
Model-Driven UI Engineering and Workflow Design
Patterns

-A Literature Review

Addis Gebremichael

addis.gebremichael@student.ua.ac.be

Abstract

Front-end design includes expressing user interaction control-flow behaviour and
data-flow of content in user interfaces of software applications. The emergence
of an unprecedented mix of devices, technological platforms, and communica-
tion channels is not accompanied by novel approaches for creating a platform
independent model (PIM). PIM is used to express interaction design decisions
independently of implementation platform. This literature review, thereby, in-
troduces the Interaction Flow Modeling Language (IFML), a standard front-end
modeling language adopted by the Object Management Group (OMG) and em-
ploys a model-driven UI engineering paradigm. For a broader perspective of such
UI modeling, this literature review essentially conducts a comparative study of
the IFML with similar modeling languages in support of workflow design pat-
terns used in the development of process-driven applications. The comparative
study is also well supported with an experimental analysis by providing an
IFML model representation for a BPMN model and a UML 2.0 Activity Dia-
gram. In addition, the IFML is also experimentally evaluated for the support of
UI modelling that are timed, autonomous, reactive and with dynamic structure.

Keywords: Front-end modeling, Interactive applications, Workflow systems,
design patterns, process-driven application, Model-driven Engineering.

1. Introduction

The ubiquitous use of software applications, in business information systems,
consumer applications, and even human-machine interfaces for industrial con-
trol, is driving powerful interaction functionalities implemented on a variety of
technologies and multiple platforms. In addition, front-end design is a complex
task where many requirements, perspectives, and disciplines intersect: graphic
design and aesthetics, interaction design, usability, multi-screen support, offline-
online usage, integration with back-end business logic and data, and coherence
with the enterprise organization models (e.g., business process compliance)[1].
Thereby, front-end development continues to be an inefficient and costly process,
where continuous reworking and refinement of its implementation is imposed by

Preprint submitted to Nuclear Physics B September 4, 2017



the intersection of many complex factors, such as the ease to maintain and
adapt, to keep up with constantly changing system requirements. Moreover,
the emergence of enormous mix of devices, technological platforms, and com-
munication channels is not accompanied by progressive approaches for creating
a Platform Independent Model (PIM) that can be used to express the interaction
design decisions independently of the implementation platforms, thus offering
several benefits [1]:

• It allows for an explicit representation of the different perspectives of the
UI such as structure and content of the interface, interaction and navi-
gation options, and connection with the business logic and presentation
style.

• It raises the abstraction level of frond end specifications to avoid issues
addressed at the implementation level.

• It enhances team work in a development process by allowing the alloca-
tion of interaction requirement specifications and their implementation to
different roles in a team.

• It provides easy communication mechanism to non-technical stakeholders,
facilitating early validation of requirements.

• Given the proper tool support, it allows for model checking, not only
for the correct usage of the modeling constructs but also for desirable
properties of the portrayed interface such as uniformity of the interaction
style and usability of the interface.

In this context, the role of a PIM - level interaction modeling language is to
provide a stable set of concepts that can be used to characterize the essential
aspect of the user’s interaction with a software application interface: the provi-
sion of stimuli, the capturing and processing of such stimuli by the application
logic, and the update of the interface based on such processing [1]. However,
the PIM should be designed for change in such a way that the stable set of
concepts -capturing the essential interaction aspects- should be accompanied
by an extension mechanism suitable for new forms of interactions and interface
renditions such as, for example, gestural stimuli and rendition on 3D devices
respectively.
Additionally, common features incorporated in interactive UI modeling include
the support for special features such as:

• Timed Events: something must happen after x time unit;

• Autonomous: it can trigger events and handle them autonomously;

• Reactive: it can react to external events, such as a user;

• Multiple Object Instantiation: the same object, with some designed be-
havior, can be instantiated multiple times with each preserving its own
state;

2



• Dynamic Structure: objects can be created by the model at run-time, e.g.
a new icon can appear by clicking on the canvas.

• Model Execution: models should not just be conceptual, analyzable mod-
els. Thus, it should be possible that UI components capturing an action
or task can execute actual code, possibly by code generation.

In light of addressing the aforementioned issues, the OMG adopted the IFML as
a standard for front-end modeling. IFML supports the specification of the front
end of applications independently of the technological details of their realization,
as discussed further in the subsequent sections. Moreover, workflow patterns
provide design patterns specifically addressing recurrent problems and proven
solutions related to the development of process-oriented applications [2]. These
collection of patterns, such as control flow and data flow patterns, are clearly an
integral part of a standard UI modeling formalism including the IFML. Hence,
IFML like modeling languages such as Business Process Modeling Notations
(BPMN), Activity Diagrams (AD), and ConcurTaskTrees (CTT), may provide
a relative importance for such an interactive systems modeling approach. This
is because an important characteristic of many process-flow/workflow models
is their interactive aspect involving users’ interaction flow with the underlying
system in support of the process-driven application, and tasks/activities execu-
tion flow including their respective data flow. This paper, thereby, compares
and evaluates the IFML with the previously mentioned three formalisms in con-
sideration of the design patterns provided by workflow systems.
The next section gives a brief overview of the four formalisms followed by a
discussion on a comparative criteria, indicating a set of evalutation criteria by
which an assessment of the formalisms can be made. The subsequent section
provides a thorough analysis which formulates the strength and weaknesses char-
acterized by the used standard modeling languages. Finally, an experimental
task and its findings, in light of further assessment of the comparative study, is
presented followed by a conclusion to the literature review addressing the appro-
priateness of IFML to the task of UI modeling- in the context of a model-driven
engineering paradigm.

