STSM Report: Review and analysis of user profiles
and cost factors of modelling languages for CPS
development

Ankica BariSi¢
NOVA Laboratory for Computer Science and Informatics
Departamento de Informadtica, Faculdade de Ciéncias e Tecnologia,
Universidade Nova de Lisboa, Portugal
Email: a.barisic@campus.fct.unl.pt

I. PURPOSE OF THE VISIT

Short Term Scientific Mission (STSM), was carried out
in period of 2nd till 8th of September 2018 at Faculty of
Electrical Engineering and Computer Science in Maribor,
Slovenia, together with dr. Tomaz Kosar, in the context of
the MPM4CPS COST Action 1C1404.

This report contributes to WG4, and WGI, by reviewing
modelling languages and tools in the scope of modelling
of CPS, identifying cost factors involved in their use and
development, and presenting profile characteristics for users
of this tools.

Faced with the challenges associated with costs associated
to construction of modelling languages and tools, the difficulty
arises in the decision when to use them. Typically, Software
Engineering project managers need to take decisions of various
kinds in relation to the technologies they will use, such as
time spent, distribution of tasks, and human resources that are
needed. One of the major problems in project management
is the lack of information, or evidence, on the technology
that confirms the disadvantages, advantages, costs and risks
associated with its appropriate decision [7]. Due to the lack of
evidence, software engineers can make wrong decisions with
medium and long-term impact.

In the context of modelling languages and tools, a higher
initial investment is required which includes domain analysis
which helps to understand the context of the problem [10]. It
includes consultation with experts in the field and access to
individuals who are experts in language development.

II. RELATED WORK
A. Methods for Estimating Costs

Predicting the cost of a project development is a responsi-
bility of project managers. They often have to make difficult
decisions regarding to the effort and the time which are
required to complete a project [20]. Without having a cost
model this task becomes complicated, if not impossible to
perform with the greatest precision possible. It is necessary
to determine, among others, the time required and the number
of people who are needed for project development [1], [11].

Cost estimation methods are used for [4]:

e Budget: the overall accuracy of the estimation process is
the most desired quality;

o Trade-off and Risk Analysis: Determine project cost based
on decisions (e.g. choice of tools, reuse approaches,
among others);

e Project planning: An additional important capacity is
to provide a the cost estimate by component, phase or
activity;

o Analysis of investment in software improvements: esti-
mate the cost, as well as the benefits of various strategies
used such as the choice of tools, reuse and process
maturity.

In the case of modelling languages, it is necessary, for
example, to decide for how many people having a different
profile are needed to form the development team and how
many domain experts are required. These are the two factors,
which can greatly influence the success or failure of the
project.

There are different cost estimation methods and Boehm
discusses each of them [5]. No method is considered to be the
better, and it is recommended that several alternative methods
be used simultaneously. It is very important to understand their
advantages and disadvantages when the objective is to estimate
the development effort of a project.

III. DESCRIPTION OF WORK

We reviewed the initial deliverable from WG1, on “Frame-
work to Relate / Combine Modeling Languages and Tech-
niques”, and identified the tools which should be added to the
lists. Participants marked to which of existing languages team
is familiar. Modelling tools and languages are suggested to be
added to the list. The team selected the technologies from the
list and are willing to help in providing descriptions.

Following a principle of underground theory approach [8],
the STSM participant performed individual interviews with the
members of the team. The information which was collected
was the following:



1) What type of modelling languages or tools did team
develop?: e.g. Internal/external; /textual/hybrid/other

2) What is development environment/process?: e.g.
Planned/adhoc; Incremental/iterative; Domain analysis; Test-
ing/evaluation; Maintenance.

3) What was application domain and who were the users?:
e.g. what is profile of target users?

4) How do you calculate the cost?: e.g. in which phases;
the metrics that are taken into concern.

IV. RESULT
A. Modelling Languages

We identify that the following modelling languages and
tools could be added to the list of the tools provided by WG1:

1) MetaEdit+: is an environment for creating and using
Domain-Specific Modeling languages [?]. The research behind
the genesis of MetaEdit+ was carried out at the University of
Jyviskyld, as part of the MetaPHOR project. A metamodeling
and modeling tool, MetaEdit, had been created by the earlier
SYTI project in the late 1980s and early 1990s, in co-operation
with a company, MetaCase.

2) ANT-LR: (ANother Tool for Language Recognition) is a
powerful parser generator for reading, processing, executing,
or translating structured text or binary files. It’s widely used
to build languages, tools, and frameworks. From a grammar,
ANTLR generates a parser that can build and walk parse trees
[19].

3) Sequencer: The purpose of the Sequencer was to enable
the easier construction of measurement procedures inside
the measurement system DEWESoft. The main goal of the
Sequencer is to push the development of the application from
using DCOM objects to a specialized tool that enables domain
experts to develop measurement sequences efficiently in a
simple manner, without the need of support from program-
ming engineers. Sequences was developed on top of GME
and provide editors in a textual or visual mode, which are
customized for application development in the measurement
domain [13], [12].

