
Short Term Scientific Report COST IC1404

April 26, 2018

Title of the STSM: A Survey and Benchmark for Hybrid Co-simulation Working
Group: WG2 (Techniques)
Beneficiary: Cláudio Gomes
Host: Aarhus University
Period: 18/03/2018 - 26/03/2018
Reference Code: 40960
1. Initial purpose of the visit We plan to survey hybrid co-simulation techni-
ques, focusing on how time is handled, how events are detected, and the ter-
minology used. To evaluate the multiple approaches, we intend to develop a
benchmark case study, borrowing from the industrial experience of the partners
of the INTO-CPS Project. Furthermore, we will use a taxonomy created in the
context of a previous STSM to classify the new approaches.
2. Description of the work carried out during the STSM

We found an interesting benchmark, and applied model checking techniques
to prove that one of the well known synchronization algorithms is wrong. Out
of the 6 tasks identified in the planning phase, we realized 5. The benchmark
will be made available online if the submitted workshop paper is accepted.
3. Description of the main results obtained

We submitted a workshop paper with the main results of this research, and
we have other potential benchmarks to study.
4. Future collaboration with the host institution

The collaboration is ongoing, we one of the participants in the STSM (Casper
Thule) is doing a PhD in this topic.
5. Foreseen publications/articles and other contributions

A workshop paper has been submitted (see the appendix). We intend to
write a conference paper with an extension of this work.
6. Confirmation by the host institution

A Submitted Workshop Paper

1

Towards the Verification of
Hybrid Co-simulation Algorithms?

Casper Thule1(�), Cláudio Gomes26, Julien Deantoni3, Peter Gorm Larsen1,
Jörg Brauer4, and Hans Vangheluwe256

1 Aarhus University, Denmark
{casper.thule,pgl}@eng.au.dk

2 University of Antwerp, Belgium
{claudio.gomes,hans.vangheluwe}@uantwerp.be

3 Polytech Nice Sophia, France
julien.deantoni@polytech.unice.fr

4 Verified Systems International GmbH, Germany
brauer@verified.de

5 McGill University, Canada
6 Flanders Make, Belgium

Abstract. Engineering modern, hybrid systems is getting increasingly
difficult due to the heterogeneity between different subsystems. Modeling
and simulation techniques have traditionally been used to tackle com-
plexity, but with increasing heterogeneity of the subsystems, it becomes
impossible to find appropriate modeling languages and tools to specify
and analyze the system as a whole. Co-simulation is a technique to com-
bine multiple models and their simulators in order to analyze the beha-
vior of the whole system over time. Past research, however, has shown
that the näıve combination of simulators can easily lead to incorrect
simulation results, especially when co-simulating hybrid systems. This
paper shows (i) how co-simulation of a family of hybrid systems can
fail to reproduce the events that should have occurred (event preserva-
tion); (ii) how to prove that a co-simulation algorithm is correct (w.r.t.
event preservation), and if it is incorrect, how to obtain a counterexam-
ple showing how the co-simulation goes wrong; and (iii) how to correct
an incorrect co-simulation algorithm. We apply the above method to two
well known co-simulation algorithms, and we show that one of them is
incorrect for the family of hybrid systems under study.

Keywords: hybrid co-simulation, hybrid systems, model checking

? This work was started in the CAMPaM 2017 Workshop, executed under the frame-
work of the COST Action IC1404 – Multi-Paradigm Modelling for Cyber-Physical
Systems (MPM4CPS), and partially supported by: Flanders Make vzw, the strate-
gic research centre for the manufacturing industry; and PhD fellowship grants from
the Agency for Innovation by Science and Technology in Flanders (IWT, dossier
151067).

1 Introduction

Engineered systems are becoming increasingly complex while market pressures
shorten the available development time [24]. There are many causes for increase
in complexity, but to some extent, it is caused by the number of interacting
subsystems and differences between their domains [30], which is not sufficiently
addressed by the established techniques. There is thus a need for an improved
development cycle, with better tools, techniques, and methodologies [31]. While
modeling and simulation has been successfully applied to reduce development
costs, these fall short in fostering more integrated development processes [5].

A promising concept for the simulation of systems consisting of decoupled
components is co-simulation (collaborative simulation) [23], which is based on
the idea that the interacting subsystems of a coupled system are best modelled
and simulated by dedicated tools and formalisms [32]. Each subsystem is then
modelled by a specialized team using mature tools, tailored to the domain of the
allocated subsystem. Further, each subsystem internally uses its own simulation
engine, so that the most appropriate approximation techniques can be employed.
The behavior of the coupled system is computed by having the simulation tools
communicate with one another, exchanging their outputs over time.