2. Modeling Languages

In this section, for brevity purpose, a short overview about the used stan-
dards of modeling languages is provided. The basic structure, design principles,
and commonly used applications or specializations of the formalisms are being
introduced.

2.1. Business Process Modeling Notations- BPMN

The Business Process Modeling Notation (BPMN) is a standard notation,
developed by Object Management Group (OMG)[3], for capturing business pro-
cesses, especially at the level of domain analysis and high-level systems design
[4]. The intent of BPMN is to standardize the business process design notation

3



and covers a variety of different modeling techniques which allows the creation
of end-to-end business processes.
The control-flow perspective (modeling the ordering of activities) is often the
backbone of a process model[5]. However, other perspectives such as the re-
source perspective (modeling roles, organizational units, authorizations, etc.),
the data perspective (modeling decisions, data creation, forms, etc.), the time
perspective (modeling durations, deadlines, etc.), and the function perspective
(describing activities and related applications) are also essential for comprehen-
sive process models[5]. BPMN constructs capture these different process mod-
eling perspectives. In addition, BPMN provides businesses with the capability
of understanding their internal business procedures in a graphical notation and
will give organizations the ability to communicate these procedures in a stan-
dard manner.
Another factor that drove the development of BPMN was the need to create a
bridge from the business-oriented process modeling notation to IT-oriented exe-
cution languages. Hence, this was achieved by mapping BPMN process models
on to the Business Process Execution Language (BPEL), i.e. a standard for
defining business processes at the implementation level [4]. BPMN process
models are composed of: (i) activity nodes, denoting business events or items of
work performed by humans or by software applications; and (ii) control nodes
capturing the flow of control between activities. Activity nodes and control
nodes can be connected by means of a flow relation in almost arbitrary ways
[6]. Figure 1 shows the basic elements of BPMN.

Flowhobjects Connectinghobjects Swimlanes Artifacts

Events

Activities

Gateways

Sequencehflow

Messagehflow

Association

Pool

Lanesh]withhahpool)

Datahobject

Texthannotation

Name
[state]

Figure 1: Overview of BPMN elements

Business process modeling is used to communicate a wide variety of information
to different audiences, however, mostly suitable to design business processes at
the level of business information. There are two basic types of models that can

4



be created with a BPMN:

• Collaborative (Public) B2B Processes: depicts the interactions between
two or more business entities. The diagrams for these types of processes
are generally from a global point of view, i.e. they do not take the view
of any particular participant, but show the interactions which depict a
sequence of activities and the message exchange patterns (message flows
with dashed lines) between the participants indicated via pool constructs,
as shown in figure 2. Hence, the actual (internal) processes are likely to
have more activities and detail than what is shown in the collaborative
B2B processes.

Send doctor
request

Receive
Appt.

Send 
symptoms

Receive
prescription
pickup

Send
medicine 
request

Receive
medicine

Receive
doctor
request

Send Appt. Receive 
symptoms

Send
prescription
pickup

Receive
medicine
request

Send
medicine

illness
occurs

D
oc

to
r's

 O
ffi

ce
P

at
ie

nt
 

Figure 2: An Example of a Collaborative B2B Process

• An Internal (Private) Business Processes: generally focus on the point of
view of a single business organization. Although internal processes often
show interactions with external participants, they define the activities
that are not generally visible to the public and are, therefore, private
activities[6].

Moreover, BPMN is designed to cover many types of modeling and allows the
creation of process segments as well as end-to-end business processes, at dif-
ferent levels of precision.The modeling of business processes often starts with
capturing high-level activities and then drilling down to lower levels of detail
within separate diagrams. There may be multiple levels of diagrams, depending
on the methodology used for model development. Figure 3 shows an example
of a simple business process model at a lower-level precision which encapsulates
the ”process credit card” activity as a sub-process. However, this sub-process
can then be modeled differently showing the details (internal processes) at a
higher-level of precision.

2.2. Activity Diagrams- AD

The activity diagram is one of the compositions of OMG’s Unified Modeling
Languages (UML). Activity diagram is basically a flow chart to represent the

5



Identifyb
Payment
Method

Acceptb
cashborb
check

Process
creditb
card

Prepareb
packagebforb
customer

Checkborbcash

Creditbcard

Payment
method?

Abstartbevent Abtask

Absequencebflow

Abgatwwayb
"Decision"

Absubprocessb

Anbendbevent

Figure 3: A simple BPMN model with basic constructs.

flow from one activity to another activity describing the dynamic aspect of a
system. Activity is a particular operation of a system. Thus, the purpose of
the activity diagram is to model the procedural flow of actions that are part of
a larger activity.
In UML 2.0 AD the fundamental unit of behaviour specification is Action. An
action takes a set of inputs and converts them to a set of outputs, though either
or both sets may be empty[7]. Actions may also modify the state of the system.
There are three types of actions as follows:

• Invocation Actions: used for performing operation calls, signal sending
and accept event actions;

• Read and Write Actions: used for accessing and modifying objects and
their values;

• Computation Actions: for transforming input values into output values.

