameter (the probability of spreading of the threat from one network layer to 
another). Obviously, with the increasing value of the Pcouple parameter the problem becomes more 
difficult. However, also the characteristics of the relationship between the number of the protected 
nodes and the nodes that are saved from the threat changes. For larger values of the Pcouple 
parameter the relationship is approximately linear, while for smaller values of this parameter it is 
easy to save many nodes initially, but increasing the number of saved nodes requires a large increase 
of the parameter Nf. 
 

 
Fig. 3. The number of nodes that were saved in the best solution found versus the number of nodes requiring protection depending on the value of the Pcouple parameter. 

 
Conclusions 

From this set of experiments it can be seen that the strength of the coupling between 
network layers (here represented as the probability of the spreading of the threat Pcouple) has a 
significant effect on the quality of solutions of optimization problems related to containment of 
threats in a multilayer network. 



3.2.  Cascading failures 
Cascading failures are a phenomenon that is well known in the case of power grids [SSGH14] 

as well as hierarchical infrastructure networks [DHW15]. A cascading failure occurs when interactions 
between nodes in the network cause many more nodes to fail than the ones initially malfunctioning. 
The severity of the phenomenon depends on the strength of the interactions in the network. For 
example in the economic model proposed by Burkholz et al. [BLGS15] the nodes form two layers, 
each node has a threshold value assigned which determines how resistant it is to failure, and there is 
an asymmetric coupling between the layers. That is, there is a coupling with strength 01 = 1.0 from 
one layer to the other and a coupling with a value of 10 in the other direction (these parameters 
describe by how much the failure in one layer overloads the corresponding node in the other layer).  

The coupling parameter 10 has an important effect, because the characteristics of the 
spreading of failures in the network changes fundamentally depending on the value of the parameter 
10. For example in experiments performed on a graph with N = 1000 nodes and threshold values 
drawn uniformly from [0, 1] it could be observed that there is a change in the behaviour of the 
network between the values of 10 = 0.4 and 10 = 0.5. This is visible in Fig. 4 and Fig. 5. which show 
how the number of nodes that fail after the cascading failure stops spreading changes with the 
number of nodes that are in the failed state at the beginning of the simulation (for 10 = 0.4 and 
10 = 0.5). 

 10 = 0.4 
Fig. 4. The number of nodes that fail after the cascading failure stops spreading (vertical axis) versus the number of nodes that initially failed (horizontal axis) for 10 = 0.4. 



 

 10 = 0.5 

Fig. 5. The number of nodes that fail after the cascading failure stops spreading (vertical axis) versus the number of nodes that initially failed (horizontal axis) for 10 = 0.5. 
In Fig. 4. the value on the vertical axis (the number of nodes that fail after the cascading 

failure stops spreading) grows in smaller increases than in Fig. 5. Also, the line in Fig. 4. can be 
approximated by a convex curve (with the increases smaller and smaller as the value on the 
horizontal axis increases). In Fig. 5. on the other hand, the line contains a sudden “jump”. This 
corresponds to the change from 814 to 1944 nodes that fail because of the cascading failure when 
the number of initially failed nodes increases from 48 to 49. 

This is also visible when the maximum increase in the number of failed nodes is considered, 
that is, the difference of the number of failed nodes at the end of the simulation for any number n 
and n + 1 nodes initially failed (i.e. the largest jump in the Y value in Fig. 4. and Fig. 5. when the X 
value is increased by one). In Fig. 6 the average maximum increase obtained for 10 in the range [0, 1] 
(calculated over 30 repetitions of the test) is shown. 

Clearly, there is a change of the behaviour of the network between 0.3 and 0.6 with the 
largest difference between 10 = 0.4 and 10 = 0.5. In fact, the average value observed for 10 = 0.4 
is approximately 665.30, and the value observed for 10 = 0.5 is approximately 1308.57, which is 
almost twice the first value. 



 

 
Fig. 6. The average maximum increase in the number of nodes that fail after the cascading failure stops spreading when the number of nodes that initially failed is increased by one. 

 
Conclusions 

From this set of experiments it can be seen that the strength of the coupling between network 
layers (here represented as a parameter describing by how much the failure in one layer overloads 
the corresponding node in the other layer) has a significant effect on how large portion of the 
network is consumed by a cascading failure. 
 

3.3.  Temporal aspects 
Time-delayed networks are also studied in the area of complex systems research. The 

combination of multilayer structure and time-delayed propagation of the states can lead to a very 
complex dynamics [GKZJ16, SGJK15]. Thus, it can be expected that these aspects of the network 
model can also have a profound influence on the quality of results obtained by the optimizer. 