Co-simulation foments a more integrated development process by allowing
different teams to observe how their subsystem behaves when coupled to the rest
of the system, while reusing the work made by the other teams. Furthermore,
it improves the relationship between external suppliers and system integrators,
where the system integrators can use virtual surrogates of the subsystems pro-
duced by the suppliers, to test their adequacy. With the appropriate Intellectual
Property protection in place, these virtual surrogates can even be developed by
the supplier, for increased validity.

In order to run a co-simulation, all that is required is that the participating
simulation tools expose the inputs and expose the outputs, of the allocated
subsystem, over time. A co-simulation engine then synchronizes the interface
values of the different subsystems. This powerful approach eases the integration
of subsystems simulated by different tools, also but also poses some difficulties.
In particular, subsystems are modelled and treated as black boxes, and it is
difficult in some cases to understand how the coordination of the subsystems—a
functionality provided by the co-simulation engine—affects the behavior of the
co-simulated system [19].

One might be tempted to expect that the behavior computed via co-simulation
matches the behavior of the coupled system. In practice, however, this expecta-
tion turns out overly optimistic, and significant deviations may become visible,
which could, for example, be caused by discretization or timings. This not only
due to the inherent limitations of approximate simulations [10], but also due
to the internals of the subsystem simulations. It is therefore important to study
how a faulty co-simulation can be distinguished from a correct one. We approach
this problem by defining a set of properties, which need to be satisfied by the
co-simulated system if they are satisfied by the ideal system. If co-simulation

preserves these properties, we then say that the properties of the system are
preserved under co-simulation.

One of the fundamental research topics in co-simulation is to decide whether
a given property is preserved under co-simulation, which naturally leads to the
connected problem: If co-simulation fails to preserve a property, how can the co-
simulation be changed, so that the property is preserved? This paper contributes
to this line of research as follows:

– We identify a novel property called event preservation property, which is
often implicitly required to be preserved by co-simulations of systems that
combine software with physical subsystems.

– We present a characterization of the event preservation property as a model
checking problem so as to automatically decide whether a given co-simulation
satisfies the event synchronic property for a restricted class of coupled sys-
tems.

– We show how, if the event preservation property is not preserved under co-
simulation, the co-simulation coordination algorithm can be adapted in order
to preserve event preservation.

One of the strengths of our approach is that, when a property is violated,
our approach yields a counterexample that includes a co-simulation scenario
and an execution trace of the co-simulation. It is difficult to overestimate the
value of counterexamples produced by model checkers [11], and also in our work
counterexamples provide valuable insight into how the co-simulation violates the
event preservation property. The Maestro orchestration algorithm [29] serves as
a case study for our approach.

The remainder of this paper is structured as follows. First, Section 2 discusses
the related work, followed by a primer on co-simulation and co-simulation pro-
perties in Section 2.1. Afterwards, in Section 3, the event preservation property
is demonstrated and described along with an encoding of the problem as a model
checking instance. Finally, the paper presents a discussion and perspective on
future work (Section 4) before concluding in ??.

2 Property Preservation in Co-simulation

In this section, we present some background concepts, and review some of the
works focusing on specific properties that co-simulation should preserve. We refer
the reader to [18], and references thereof, for an introduction to co-simulation.

2.1 Background Concepts

A co-simulation is the behavior trace of a coupled system, produced by the
coordination of simulation units. The behavior trace is a set of points over time.
A simulation unit is an executable software entity responsible for simulating
a part of the system. Furthermore, a simulation unit implements a predefined
interface, allowing an orchestrator, described below, to communicate with it.

One such communication interface is the Functional Mockup Interface (FMI)
standard [6]. A simulation unit implementing the FMI interface is called a Functi-
onal Mock-up Unit (FMU). The main functionality of an FMU concerns calcu-
lating outputs based on inputs and time. This is represented in FMI as three
functions: a function to set inputs, a function to perform a step with a given
step size, and a function to get outputs.

An orchestrator is a software component that sets/gets inputs/outputs of
each simulation unit, and ask them to compute the behavior trace of its allocated
subsystem over a requested time interval. From a co-simulation step to the next,
the orchestrator follows the co-simulation scenario to know the order in which
it asks each simulation unit to simulate and where to copy their outputs. A co-
simulation scenario is a description of how the subsystems are interconnected.
When asked to simulate for an interval of time, a simulation unit will typically
perform multiple micro-steps, and employ an input approximation technique to
compute the behavior trace of its subsystem. Figures 1a to 1c summarize these
concepts.