Although the language provides further a very detailed action types, here we
focus on the basic ones as it will be out of the scope of this paper. These are,
as shown in figure 4a, the generic Action concept, Accept Event Action, Send
Signal Action, and Call Behavior Action. Furthermore, the concept of Activity
is used to present the overall behaviour of a system. Activities are composed
of actions and/or other activities and they define dependencies between their
elements. With respect to their visual concrete syntax, they are composed of
nodes and edges. The edges, used for connecting the nodes, define the sequential
order among them. Nodes represent either Actions, Activities, Data Objects, or
Control Nodes. The various types of control nodes are shown in figure 4b.
Besides modeling the procedural flow of control for various activities, one main
reason to include activity diagrams in an overall system model is that they
model the data carried by most control flows, which is similar to BPMNs but
with better semantics and expressive power. In ADs it is possible to describe
the data passing in and out of an activity in either of two ways [8]. The first one

6



Action/Activity

CallBehavior1Action

SendSignal

AcceptSignal

Inital1Node

Decision

ActivityFinal FlowFinal

Fork JoinMerge
[Condition11]

[Condition1n]

a-1Actions b-1Control1nodes

Figure 4: Activity diagram modeling elements

is by using Object Nodes, as the simplest method of describing the informa-
tion flowing between activities. An object node is like a variable in a program.
It represents something that stores one or more values that are passing from
one action to another. Another way to describe data flow in ADs is by using
an Output Pin and an Input Pin which enables to separately describe the
outputs from one action and the inputs to another. Pins are like parameters in
a program. Pins represent ports where objects can enter and leave an action.
Hence, the significance of this sort of model is that it allows modelers to get a
better understanding of the data aspect that could possibly influence the con-
trol flow of activities. Figure 5 shows the concrete syntax for data flows in ADs:
UML 1.5 notation (left), and in alternative equivalent UML 2.0 notations (all
others), including attached data flow, and pin notations (third and fourth).
Because it models procedural flow, the activity diagram, which is also a vari-

Type Type

(expr)
[guard]

Type

Type

Type

(expr)
[guard]

(expr)
[guard]

(expr)
[guard]

(expr)
[guard]

(expr)
[guard]

Figure 5: Data flow in Activity Diagrams

ation of statechart diagrams, focuses on the action sequence of execution and
the conditions that trigger or guard those actions. It is possible to use Post-
conditions and Pre-conditions properties to specify in detail the outcome of an
action. These properties describe the effect of the action without describing how
the effect is achieved. Moreover, similar to BPMNs which enable a high-level
precision model as discussed in the previous section, ADs also describe the de-

7



tailed behavior of sub-activities with ”Call Behavior Actions”, using a separate
activity diagram. A called behavior is an activity diagram that is represented
on the main activity diagram by a Call Behavior Action as illustrated in the
figure 6. Moreover, unlike BPMNs, the activity diagram is also focused only on

Choose 
menu

Choose 
menu item

Confirm
order

act Confirm Order

Provide payment
detail

Provide shipping
details

Figure 6: Describing Sub-Activities with Call Behavior Actions in ADs

the activity’s internal actions, which is more suitable for the design of complex
system behaviors, and not on the actions that call the activity in their process
flow or that trigger the activity according to some event, for example.

Thus, activity diagrams are more suitable to:

• describe a business process or a flow of work between users and a system.

• describe the steps performed in a particular use case. In projects in which
use cases are present, activity diagrams can model a specific use case at a
more detailed level. However, activity diagrams can be used independently
of use cases for modeling a business-level and/or system-level behaviors
[9].

• describe a method, function or operation in a software.

2.3. ConcurTaskTrees -CTT

Task models represent the intersection between user interface design and
more engineering approaches by providing designers with a means of represent-
ing and manipulating a formal abstraction of activities that should be performed
to reach user goals [10]. For this purpose they need to be represented with no-
tations, such as ConcurTaskTrees, able to capture all the relevant aspects. Con-
curTaskTrees provides a notation for task model specifications useful to support

8



design of interactive applications specifically tailored for user interface model-
based design.
By focusing on users and their tasks, task models provide design principles used
to obtain usable interactive system and play an essential role representing the
logical activities that an application should support in reaching users goals [10].
A goal is either a desired modification of state or an inquiry to obtain informa-
tion on the current state. Each task can be associated with a goal which is the
state change derived by its performance. Each goal can be associated with one
or multiple tasks since there can be different tasks to achieve the same goal.
Tasks can range from a very high abstraction level, such as deciding a strategy
for solving a problem, to a concrete- action-oriented level, such as selecting a
printer device. Basic tasks are elementary tasks that cannot be longer decom-
posed because they do not contain any control element.
To illustrate some of the basic concepts discussed above, an example of making a
hotel reservation is a task that requires a state modification, i.e. creating a new
reservation in the hotel’s persistence repositary- such as a database. However,
as in figure 7, this task can be decomposed into lower level tasks. It is important
to remember that hierarchy (task decomposition) does NOT represent sequence:
the sequential temporal evolution is represented linearly from left to right in-
stead of from top to down. Hence, the task model in figure 7 has an execution
order which can be read as follows: In order to make a hotel reservation, the
task of selecting room type must be done followed by making the actual reser-
vation, i.e. when the system shows available rooms and the task of selecting a
particular room is attained. Also to note is that querying the available rooms
is one task that just requires an inquiry of the current state of the application.
There can be many motivations for developing a task model. In some cases