4) Python: The Python (https://www.python.org/) is an
interpreted high-level programming language for general-
purpose programming. Created by Guido van Rossum and
first released in 1991, Python has a design philosophy that
emphasizes code readability, notably using significant whites-
pace. It provides constructs that enable clear programming
on both small and large scales. Python features a dynamic
type system and automatic memory management. It supports
multiple programming paradigms, including object-oriented,
imperative, functional and procedural, and has a large and
comprehensive standard library.

5) Lab View: LabVIEW is systems engineering software
for applications that require test, measurement, and control
with rapid access to hardware and data insights [3]. The
programming paradigm used in LabVIEW, sometimes called
G, is based on data availability. LabVIEW integrates the
creation of user interfaces (termed front panels) into the de-
velopment cycle. LabVIEW programs-subroutines are termed

virtual instruments (VIs). Each VI has three components: a
block diagram, a front panel, and a connector panel. The last is
used to represent the VI in the block diagrams of other, calling
VIs. The front panel is built using controls and indicators.
Controls are inputs: they allow a user to supply information
to the VI. Indicators are outputs: they indicate, or display, the
results based on the inputs given to the VI. The back panel,
which is a block diagram, contains the graphical source code.
All of the objects placed on the front panel will appear on
the back panel as terminals. The back panel also contains
structures and functions which perform operations on controls
and supply data to indicators. The structures and functions
are found on the Functions palette and can be placed on the
back panel. Collectively controls, indicators, structures, and
functions are referred to as nodes. Nodes are connected to one
another using wires, e.g., two controls and an indicator can be
wired to the addition function so that the indicator displays
the sum of the two controls. Thus a virtual instrument can
be run as either a program, with the front panel serving as
a user interface, or, when dropped as a node onto the block
diagram, the front panel defines the inputs and outputs for the
node through the connector panel. This implies each VI can
be easily tested before being embedded as a subroutine into a
larger program.

6) NOED-RED: is a programming tool for wiring together
hardware devices, APIs and online services in new and inter-
esting ways (https://nodered.org/docs/writing-functions) . It is
a model that lends itself very well to a visual representation
and makes it more accessible to a wider range of users. If
someone can break down a problem into discrete steps they
can look at a flow and get a sense of what it is doing; without
having to understand the individual lines of code within each
node. Node-RED consists of a Node.js-based runtime that you
point a web browser at to access the flow editor. Within the
browser you create your application by dragging nodes from
your palette into a workspace and start to wire them together.
With a single click, the application is deployed back to the
runtime where it is run. The palette of nodes can be easily
extended by installing new nodes created by the community
and the flows you create can be easily shared as JSON files.

7) Hardware description Language (VHDL): [18] is a
specialized computer language used to describe the structure
and behavior of electronic circuits, and most commonly, digital
logic circuits. A hardware description language enables a
precise, formal description of an electronic circuit that allows
for the automated analysis and simulation of an electronic
circuit. It also allows for the synthesis of a HDL description
into a netlist (a specification of physical electronic components
and how they are connected together), which can then be
placed and routed to produce the set of masks used to
create an integrated circuit. A hardware description language
looks much like a programming language such as C; it is a
textual description consisting of expressions, statements and
control structures. One important difference between most
programming languages and HDLs is that HDLs explicitly
include the notion of time.



B. Costs

During our interview sessions we identify the following
costs as most influencing for development of modelling lan-
guages and tools:

1) Choice of Modelling environment: The proper choice
of the tool to model a CPS can influence the time spent on
completing a software project. This is due, essentially, the
features that a tool can offer, but it also depends on the time
it is necessary to learn how to model.

According to a comparison of the effort required to imple-
ment a given modelling language or tool [21], it is obvious
that modelling environment may have an influence on the time
taken to develop a modelling language. It is observed that the
development of a modeling language using the GMF tool, can
take up to twenty-four days more to finish in relation to the
use of the MetaEdit+ tool.

2) Evolution of modelling languages and tools: The evo-
Iution of modelling languages and tools is an important
problem, there are articles that discuss it [6], [23]. However,
The evolution phase seems to be relatively neglected by the
community, since in the mapping study [14], only 9 primary
studies, in 361 possible studies, mentioned maintenance phase.
In addition to these problems, poor development practices can
also be a hindrance [10]. If the concepts of language are
very specific, this makes it difficult for the learners to use it
(either for use or for development) and, consequently, makes it
difficult to maintain them. Given this, due to the several factors
stated above, the maintenance of a modelling languages can
become a serious and time-consuming problem [16].

3) Learning time: Learning time is dependent on several
factors. These include the type of task to be performed and the
difficulty experienced by the person moment of realization. In
the case of language, there should be at least one person who
knows the language in order to facilitate learning of individuals
who later come to work with language.

The learning time is directly related to the learning capacity
of a human being, which may differ from person to person.
This cost can be reduced if language documentation is avail-
able, we can neglect the cost of producing Documentation for
modelling languages and tools. What should be documented,
for example, would be the structure and syntax of the language
and how to use editors and transformers [22].

4) Validation: This cost reflects the validation of language,
reading and analysis of the data model, as well as its learn-
ing. Typically, validation software is always a difficult and
time-consuming process depending on the complexity of the
software system.