Simulation

Unit

ABS

Controller

Simulation

Unit

Car

Orchestrator

ABS

Controller
Car

(a) Co-simulation archi-
tecture.

Legend:
Data transfer

Simulation Step

1.

2.

3.
4.

Sim. Unit. A

Sim. Unit. B

(b) Jacobi orchestration algorithm.

Inputs

State

Outputs

extrapolation

co-sim step

micro-step

(c) Behavior trace
computed by a si-
mulation unit.

Fig. 1: Co-simulation main concepts.

There are three main orchestration algorithms: Jacobi, Gauss-Seidel, and
Strong-coupling. The Jacobi co-simulation algorithm proceeds by asking all si-
mulators to produce outputs, then it computes and sets the inputs that all si-
mulators need. Afterwards, it asks all simulators to simulate their corresponding
subsystem until the next communication time point, after which the process re-
peats. The Gauss-Seidel algorithm assigns an order to each simulator, and, in
that order, computes the inputs of the simulator, then asks the same simulator
to simulate to the next time point, obtains its output, and uses that output to
compute the input to the next simulator. These steps are repeated until all simu-
lators have simulated until the next time point, and then the process starts over

again. The strong coupling algorithm implements one of the above algorithms,
except that it asks the simulators to rollback to a previous time point, and uses
the most recently computed outputs as new inputs to these simulators, before
asking them to simulate again. The essence of these algorithms, applied to two
simulation units, is illustrated in Figures 1b and 2.

Sim. Unit. A

Legend:
Data transfer

Simulation Step

1.
2.

3.

Sim. Unit. B

(a) Gauss-seidel.

Legend:
Data transfer

Simulation Step

2.

1.

Sim. Unit. A

Sim. Unit. B

(b) Strong coupling.

Fig. 2: Coupling algorithms.

2.2 Stability

A coupled system is stable when it eventually comes to a rest. Since many
systems are engineered to be stable [3], it is important that this property is
preserved under co-simulation. The works in [9,27,22,1,16] study the conditions
under which the stability property is conserved for selected physical coupled
systems.

The main conclusions regarding stability preservation in co-simulation are:
strong coupling algorithms are more likely to preserve the property; and sequen-
tial co-simulation algorithms should start the iteration with the simulation unit
that have higher inertia [1].

2.3 Energy Conservation

Systems whose models account for the flow of energy follow the principle of con-
servation of energy. That is, no energy is lost when flowing between subsystems.

This property is not preserved in naive co-simulation algorithms because
of the input approximations, and the non-negligible communication step size.
The work in [4], extended in [26], demonstrates a co-simulation algorithm that
monitors the power flow between simulators and employs a correction scheme
to account for the artificial energy introduced by the co-simulation. The work
in [25] complements the above work by showing how the energy residual can be
used as an error indicator to control the communication step size.

2.4 Event Synchrony

A co-simulation preserves event synchrony when any event happening at a spe-
cific time in the original hybrid system is also reproduced by the co-simulation
at the same time. A hybrid system is a system comprising software and physi-
cal subsystems. This is one of the properties studied in [14], in the context of
co-simulations involving two simulation units: one responsible for the software
subsystem, and the other for a continuous subsystem.

In order to enable an easier comparison of event timestamps, [12] proposes
the use integers, instead of floating point numbers, to represent time. The same
work proposes changes to the FMI Standard, so that orchestration algorithms
that guarantee event synchrony can be built.

The correct handling of events is paramount to the preservation of the energy
and stability properties in a co-simulation. As such, the work in [15] relates these
by exploring how the energy of a hybrid system can be increased when state
events are not accurately reproduced by the co-simulation. It presents a way to
find the maximum event detection delay so that the stability is preserved in the
co-simulation.

3 Verification of Master Algorithms

The previous section introduced multiple properties that should be preserved in
a co-simulation. In particular, it introduced the event synchrony property. This
property states that every event happening in a hybrid system, happens at the
exact same time in the corresponding co-simulation.

In order to preserve this property, because the exact time of the event is often
difficult to predict, the orchestration algorithm only detects the event after it
occurs, and then restores the simulation to a prior state (where the event has
not yet happened) and proceeds with more caution. This is repeated until the
time of the event is known with sufficiently high accuracy [33].

In practice, due to the lack of rollback capabilities and/or performance con-
straints, it might be hard to guarantee that this property is preserved. Instead,
it might be more useful to just require that the sequence of events is preserved,
even if their timestamps do not coincide exactly. One can see the preservation
of this property as the preservation of the untimed behavior of the software
subsystem.