Hotel reservation

Select room type

Select single room Select double room Show availability Select room

Make reservation

Figure 7: An example of a simple task model with hierarchical structure

where a task model is developed for an existing systems, its purpose is to better
understand the underlying design and analyse its potential limitations and how
to overcome them. While, in other cases, designers create task models for new
applications yet to be developed. Here the purpose is to indicate how activities

9



should be performed in order to obtain a new, usable system that is supported
by some new technology.
The main features of ConcurTaskTrees are as follows [10]:

• Focus on activity : It allows modelers to concentrate on the activities that
users aim to perform, that are the most relevant aspects when designing
interactive applications that encompass both user and system-related as-
pects avoiding low-level implementation details that at the design stage
would only obscure the decisions to take.

• Hierarchical structure: It provides a wide range of granularity allowing
large and small task structures to be reused, it enables reusable task struc-
tures to be defined at both low and high semantic level. Moreover, it is an
intuitive way of problem solving by way of decomposing and still main-
taining various parts of the solution domain.

• Rich set of temporal operators: The graphical syntax supports for oper-
ators which capture a rich set of possible temporal relationships between
the tasks that can be defined. Figure 8 shows an example of two operators
and a description of their semantics.

T1

T2 T3

University"Registration

Choose"courses Enroll"in"courses

Tasks"at"same"level"represent"different"options"or
different"tasks"at"the"same"abstraction"level"that"have"to
be"performed."
Real"levels"as",Inorder"to"do"T1,"i"need"to"do"T2"and/or"T3,.

"
Specifies"second"task"cannot"begin"until"first"task"
is"performed.
Example:"I"cannot"enroll"at"a"university"before"i"have"
chosen"which"courses"to"take."

Hierarchy

Enabling

Figure 8: An example of temporal operators provided by CTT

• Task allocation: How the performance of the task is allocated is indicated
by the related category and it is explicitly represented by using icons.

• Objects and task attributes: Once the tasks are identified it is important to
indicate the objects that have to be manipulated to support their perfor-
mance. Two broad types of objects can be considered: the user interface
objects and the application domain objects. For example, Temperature
as a domain object can be represented by multiple UI objects such as a
bar-chart or a textual value. Another important attribute is the Platform
Attribute, which allows designers to specify for what type of platform the
task is suitable. In addition, it is also possible to specify for each object

10



manipulated by the task in which platform it is suitable to support them.
This type of information allows designers to better address the design
of nomadic applications that can be accessed through a wide variety of
platforms.

Furthermore, similar to BPMN and ADs, task models also support for cooper-
ative applications, i.e. the design of applications where multiple users can in-
teractively cooperate. In this approach as in figure 9, when there are multi-user
applications, the task model is composed of various parts. A role is identified
by a specific set of tasks and relationships among them. Thus, there is one task
model for each role involved. In addition, there is a cooperative part whose pur-
pose is to indicate the relationships among tasks performed by different users.

Customer role Salesman role

Cooperative role

search product

ask information select product provide list products provide price

provide info products

product negotiation

ask information 
(customer :)

provide list products
(salesman :)

exchange info 
product

select product
(customer :)

provide price
(salesman :)

Figure 9: Simplified example of cooperative task model.

Thus, task models provide better incentive for the design and development of
interactive systems, i.e. human-computer or multiple cooperative applications,
since they look at user interface development from the logical activities that
have to be carried out in order to reach the users goals. Moreover, if a direct
correspondence is created between the tasks and the user interface, then users
can accomplish their goals effectively and satisfactorily.

2.4. Interaction Flow Modeling Language -IFML

The Interaction Flow Modeling Language (IFML), also an OMG standard,
supports the specification of the front-end of applications independently of the

11



technological details of their realization. In general, it attempts to address the
following aspects of front-end modeling [1]:

• The composition of the view : It expresses what the visualization units that
compose the interface are, via ViewContainer elements, and their nesting
relationships, visibility and reachability.

• The content of the view : It specifies what the elements for content display
and/or accepting user input are, via ViewComponents elements. Exam-
ples of ViewComponents construct are interface elements for visualizing
the data of one object, for displaying a list of objects, data entry forms
for accepting user input. These elements are further characterized by a
ContentBinding specification which expresses the source of the published
content; i.e. it can originate from objects referenced in a domain model
such as Entity-Relationship diagram or from an external service such as a
web API service invocation to receive content for publishing.

• The commands: It realizes what interaction events are supported. Events
affect the state of the user interface and can be produced by the user’s
interaction, by the application itself, or by an external system.