Also, especially in the study of epidemics a SIR (Susceptible, Infected, Recovered) model is often 
used which assumes that the entities in the network can recover back to the healthy state. 

These aspects of the network-based optimization have not yet been studied in depth, but it 
seems reasonable that the models used for representing a networked CPS should be able to 
represent this kind of information. 
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4. Modelling Multilayer Networked CPSs 
Based on the performed experiments, a literature study and the knowledge of the BIFI team, 

the following aspects of the networked CPS model seem to be important from the point of view of 
optimizing threat containment (see Fig. 7 and Fig. 8). 

 A multilayer structure of the network. This kind of structure is encountered in many real-life 
applications. For example in the paper [RBJF15] a hierarchy of 31 networks is mentioned 
(6 air route networks, 2 energy networks, 13 rail networks, 5 road networks, 4 river networks 
and 1 communication network). In our model this structure is represented using classes (see 
Fig. 7): 

Network:  A container for all other elements 
Layer:  Contains nodes 
Node:  Belongs to exactly one layer, may be an endpoint of any number of edges 

(including none, for an isolated node) 
Edge:  Connects exactly two nodes. Objects of this class are also used to 

represent coupling between layers, therefore they are not contained 
within Layer, but directly in the Network. 

 
 Representing the state of the nodes. In this model we assume that the state of a node is 

represented by an attribute State in the Node class. This attribute is of type NodeState which 
is an enum with two values: Healthy and Failed. In some optimization problems (e.g. the FFP) 
it is assumed that the node can also be in a Defended state, but in our model this fact is 
represented by the value of the CurrentThreshold attribute. 
 

 Optimizer requirements. To be able to optimize the network it is necessary to be able to 
change the parameters of the network and to calculate the costs incurred by these changes. 
To this end, we assume that in the model initial and current values of the parameters are 
kept, for example for the threshold determining the failure of the node two attributes are 
defined: InitialThreshold (the value before the optimization) and CurrentThreshold (the value 
set by the optimizer. Based on initial and current values of the parameters the cost of 
protecting the network is calculated using the CalculateNodeProtectionCost and 
CalculateEdgeProtectionCost methods in the subclasses of the (abstract) CostCalculator class. 
 

 The strength of the coupling between layers. This can be represented as the probability of 
the spreading of the threat between layers or as a parameter representing how badly a node 
in one layer becomes overloaded by the failure of another node in a different layer. These 
aspects are modelled as the values of the Strength and Pspread attributes of the Edge class (in 
those instances that connect nodes in different layers). 
 

 Probabilistic aspects of the spreading of the threat. In many cases the failure of a node 
cannot be predicted with certainty because of factors that are not possible to measure 
exactly (e.g. the wear of elements of a machinery). Therefore, it can be useful to assume, 
that the threat can spread from one node in the network to another with a certain 
probability Pspread (which, in general, can be anywhere in the range [0, 1]). The probabilistic 
spreading is modelled by the PSpread attribute of the Edge class. 



 
 The level of influence from the surrounding nodes. In simple models, such as the 

deterministic Firefighter Problem (FFP), the influence from other nodes has a 0-1 
characteristics (the node catches on fire when any neighbouring node is burning). However, 
in real life a node may be susceptible to failure only if the damaging influence from 
surrounding nodes is big enough. In the model proposed by Burkholz et al. [BLGS15] this is 
represented by thresholds which prevent nodes from failing if the influence of surrounding 
nodes is small. The level of influence is modelled by the Strength attribute of the Edge class. 
 

 Temporal aspects. Including delays between the overloading of a node and its failure and 
recovery times. As shown by the available literature these aspects can influence the network 
dynamics in a very complex way [GKZJ16, SGJK15]. Temporal aspects are modelled by the 
FailureDelay and RecoveryDelay attributes of the Node class. The ThresholdExceededTime 
attribute represents the simulation step in which the damaging influence of the surrounding 
nodes exceeded the CurrentThreshold value (from this time step CurrentFailureDelay 
timesteps must pass before the node switches to the Failed state). The FailedTime attribute 
represents the simulation step in which the node failed (from this time step 
CurrentRecoveryDelay time steps must pass before the node  switches to Healthy state). 
States of the nodes and the conditions for transitions between the states for this model are 
shown in Fig. 9. 
 

 
Fig. 7. Classes representing the network structure. 
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Fig. 8. Classes used for calculating the cost of a solution. 