3.1 Hybrid System under Study

In this work, we focus on a restricted class of hybrid systems, in order to study
one essential challenge encountered while attempting the preserve this property
on event synchrony. The system under study is illustrated in Figure 3. It consists
of a software part, and a physical part. The software part is represented as
Statechart [20], and the physical part is represented by a differential equation.

Software Physical

S0 S1

S2

S3

[after(0.01s)]/e1

[after(0.04s)]

[e1]/e2

Legend:

Subsystem

State

[guard]/out-event

Fig. 3: Hybrid systems under study.

The software part is representative of a control systems that has a timeout
mechanism, triggered whenever the continuous plant fails to react to some sti-
muli. The details of the dynamics of the physical subsystem are not important.
What is important is that its output is a delayed function of the input, so that
any change in the input is reflected on the output 0.01s later.

An execution of the software subsystem is plotted in Figure 4. At time 0.01s,
the output event e1 is produced. This event affects the output of the physical
system 0.01s later, which is picked up by the software unit, causing it to change
to S2.

S
ta

te

Time (s)

S0

S1

S2

[e1]/e2[after(0.01s)]/e1

Fig. 4: Sample execution of the system in Figure 3. Produced with Open Modelica
[13].

For the purposes of co-simulating the above system using the FMI Standard,
suppose that the physical subsystem is decomposed into N > 1 FMUs, connected
sequentially, as shown in Figure 5. The Software FMU implements the simulation
of the software subsystem, in Figure 3. FMU 1 is responsible for the dynamics

of the physical subsystem in the same figure, and the other FMUs are identity
functions and referred to as propagate FMUs.

Software FMU u

y

FMU 1 FMU 2 ... FMU N

Fig. 5: Co-Simulation Scenario.

Using the Jacobi orchestration algorithm, introduced in Section 2.1 and sum-
marized in Figure 1b, to co-simulate the scenario in Figure 5, with N = 3 and
co-simulation step size H = 0.01, leads to the software execution trace depicted
in Figure 6. The events produced in this trace are the same as the ones in the
correct execution in Figure 4, but their timestamps are different. Event e1 is
produced at time 0.02s instead of 0.01s, and detected later at time 0.06s, instead
of 0.02s.

[after(0.01s)]/e1 [e1]/e2

S
ta

te

Time (s)

S0

S1

S2

Fig. 6: Co-simulation using the Jacobi algorithm of the scenario in Figure 5.
Parameters: N = 3,H = 0.01. Produced with Maestro from INTO-CPS [29].

The extra delay in the events is a well known feature of Jacobi based co-
simulation. It is also well known that the smaller the communication step size
H, the smaller the delay introduced. What this example illustrates is that the size
of the co-simulation scenario also plays a role in the delay introduced. In fact,
by adding more propagate FMUs to the example scenario, we get a qualitatively
different software execution trace, as shown in Figure 7, where the final state
of the software subsystem is S3, instead of S2. The excessive delay, accidentally
introduced by the Jacobi algorithm, caused the software timeout to be triggered.

[after(0.01s)]/e1 [after(0.04s)]

S
ta

te

Time (s)

S0

S1

S3

S2

Fig. 7: Co-simulation using the Jacobi algorithm of the scenario in Figure 5.
Parameters: N = 6,H = 0.01. Produced with Maestro from INTO-CPS [29].

In general one would like to have co-simulations that either do not introduce
an artificial delay, or that, at least, introduce a delay that preserves the sequence
of events. In the following subsections we use model checking to formally study
the preservation of this property for the hybrid system shown in Figure 3, with
a variable structure co-simulation scenario illustrated in Figure 5. In the experi-
ments the co-simulation step size is kept the same, although it is straightforward
to take its variation into account.

3.2 Model Checking the Jacobi Algorithm

We use the ProMeLa [21] notation to model the FMUs, and the orchestration
algorithm. The Promela language uses a textual syntax to describe parallel and
sequential processes, communication channels, and non-determinism.

The Promela model follows closely the co-simulation scenario sketched in Fi-
gure 5. The communication between the orchestration algorithm and the FMU’s
is made via three channels: one to set inputs, one to set outputs, and one to
perform a co-simulation step. These channels are detailed in Listing 1.1. The in
and step channels are read by the FMU, while the out channel is read by the
orchestration algorithm.

Listing 1.1: Channels

1 mtype:events = {e0, e1};
2 typedef channels {
3 chan in = [0] of {mtype:events};
4 chan out = [0] of {mtype:events};
5 chan step = [0] of {int};
6 }

The FMU corresponding to the software subsystem is modelled in ProMeLa
by implementing the reaction to events in the channels in and step. When an

event is present in channel in, it is just stored in an interval variable. When
an event is present in channel step, the FMU just follows the state machine of
the software subsystem, taking into account that the time is represented as an
integer and the communication step size is 0.01s. Listing 1.2 presents this model.