• The actions: It specifies what business components are triggered by the
events.

• The effects of interaction: It captures what the effect of events and action
execution bring on the state of the interface.

• The parameter binding : It expresses what data items are communicated
between the elements of the user interface and the triggered actions/events.

The above discussed aspects of front-end modeling are captured by IFML mod-
eling constructs as shown in figure 10. Designing a modeling language for the
front end is a complex and multidisciplinary task where many perspectives meet.
Thus, a good modeling language should pay attention to coverage, i.e. the abil-
ity to represent complex application front ends but also to model usability and
understandability which contribute to make the modeling language quick to
learn, simple to use, easy to implement by a given tool, and open to extensi-
bility [1]. The design of IFML adheres as much as possible to the following
principles [1]:

• Conciseness: The number of diagram types and concepts needed to ex-
press the salient interface and interaction design decisions is kept to the
minimum. In particular, the IFML visual syntax conveys the front-end
model using a single diagram with the help of compositional nesting de-
sign structure. This design simplifies the model editing and maintenance
processes, because references between different types of diagrams need not
be maintained and only the internal coherence among the various elements
of a single type of diagram must be preserved.

12



Send

Figure 10: IFML basic modeling elements.

• Inference from the context : Whenever something can be deduced from the
existing parts of a model, inference rules at the modeling level automat-
ically apply default modeling patterns and details, avoiding the need for
modelers to specify redundant information. An example can be specifying
parameter binding rules between two different ViewComponent elements,
referring two different objects in a domain model, for content display.
Thus, during data binding among the ViewComponents via an attached
ParemeterBinding element, the modeler need not specify properties of an
object for data transfer since the ParameterBinding element can easily
infer object attributes from the attached ViewComponents.

• Extensibility : IFML builds upon a small set of core concepts at a higher-
level of abstraction that capture the essence of interaction: the interface
(container), stimuli (events), content (components and data binding), and
dynamics (flows and actions). However, by design, these concepts are
meant to be extended to mirror the evolution of technologies and devices
such as the specifications of web, desktop, and mobile applications, which
the IFML supports.

• Implementability : Models that lack adequate tool support and cannot be
executable are quickly abandoned. Hence, IFML is a platform-independent
language but has been designed with executability in mind through model
transformations and code generators to ensure models can be mapped
easily into executable applications for various platforms and devices.

• Not everything in the model : IFML purposely ignores presentation as-
pects, because presentation is adversarial to abstraction. It also delegates

13



to external models the specification of aspects that although relevant to
the user interface, are not properly part of it. For example, the internal
functioning of an action can be described by referencing a method in a
UML class diagram.

Hence, IFML is a platform independent user interface modeling language for
the realization of a user’s interaction flow in an application’s front-end. The
main focus is on the structure and behavior of a software application as per-
ceived by the end user. In addition, IFML also incorporates references to the
data and business logic that influence the user’s experience. This is achieved
respectively by referencing the domain model objects that provide the content
for display, and the actions that can be triggered by the user interface which
refer to methods of the application domain objects, described by suitable UML
behavioral diagrams, or delegated to external objects and services.

3. Comparative Criteria

As discussed previously, the four formalisms reflect design patterns inherent
to process-driven applications, hence, relationships among them can be drawn
based on categories of evalution criteria. In the next section, an analysis of the
four modeling languages with respect to their support for elaborated key aspects
is discussed. Thus, the focus will be to draw their differences and commonalities
concerning the selected evaluation criteria.
There can be collection of key functionalities that are supported by the com-
monly used formalisms. This paper has identified five key aspects which we
will concentrate on to broaden our focus. To provide a comprehensive support
for modeling process-oriented applications with workflow patterns, the four for-
malisms previously introduced are compared for the realization of these patterns
and other key aspects. In this section, an introduction of the identified five key
aspects for evaluating the formalisms is provided.

3.1. Functional

The functional aspect concentrates on what has to be done in a workflow
process. It defines hierarchical context of tasks and sub-tasks. To analyze
the support for this functional aspect by the four notations, we compare the
possibility for nesting constructs.

Possible values are: Yes, No.
Another functional aspect is related to constraints of workflow patterns. These
are sets of rules covering consistency. These are similar to constraints on
workflow-nets and are of three kinds [11]: Enter constraints are being eval-
uated before the initiation of a workflow process. Run-time constraints are
verified during execution of the process and is discussed in detail in the behav-
ioral aspect section. Exit constraints are checked at the completion time of a
workflow.

Possible values are: Enter, Exit, Both.

14



3.2. Behavioral

The behavioral aspect concentrates on the control flow perspective of the
workflow model. Execution order of activities in a workflow and/or interactive
components of a system is of great interest. Thus, an in depth analysis of all
provided patterns for all four notations would go beyond the scope of this paper.
Thereby, support for the basic control flow patterns such as the ones illustrated
next are assessed for the previously discussed four formalisms.

• Sequential Execution: A task in a process in enabled after the completion
of a preceding task in the same process which denote an ordering relation.

Possible values are: Yes, No.

• Exclusive Choice (Decision): The divergence of a branch into two or more
branches such that when the incoming branch is enabled, the thread of
control is immediately passed to precisely one of the outgoing branches
based on a mechanism that can select one of the outgoing branches.