 

 
Fig. 9. Transitions between the states of a node. CurrentTime is the number of the current simulation step, CurrentLoad is the total load exerted on the node by its neighbours. 

 
 

5. Examples 
In this section we describe how the proposed model can be used to represent various 

networked systems. 
 

5.1.  Classical Firefighter Problem (FFP) 
In the classical FFP the nodes in the graph can be burning, protected or untouched (neither 

burning nor protected). The fire spreads from the burning nodes to the adjacent, untouched ones. 
The goal is to save as many nodes as possible from fire, protecting no more than Nf nodes per a time 
step (see the optimization scenario S1). To model this situation we can use the proposed model with 
a network of as many layers as necessary. Note, that because the edges in the proposed models are 
directed and the graph in the classical FFP is undirected we need to add two Edge objects per each 
edge in the graph used in the FFP instance. The attributes of the objects are set as follows: 
 



Node 
State: Some of the nodes have their state set to Failed at the beginning of the simulation, and 
the remaining ones to Healthy. 
InitialFailureDelay, CurrentFailureDelay: set to 0 
InitialRecoveryDelay, CurrentRecoveryDelay: set to +∞ (the nodes never recover when 
burned) 
InitialThreshold: set to 0 
CurrentThreshold: initially set to 0 for all nodes, set to +∞ when a node gets protected 

 
Edge 

InitialPSpread, CurrentPSpread: set to the probability of the fire spreading Pspread (1.0 for the 
deterministic FFP) 
InitialStrength, CurrentStrength: set to 1 

 
FFPCostCalculator 
 CalculateNodeProtectionCost(): returns 0 if CurrentThreshold == 0, returns 1 otherwise 
 CalculateEdgeProtectionCost(): returns 0 for all edges 
 

5.2.  Burkholz model 
The model described by Burkholz et al. [BLGS15] describes spreading of failures in a two-layer 

network in which a node can withstand the damaging influence of the failed neighbours up to 
a certain threshold (see optimization scenario S4). 
To model this scenario we can set the attributes of the objects as follows: 
 
Node 

State: Some of the nodes have their state set to Failed at the beginning of the simulation,  
and the remaining ones to Healthy. 
InitialFailureDelay, CurrentFailureDelay: set to 0 
InitialRecoveryDelay, CurrentRecoveryDelay: set to +∞ (the nodes never recover when failed) 
InitialThreshold: set to any value in the range [0, 1] (depending how resistant to failure 
a given node initially is) 



CurrentThreshold: initially set to InitialThreshold, and set to any value from the range 
[InitialThreshold, 1] during optimization 

 
Edge 

InitialPSpread, CurrentPSpread: set to 1 
InitialStrength, CurrentStrength: set to 1 / deg(End), where deg() is the degree of the node 
End that is the end of the edge. 

 
BurkholzCostCalculator 
 CalculateNodeProtectionCost(): returns (CurrentThreshold - InitialThreshold) 
 CalculateEdgeProtectionCost(): returns 0 for all edges 
 
 

5.3.  Time-delayed failures 
In this case we assume that the failure of the node can be delayed for a certain number of 

time steps after the conditions for a failure have occurred. This can be achieved in production 
systems by optimizing the inventory [GAWG16] or in a two-layer CPS in which the bottom layer is the 
power grid by providing backup power supplies. The entire system can be described in the same way 
as in the Burkholz model described in the previous subsections (e.g. thresholds can be used to 
determine what number of neighbours have to fail, for a given node to fail), but the temporal 
parameters can be set in a different manner, for example: 
 
Node 

InitialFailureDelay: set to any number ≥ 0, depending on how long a given node can initially resist 
a failure (e.g. for how long stored supplies last) 
CurrentFailureDelay: initially set to InitialFailureDelay, and set to any value ≥ InitialFailureDelay 
during optimization, which represents to what value the failure delay was increased by investing 
more resources 

 
TimeDelayedCostCalculator 
 CalculateNodeProtectionCost(): returns (CurrentFailureDelay - InitialFailureDelay) 
 CalculateEdgeProtectionCost(): returns 0 for all edges 



6. Conclusions 
In this annex several phenomena are described which occur in multilayer networks and affect 

the problem of threat containment in networked CPSs. Also, several typical optimization scenarios 
for threat containment optimization are described. Based on these observations a model was 
proposed for describing the properties of a networked CPS in enough detail to perform threat 
containment optimization, taking into consideration multilayer network characteristics. Presented 
examples show how to apply the proposed model to various networked systems. 
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