Listing 1.2: Statechart FMU

1 proctype stateFMU(channels chans) {
2 int t_time = 0;
3 mtype:events input;
4 do
5 :: chans.step ? t_time ->
6 if
7 /* if state is 0 and 2 time units have passed, then change the state to 1 and

↪→ output an event. */
8 :: (state == 0) ->
9 if

10 :: (t_time == 1) ->
11 state=1;
12 chans.out ! e1; /* e1 is the output that we are interested in receiving

↪→ again */
13 :: else -> chans.out ! e0;
14 fi;
15
16 /* If the state is 1 and 4 time units have passed, then change to state 3 */
17 :: (state == 1) ->
18 if
19 :: t_time == 4 & input != e1 -> state = 3;
20 :: input == e1 -> state = 2;
21 :: else -> skip;
22 fi;
23 chans.out ! e0;
24 :: (state == 2) -> chans.out ! e1;
25 :: else -> chans.out ! e0;
26 fi;
27 :: chans.in ? input
28 :: (terminate == 1) -> break;
29 od;
30 }

The other FMUs are abstractions of the physical subsystem, containing only
the behavior that is of interest to verify this property. We are interested in the
propagation of any change in the input. As such, the FMU model shown in
Listing 1.3 just stores and outputs whatever input it receives.

Listing 1.3: Propagate FMU

1 proctype propFMU(channels chans){
2 mtype:events inp;
3 int t_time = 0;
4 do
5 :: chans.in ? inp
6 :: chans.step ? t_time -> chans.out ! inp;
7 :: (terminate == 1) -> break;
8 od;
9 }

The Jacobi master algorithm essentially sends events through the in chan-
nel of each FMU, asks the FMU to step via the step channel, and stores the
output events at the out channels. The non-deterministic aspect of this model
is encoded in the choice of the number of propagate FMUs that can be added to

the scenario. The number of FMUs (maxN) is limited to 10, as it is enough to
prove this property. The implementation is shown in Listing 1.4.

Listing 1.4: The Jacobi Master Algorithm in ProMeLa

1 proctype MAJacobi(){
2 int propagateCount;
3 select (propagateCount : 1 .. (maxN-1));
4 int FMUCount = propagateCount + 1;
5
6 channels fmuChannels[maxN];
7 mtype:events inputs[maxN];
8
9 smpid = run stateFMU(fmuChannels[0]);

10
11 int i;
12 for(i : 1 .. propagateCount){
13 run propFMU(fmuChannels[i]);
14 }
15
16 do
17 :: time < endTime ->
18 /* Step the FMUs */
19 for(i : 0 .. FMUCount-1){
20 fmuChannels[i].step ! time+1;
21 }
22
23 /* Retrieve the outputs */
24 for(i : 0 .. FMUCount-1){
25 fmuChannels[i].out ? inputs[(i + 1) % (FMUCount)];
26 }
27
28 /* Set inputs */
29 for(i : 0 .. FMUCount-1){
30 fmuChannels[i].in ! inputs[i]
31 }
32
33 time++;
34 :: else ->
35 terminate = 1;
36 break;
37 od;
38 }

The event preservation property can be encoded in this model as a reacha-
bility property: the Statechart FMU eventually reaches S2. This is shown in
Listing 1.5. The state variable is global, and is set as part of the execution of
the FMU in Listing 1.2.

Listing 1.5: Eventually Correct LTL formula.

1 ltl eventuallyCorrect { <> (state == 2)}

Using SPIN to carry out the verification of this property, applied to Lis-
ting 1.4, quickly shows that it cannot be verified. The error trail provides a
counter example execution, by showing that S3 is reached when there are three
propagate FMUs. Informally, the error trail is the following: At step 1 (0.1ms),
e1 is outputted from the Statechart FMU. At step 2 (0.2ms) it is outputted
from the following propagate FMU. At step 3 it is outputted from the second
propagate FMU. Finally, at step 4 it is outputted from the last propagate FMU
but this is the same time as the Software FMU transitions to S3. Therefore, the
Statechart FMU never reaches S2.

3.3 Model Checking the Gauss-Seidel Algorithm

The Gauss-seidel orchestration algorithm is introduced in Section 2.1 and illus-
trated in Figure 2a. The main difference between this algorithm and the Jacobi
is in the timestamp of the outputs and inputs provided to the simulation units.
From the perspective of a simulation unit, the Gauss-seidel provides future in-
puts to the unit, before asking it to compute a co-simulation step. This allows
the unit to react to the inputs without any delay [17]. Its implementation is
detailed in Listing 1.6.