Possible values are: Yes, No.

• Synchronization: The convergence of two or more branches, which are
executing in parallel or in any order, into a single subsequent branch such
that the thread of control is passed to the subsequent branch when all
input branches have been enabled. The input branches can perform in
parallel (at the same time) or in any order.

Possible values are: Parallel Synch., Non-parallel Synch, Both,
None.

• Simple Merge (XOR join): The convergence of two or more branches into
a single subsequent branch such that each enablement of an incoming
branch results in the thread of control being passed to the subsequent
branch. Hence, the simple merge pattern provides a means of merging
two or more distinct branches without synchronizing them.

Possible values are: Yes, No.

• Parallel Split (AND-split): The divergence of a branch into two or more
parallel branches each of which execute concurrently.

Possible values are: Yes, No.

• Exception Handling : Deals with the various causes and the resultant ac-
tions needed to be taken as a result of exception occurrences.

Possible values are: Yes, No.

• Multiple Instantiation: Multiple instance patterns describe situations where
there are multiple threads of execution active in a process model which
relate to the same activity, i.e. the activity is executed multiple times
with each of these instances running concurrently and independently of

15



the others. The number of instances (n) may be determined at design
time or at run-time.

Possible values are: Design-time, Run-time, Both, None.

• Iteration: It specify special behaviour such as repetition, i.e. the activ-
ity/task is executed multiple times sequentially.

Possible values are: Yes, No.

• Message exchange modality : The emergence of service-oriented computing
has led to a significant shift from traditionally tightly coupled to loosely
coupled software development paradigm. Software components, such as
a given business logic or the user interaction component, are exposed as
a service where each service provides its functionality via a platform in-
dependent interface. Thus, message exchange is the only way to commu-
nicate with a certain service. Nonetheless, this communication is made
possible in two different forms which influence the control-flow behavior
of a system, namely synchronous and asynchronous.
In a process driven service oriented architectures (SOA), a synchronous
service invocation follows the well-known Request / Response Pattern
where a process engine performs a synchronous request to a service and
waits for a response, i.e. it’s blocked until the response is obtained. While
an asynchronous service invocation usually follows the Request / Acknowl-
edge / Callback Pattern where the process engine sends the request to the
service but instead of processing the request right away, the service first
puts the request into a Queue. It then acknowledges the receipt of the re-
quest to the process engine. The request is then delivered asynchronously
to the actual request processor. The request processor executes the busi-
ness logic. Finally it sends a callback to the process engine which may
now continue execution in the process instance.
Hence, the purpose of this evaluation criteria is to assess the formalisms’
support for such message exchange modalities affecting the control-flow
perspective of a process model.

Possible values are: Synchronous, Asynchronous, Both.

• Interruptibility : In a process flow, the sequential execution of activities
can be interrupted due to internal/external events where internal event
include a timer and/or system event while external ones can be user’s
interaction with a system. This can of course influence the control flow of
a process model since ”normal” execution order can be reoriented. Hence,
the ability to capture such a behavior by the four formalisms is illustrated
in this assessment.

Possible values are: Yes, No.

3.3. Informational

The integral part of this aspect is data which is being processed in a
workflow process. From a data perspective, there are a series of characteristics

16



that occur repeatedly in different workflow modeling paradigms. These can be
divided into four distinct groups as follows: [12]

• Data visibility : relates to the extent and manner in which data elements
can be viewed by various components of a workflow process.

Possible values are: Yes, No.

• Data interaction: focuses on the manner in which data is communicated
between active elements within a workflow process.

• Data transfer : considers the means by which the actual transfer of data
elements occurs between workflow components and describes the various
mechanisms by which data elements can be passed across the interface of
a workflow component.

Possible values for data interaction and transfer are: Low (if there
is no modeling constructs denoting data transfer/interaction but it’s as-
sumed implicitly), Average, High (if there exists rich set of modeling
constructs for both data interaction and transfer).

• Data based routing : characterises the manner in which data elements can
influence the operation of other aspects of the workflow, particularly the
control flow perspective.

Possible values are: Yes, No.

The interested reader may refer to [12] for detailed workflow data patterns.
The purpose of this analysis is to assess if the previously discussed formalisms
support for any of the above mentioned data flow characteristics.

3.4. Level of Abstraction

An abstraction level is a generalization of a model or algorithm, away
from any specific implementation to facilitate interoperability and platform inde-
pendence. The availability of an increasing number of device types ranging from
web applications to mobile and desktop is changing the structure of many ap-
plications. It is often the case that within the same application users can access
its functionality through different devices. Hence, context of use is acquiring an
increasing importance and it is important to understand its relationships with
modeling languages.
Often standard formalisms possess an extension of their core modeling concepts
to support for multiple platform applications, thereby adding more expressive
power to the modeling language and making the concepts and notations less ab-
stract. Moreover, it assigns more precise meaning to concepts to enable deeper
model checking, formalization of semantics, and executability through code gen-
eration or model interpretation. Thus, the purpose of this analysis is to deter-
mine if one formalism is more or less platform specific or provides a low-level
abstraction than the other, or can be suitable to model at various abstraction
levels also enabling code generation.