There are several techniques that can be used to validate
the software (eg validation of the model) [17]. In the context
of CPS, for example, domain experts can validate the model,
that is, whether it meets the needs identified by stakeholders.
Usability refers to the ease of use and acceptability of stake-
holders through specific tasks [9]. Usability assessment is a
very important factor for a stakeholder. Typically, the usability
assessment is done through empirical methods [2], [15].

V. FUTURE COLLABORATION

The list of suggested modelling languages and tools will be
provided to the participants of WG1, and after revision added
to the ontology provided by the group members.

Based on the provided model of the costs, we plan to
obtain more interviews regarding the costs of development of
modelling tools.

REFERENCES
[1

—

Amit Agrawal, Vaibhav Jain, and Mohsin Sheikh. Quantitative esti-

mation of cost drivers for intermediate COCOMO towards traditional

and cloud based software development. In Proceedings of the Ninth

Annual ACM India Conference on - ACM COMPUTE 16. Association

for Computing Machinery (ACM), 2016.

Ankica Bari§i¢, Vasco Amaral, and Miguel Gouldo. Usability Driven

DSL development with USE-ME. Computer Languages, Systems and

Structures (ComLan), ISBN 1477-, 2017.

Rick Bitter, Taqi Mohiuddin, and Matt Nawrocki. LabVIEW: Advanced

programming techniques. Crc Press, 2006.

[4] Barry Boehm, Chris Abts, and Sunita Chulani. Software development

cost estimation approaches — a survey. Annals of Software Engineering,

10(1):177-205, 2000.

Barry W. Boehm. Software Engineering Economics. Prentice Hall, 1

edition, 11 1981.

[6] Arie Van Deursen and Paul Klint. Little languages: Little maintenance?

Journal of Software Maintenance: Research and Practice, 10(2):75-92,

1998.

T. Dyba, B.A. Kitchenham, and M. Jorgensen. Evidence-based software

engineering for practitioners. IEEE Softw., 22(1):58-65, jan 2005.

Catarina Gralha, Daniela Damian, Anthony I. (Tony) Wasserman, Miguel

Gouldo, and Jodo Aratjo. The evolution of requirements practices in

software startups. In Proceedings of the 40th International Conference

on Software Engineering, ICSE *18, pages 823-833, New York, NY,

USA, 2018. ACM.

Andreas Holzinger. Usability engineering methods for software devel-

opers. Communications of the ACM, 48(1):71-74, 2005.

[10] Steven Kelly and Risto Pohjonen. Worst practices for domain-specific
modeling. IEEE Software, 26(4):22-29, 2009.

[11] B Kitchenham and NR Taylor. Software cost models. ICL technical
Journal, 4(1):73-102, 1984.

[12] Tomaz Kos, Tomaz Kosar, Jure Knez, and Marjan Mernik. Improving
end-user productivity in measurement systems with a domain-specific
(modeling) language sequencer. In ADBIS (Local Proceedings), pages
61-76. Citeseer, 2010.

[13] Tomaz Kos, Tomaz Kosar, Jure Knez, and Marjan Mernik. From dcom
interfaces to domain-specific modeling language: A case study on the
sequencer. Computer Science and Information Systems, 8(2):361-378,
2011.

[14] Tomaz Kosar, Sudev Bohra, and Marjan Mernik. Domain-Specific
Languages: A Systematic Mapping Study. Information and Software
Technology, 71:77-91, March 2016.

[15] Deborah J Mayhew. The usability engineering lifecycle. In CHI’99
Extended Abstracts on Human Factors in Computing Systems, pages
147-148. ACM, 1999.

[16] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and How to
Develop Domain-specific Languages. ACM Comput. Surv., 37(4):316—
344, December 2005.

[17] Glenford J. Myers, Corey Sandler, and Tom Badgett. The Art of Software
Testing. Wiley, 3 edition, 11 2011.

[18] Zainalabedin Navabi. VHDL: Analysis and modeling of digital systems.
McGraw-Hill, Inc., 1997.

[19] Terence J. Parr and Russell W. Quong. Antlr: A predicated-11 (k) parser
generator. Software: Practice and Experience, 25(7):789-810, 1995.

[20] M. Shepperd and C. Schofield. Estimating software project effort using
analogies. IEEE Transactions on Software Engineering, 23(11):736-743,
1997.

[21] Juha-Pekka Tolvanen and Steven Kelly. Model-driven development

challenges and solutions - experiences with domain-specific modelling in

industry. In Proceedings of the 4th International Conference on Model-

Driven Engineering and Software Development. Scitepress, 2016.

2

—

3

=

[5

[ty

[7

—

[8

[9

—



[22]

[23]

Markus Voelter, Christian Dietrich, Birgit Engelmann, Mats Helander,
Lennart Kats, Eelco Visser, and Wachsmuth. DSL Engineering: Design-
ing, Implementing and Using Domain-Specific Languages. CreateSpace
Independent Publishing Platform, 2013.

Claes Wohlin, Per Runeson, Martin Host, Magnus C. Ohlsson, Bjorn
Regnell, and Anders Wesslén. Experimentation in Software Engineering.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.