Listing 1.6: The Gauss-Seidel Master Algorithm in ProMeLa

1 proctype MAGauss(){
2 int propagateCount;
3 select (propagateCount : 1 .. (maxN-1));
4 int FMUCount = propagateCount + 1;
5
6 channels fmuChannels[maxN];
7 mtype:events inputs[maxN];
8
9 run stateFMU(fmuChannels[0]);

10
11 int i;
12 for(i : 1 .. FMUCount-1){
13 run propFMU(fmuChannels[i]);
14 }
15
16 do
17 :: time < endTime ->
18 for(i : 0 .. FMUCount-1){
19 /* Step the FMU */
20 fmuChannels[i].step ! time + 1;
21
22 /* Retrieve the output */
23 fmuChannels[i].out ? inputs[(i + 1) % FMUCount];
24
25 /* Set the input */
26 fmuChannels[(i + 1) % FMUCount].in ! inputs[(i + 1) % FMUCount]
27 }
28 time++;
29 :: else ->
30 terminate = 1;
31 break;
32 od;
33 }

Verifying Listing 1.6 with the LTL formula in Listing 1.5 shows that the
Gauss-seidel algorithm correctly preserves the execution sequence of the events.

4 Discussion and Future Work

In this paper we show how a co-simulation of a hybrid system can be incorrect
and we sketch a potential solution that respects the black box nature of co-
simulation.

The correctness property we used is a weak form of event synchrony: the
order of events happening in the software subsystem is preserved, but their time
stamp can change. Two orchestration algorithms have been used to study the

property: The Jacobi and the Gauss-Seidel. It is shown that the Jacobi algorithm
does not preserve it, in general making it unsuitable for hybrid co-simulation.

Albeit a very simple example, the hybrid system used in the previous section
is meant to prove that a co-simulation algorithm is wrong. It can be used to
prove that a co-simulation algorithm is correct but the family of hybrid systems it
represents is so narrow that the utility of this result is negligible. In the future, we
intend to use the non-determinism in the construction of more complex software
and physical subsystems. That way, we can increase the usefulness of a positive
result. Additionally, we intend to explore how to deal with black box simulation
units, so that a conservative abstraction can be built for these.

What our work proves is that in order to safely use the Jacobi algorithm, some
knowledge is required about the FMU’s. In particular, in black box co-simulation,
we hypothesize that knowing the shortest timeout of each software FMU, and
knowing the input-to-output propagation time of each FMU, is enough to deter-
mine which communication step size can be used in order to ensure the preser-
vation of the event sequence. To see how the step size H can be computed, let
T denote the smallest timeout used in the software FMU, and P(H) denote the
largest propagation time from any output to itself, for the communication step
size H. For the Jacobi algorithm and the scenario in Figure 5, P(H) = H×(N +1).
Then the communication step size must be chosen so that P(H) < T .

If the above hypothesis turns out to be correct, then this means that the
Jacobi algorithm can still be used in black box co-simulations, since the shortest
timeout time does not expose the Intellectual Property of the subsystems.

The above reasoning is common in research on black box co-simulation (e.g.,
exposing the Jacobian [28], exposing the I/O feedthrough [2], exposing the
maximum allowed step size [7]). First, researchers find an example whose co-
simulation is wrong. Then they pin-point the minimum information that needs
to be exposed in order to have a correct co-simulation, or, at least, to detect the
problem.

The FMI webpage7 contains a list of tools capable of performing co-simulation,
and in order to be on this list, a tool must pass some tests. These tests, however,
are limited – for example they only concern simulation of a single FMU, and not
an actual co-simulation. In the long term, this research aims at producing a set
of benchmarks, for various correctness properties, that can be used by the rese-
arch community in the development of co-simulation tools. This idea is inspired
by the work of [8], which defined the building blocks of these benchmarks.