Possible values are: Low-level, High-level, Both.

17



3.5. Tools Support

Modeling languages that lack adequate tool support and cannot be used
to produce executable code are quickly abandoned. Both at the commercial and
research levels, several tools for MDE are either available or in development.
These tools are commonly designed as frameworks or as plug-in. Hence, the
purpose of this evaluation criteria is to assess, at the time of publication, if a
given formalism is implemented with a tool that facilitates model constructing,
model checking, and code generation.

Possible values for implementation are: None, Partial (formalism has
a prototype tool but lacks essential features which can be underdevelopment),
Complete.
Moreover, it is also imperative to assess if the available tools have adequate
documentation and community involvement for maintenance purposes.

Possible values for maintenance are: None, Low, High.

3.6. Integration with other formalisms

Model based approaches are becoming more predominant in software en-
gineering. Looking at the most successful model-based approach for design of
software systems, we can notice a considerable effort to provide models and
representations to support the various phases and parts of the design and de-
velopment of software applications. However, many formalisms are specialized
to represent certain domains, hence do not allow for a comprehensive system
modeling and/or do not easily support code generation due to their high-level of
abstraction. Thus, to exploit a particular modeling language’s expressive power
for a comprehensive system design and executability, it must be put in context
within a broader modeling perspective. Thereby, the purpose of this analysis
is to assess the possibility of integrating and its actual implementation of the
previously discussed formalisms among each other and/or with a standard soft-
ware engineering modeling paradigm, such as the UML, to support for an end
to end system design or possibly to facilitate code generation by mapping the
formalism onto low-level executable languages.

Possible values are: Name of formalism/Implementation Tool

4. Analysis

In this section, the given set of evaluation criteria discussed in the previ-
ous section is used to assess the four formalisms. An overview of the obtained
results is illustrated in Table 1.

18



Criterion / Formalism BPMN [3] [4] [5] [6] [2] AD [7] [8] [9] [13] CTT [10] [14] [15] IFML [1]
Functional Aspect
Compositional nesting Yes Yes Yes Yes
Workflow pattern constraints Both Both Both Both
Behavioral Aspect
Sequential execution Yes Yes Yes Yes
Exclusive choice Yes Yes Yes Yes
Synchronization Parallel Synch. Parallel Synch. Both Both
Simple merge Yes Yes Yes Yes
Parallel split Yes Yes Yes Yes
Exception handling Yes Yes No Yes
Multiple instantiation Both Both None Design-time
Iteration Yes Yes Yes Yes
Message exchange modality Both Both Synchronous Synchronous
Interruptibility Yes Yes Yes Yes
Informational Aspect
Data visibility Yes Yes Yes Yes
Data transfer and interaction Average High Low High
Data-based routing Yes Yes Yes Yes
Level of abstraction Both Both Both Both
Tools support
Implementation Complete Complete Complete Partial
Maintenance High High Low Low
Integration with other formalism
Comprehensive design support IFML/WebRatio CTT/Eclipse task editor CD/CTTE BPMN/WebRatio
Code generation BPEL/BPMN2BPEL CD/Enterprise Architect TERESA/CTTE -/WebRatio

Table 1: An overview of the comparative study based on the set of evaluation criteria.

19



4.1. Functional Aspect

Looking into BPMN and AD, both support for nested hierarchy through
sub-process and sub-activity modeling constructs respectively. They can be
viewed as a standalone (atomic) sub workflows. Hierarchical structure also
comes very intuitively to task models constructed using concurTaskTree nota-
tions. A task model usually has a tree like hierarchical structure which reflect
the nesting of a set of tasks and traversing of a logical inverted tree. IFML, on
one hand, also supports for nested hierarchy through a compositional nesting of
the ViewContainer notation. The set of existing ViewContainer elements can
be represented as an AND-OR tree representation which facilitates the analysis
of a ViewContainer’s state as visible and reachable.
The other functional aspect is related to constraints of a workflow process. Both
BPMN and AD support for a pattern in workflow nets where the start of a
workflow is triggered via an entry constraint such as a start/message event and
terminates with an exit constraint represented via an end event. Task models
have a logical tree structure where the sequential temporal evolution is repre-
sented linearly from left to right. Thus, the most left atomic task can trigger
the entire task model and can possibly end with the right most atomic task. In
IFML, a tree representation of the ViewContainer construct can represent the
root ViewContainer which is accessed first (visible initially) and the internal
children nodes with their own access modifiers as entry/exit constraints. Run-
time constraints verify what happens during process execution, hence, all four
formalisms have a rich set of notations in support of that which will be discussed
in the following two sections.

4.2. Behavioral Aspect

As discussed above, the behavioral aspect focuses on the control flow
perspectives of a workflow process. Hence, we will assess the support of the
previously discussed four formalisms for the basic control flow patterns starting
with sequential execution.

• Sequential Execution: All four formalism have a rich set of modeling con-
structs in support of sequential flow which links two objects in a process
diagram and denotes a control flow (i.e. ordering) relation.