References

1. Arnold, M.: Stability of Sequential Modular Time Integration Methods for Coupled
Multibody System Models. Journal of Computational and Nonlinear Dynamics
5(3), 9 (may 2010)

2. Arnold, M., Clauß, C., Schierz, T.: Error Analysis and Error Estimates for Co-
simulation in FMI for Model Exchange and Co-Simulation v2.0. In: Schöps, S., Bar-

7 http://fmi-standard.org/

http://fmi-standard.org/

tel, A., Günther, M., ter Maten, W.E.J., Müller, C.P. (eds.) Progress in Differential-
Algebraic Equations. pp. 107–125. Springer Berlin Heidelberg, Berlin, Heidelberg
(2014)

3. Aström, K.J., Wittenmark, B.: Computer-controlled systems: theory and design.
Courier Corporation (2011)

4. Benedikt, M., Watzenig, D., Zehetner, J., Hofer, A.: NEPCE-A Nearly Energy
Preserving Coupling Element for Weak-coupled Problems and Co-simulation. In:
IV International Conference on Computational Methods for Coupled Problems in
Science and Engineering, Coupled Problems. pp. 1–12. Ibiza, Spain (jun 2013)

5. Blochwitz, T., Otter, M., Arnold, M., Bausch, C., Clauss, C., Elmqvist, H., Jung-
hanns, A., Mauss, J., Monteiro, M., Neidhold, T., Neumerkel, D., Olsson, H., Peetz,
J.V., Wolf, S.: The Functional Mockup Interface for Tool independent Exchange of
Simulation Models. In: 8th International Modelica Conference. pp. 105–114. Link-
öping University Electronic Press; Linköpings universitet, Dresden, Germany (jun
2011)

6. Blockwitz, T., Otter, M., Akesson, J., Arnold, M., Clauss, C., Elmqvist, H., Frie-
drich, M., Junghanns, A., Mauss, J., Neumerkel, D., Olsson, H., Viel, A.: Functional
Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation
Models. In: 9th International Modelica Conference. pp. 173–184. Linköping Uni-
versity Electronic Press, Munich, Germany (nov 2012)

7. Broman, D., Brooks, C., Greenberg, L., Lee, E.A., Masin, M., Tripakis, S., Wet-
ter, M.: Determinate composition of FMUs for co-simulation. In: Eleventh ACM
International Conference on Embedded Software. p. Article No. 2. IEEE Press
Piscataway, NJ, USA, Montreal, Quebec, Canada (2013)

8. Broman, D., Greenberg, L., Lee, E.A., Masin, M., Tripakis, S., Wetter, M.: Requi-
rements for Hybrid Cosimulation Standards. In: 18th International Conference on
Hybrid Systems: Computation and Control. pp. 179–188. HSCC ’15, ACM New
York, NY, USA, Seattle, Washington (2015)

9. Busch, M.: Continuous approximation techniques for co-simulation methods: Ana-
lysis of numerical stability and local error. ZAMM - Journal of Applied Mathema-
tics and Mechanics 96(9), 1061–1081 (sep 2016)

10. Cellier, F.E., Kofman, E.: Continuous System Simulation. Springer Science & Bu-
siness Media (2006)

11. Clarke, E.M., Veith, H.: In: Verification: Theory and Practice, Essays Dedicated to
Zohar Manna on the Occasion of His 64th Birthday. Lecture Notes in Computer
Science, vol. 2772, pp. 208–224. Springer (2003)

12. Cremona, F., Lohstroh, M., Broman, D., Lee, E.A., Masin, M., Tripakis, S.: Hybrid
co-simulation: it’s about time. Software & Systems Modeling (nov 2017), http:
//link.springer.com/10.1007/s10270-017-0633-6

13. Fritzson, P., Aronsson, P., Pop, A., Lundvall, H., Nystrom, K., Saldamli, L., Bro-
man, D., Sandholm, A.: Openmodelica - a free open-source environment for system
modeling, simulation, and teaching. In: 2006 IEEE Conference on Computer Aided
Control System Design, 2006 IEEE International Conference on Control Applica-
tions, 2006 IEEE International Symposium on Intelligent Control. pp. 1588–1595
(Oct 2006)

14. Gheorghe, L., Bouchhima, F., Nicolescu, G., Boucheneb, H.: A Formalization of
Global Simulation Models for Continuous/Discrete Systems. In: Summer Computer
Simulation Conference. pp. 559–566. SCSC ’07, Society for Computer Simulation
International San Diego, CA, USA, San Diego, CA, USA (jul 2007)

http://link.springer.com/10.1007/s10270-017-0633-6
http://link.springer.com/10.1007/s10270-017-0633-6

15. Gomes, C., Karalis, P., Navarro-López, E.M., Vangheluwe, H.: Approximated
Stability Analysis of Bi-modal Hybrid Co-simulation Scenarios. In: 1st Works-
hop on Formal Co-Simulation of Cyber-Physical Systems. pp. 345–360. Sprin-
ger, Cham, Trento, Italy (2018), http://link.springer.com/10.1007/
978-3-319-74781-1{_}24

16. Gomes, C., Legat, B., Jungers, R.M., Vangheluwe, H.: Stable Adaptive Co-
simulation : A Switched Systems Approach. In: IUTAM Symposium on Co-
Simulation and Solver Coupling. p. to appear. No. 1, Darmstadt, Germany (2017)

17. Gomes, C., Meyers, B., Denil, J., Thule, C., Lausdahl, K., Vangheluwe, H., De
Meulenaere, P.: Semantic Adaptation for FMI Co-simulation with Hierarchical Si-
mulators. SIMULATION pp. 1—-29 (2018)

18. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation:
State of the art. Tech. rep. (feb 2017), http://arxiv.org/abs/1702.00686

19. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation:
a Survey. ACM Computing Surveys pp. accepted, to appear. (2018)

20. Harel, D.: Statecharts: a visual formalism for complex systems. Science of Compu-
ter Programming 8(3), 231–274 (jun 1987)

21. Holzmann, G.: The model checker SPIN. IEEE Transactions on Software Engineer-
ing 23(5), 279–295 (may 1997), http://ieeexplore.ieee.org/document/
588521/

22. Kalmar-Nagy, T., Stanciulescu, I.: Can complex systems really be simulated? Ap-
plied Mathematics and Computation 227, 199–211 (jan 2014)

23. Kübler, R., Schiehlen, W.: Modular Simulation in Multibody System Dynamics.
Multibody System Dynamics 4(2-3), 107–127 (aug 2000)

24. Lee, E.A.: Cyber Physical Systems: Design Challenges. In: 11th IEEE International
Symposium on Object Oriented Real-Time Distributed Computing (ISORC). pp.
363–369 (2008)

25. Sadjina, S., Kyllingstad, L.T., Skjong, S., Pedersen, E.: Energy conservation and
power bonds in co-simulations: non-iterative adaptive step size control and error
estimation. Engineering with Computers 33(3), 607–620 (jul 2017)

26. Sadjina, S., Pedersen, E.: Energy Conservation and Coupling Error Reduction in
Non-Iterative Co-Simulations. Tech. rep. (jun 2016), http://arxiv.org/abs/
1606.05168

27. Schweizer, B., Li, P., Lu, D.: Explicit and Implicit Cosimulation Methods: Stability
and Convergence Analysis for Different Solver Coupling Approaches. Journal of
Computational and Nonlinear Dynamics 10(5), 051007 (sep 2015)

28. Sicklinger, S., Belsky, V., Engelmann, B., Elmqvist, H., Olsson, H., Wüchner, R.,
Bletzinger, K.U.: Interface Jacobian-based Co-Simulation. International Journal
for Numerical Methods in Engineering 98(6), 418–444 (may 2014)

29. Thule, C., Lausdahl, K., Larsen, P.G., Meisl, G.: Maestro: The into-cps co-
simulation orchestration engine (2018), submitted to Simulation Modelling Practice
and Theory

30. Tomiyama, T., D’Amelio, V., Urbanic, J., ElMaraghy, W.: Complexity of Multi-
Disciplinary Design. CIRP Annals - Manufacturing Technology 56(1), 185–188
(2007)

31. Van der Auweraer, H., Anthonis, J., De Bruyne, S., Leuridan, J.: Virtual engineer-
ing at work: the challenges for designing mechatronic products. Engineering with
Computers 29(3), 389–408 (2013)

32. Vangheluwe, H., De Lara, J., Mosterman, P.J.: An introduction to multi-paradigm
modelling and simulation. In: AI, Simulation and Planning in High Autonomy
Systems. pp. 9–20. SCS (2002)

http://link.springer.com/10.1007/978-3-319-74781-1{_}24
http://ieeexplore.ieee.org/document/588521/
http://arxiv.org/abs/1702.00686
http://arxiv.org/abs/1606.05168
http://link.springer.com/10.1007/978-3-319-74781-1{_}24
http://ieeexplore.ieee.org/document/588521/
http://arxiv.org/abs/1606.05168

33. Zhang, F., Yeddanapudi, M., Mosterman, P.J.: Zero-Crossing Location and De-
tection Algorithms For Hybrid System Simulation. In: IFAC Proceedings Vo-
lumes. vol. 41, pp. 7967–7972. Elsevier Ltd, Seoul, Korea (jul 2008), http:
//linkinghub.elsevier.com/retrieve/pii/S1474667016402296

http://linkinghub.elsevier.com/retrieve/pii/S1474667016402296
http://linkinghub.elsevier.com/retrieve/pii/S1474667016402296

	Submitted Workshop Paper
	Towards the Verification of Hybrid Co-simulation Algorithms