• Exclusive Choice (Decision): This kind of control flow patterns are han-
dled via ”Decision-gateway” constructs in BPMN. Activity Diagrams also
have ”Decision-node” constructs in support of this. In ConcurTaskTrees
notation, ”Choice Operator” has a similar semantic behavior in support
of conditional branching as indicted in figure 11. Moreover, IFML cap-
tures what the effect of events and action execution bring on the state
of the interface. Hence, IFML supports for two types of interaction flow
patterns, namely content based and content independant navigation. In
both cases, the execution of an event or action can trigger a navigation
flow in support of conditional branching (decision) pattern. An example
of a content dependent navigation is shown in figure 12, where the events

20



Specifies two tasks enabled, then once one has started 
the other one is no longer enabled. 
Example: when accessing a website it is possible either
to browse it or access some specific information. 

Choice
Access website

Browse website Access specific info

Figure 11: Choice Operator in ConcurTaskTree notation

attached to ”ArtistsAlbum” ViewComponent can change the state of the
interface either to an ”Artists or Album” ViewComponent contained in
the corresponding ViewContainer.

Music

Album & Artists

Artist
Album
Index

<<XOR>> Album or Artist

Album

Artist

Album
Detail

Artist
Detail

Figure 12: Decision pattern in IFML

• Synchronization: Both BPMN and Activity Diagrams have constructs
such as ”Parallel-join gateway” and ”Join node” respectively, to represent
when parallel action sequences terminate the elements are used to indi-
cate that the multiple threads are joined back into a single thread. In
Petri-net terms, its semantic behavior can be expressed as in the figure
13, where the transition is enabled if tokens are present in both places.
Similarly, ConcurTaskTrees notations have a Concurrent Tasks operator
which indicates that sub-tasks can be performed in any order, or at same
time (in parallel), but the task model is completed as long as all sub tasks
are performed.
In IFML, the effect of interaction can also be recognized following a syn-
chronization pattern, given input branches can perform concurrently or in

21



P(x1, j1)

P(x2, j1)

T j1

P(j1, y)

Figure 13: Perti Nets Formal Semantics for Synchronization

any order (non-parallel). For example, in figure 14, the Action ”Execute
the payment” is triggered only when an input of total amount is passed
via the specified data flow (dashed arrow) directed to it and during the
submission of ”Payment information form” via its incoming navigation
flow.

ShoppingBCart

PersonalB#BPaymentBData

Execute
Payment

Confirmation

<<List>>
Product
List

<<Form>>
PPBdata

<<Detail>>
Cofirmation
Message

<<ParameterBindingGroup>>
TotalB=>BQuantity

<<ParameterBindingGroup>>
NameB=>BName
CreditCart=B=>BCreditCard=

Figure 14: Synchronization pattern in IFML

• Simple Merge (XOR join): ”Parallel-merge gateway” and ”Merge node”
constructs capture this kind of semantic behavior in BPMN and Activity
diagram respectively. In Petri-net terms, its semantic behavior can be
expressed as in the figure 15, where either of the transitions is enabled if a
token is present in either of the corresponding places. Optional tasks have
a subtle semantics in ConcurTaskTrees. They can be used only with con-
current and sequential operators. Their name is closed between squared
brackets to indicate the sub-tasks are optional, implying there is no syn-
chronization.
In IFML, a simple merge pattern can be easily recognized, for instance,

22



P(x1, m1)

P(x2, m1) T(m1, x2)

T(m1, x1)

P(m1, y)

Figure 15: Perti Nets Formal Semantics for Simple Merge

in a scenario where a log-out action is triggered either when a user inter-
action event such as clicking on a log-out button takes place or during a
system/timer event is triggered indicating an expiration of a session.

• Parallel Split (AND-split): Both BPMN and Activity Diagram support
for this behavior by their ”Fork gateway” and ”Fork node” constructs
respectively. Note that these constructs are introduced to support paral-
lelism in activities. Thus, in Petri-net terms, its semantic behavior can be
expressed as in the figure 16, where during the transition is enabled and it
fires, tokens are distributed to the corresponding places to imply the oc-
currence of concurrent activities/tasks. ConcurTaskTrees notations also

P(f1, y2)

P(x1, f1)
Tf1

P(f1, y1)

Figure 16: Perti Nets Formal Semantics for Parallel Split

provide similar semantic definition for parallel split pattern via its ”In-
dependence Concurrency” and ”Concurrency with information exchange”
operators. In the first one, the tasks can be carried out in any order or
at the same time (concurrently) howeover, in the second one, sub-tasks
are actually executed concurrently given that they have to synchronize in
order to exchange information.
Moreover, IFML constructs also support for parallel split pattern in var-
ious ways. For example, in figure 14, when a user triggers the checkout

23



event, a navigation flow changes the state of the user interface to the cus-
tomer information ”ViewContainer” where a form is available to fill in. At
the same time, a data flow capturing the total amount selected is passed
as an input to the action ”Execute the payment”.

• Exception Handling : BPMN and ADs support for ”Error events” which
trigger as a result of a run-time exception occurance. Hence, they both
support for ”Exception-flows” which determine the sequential flow of a
process model. The formal semantics of exception handling can be best
represeted by ”Decision” control-flow perspective, where conditional branch-
ing takes place indicating the possible condition that determines the cause
of the error.
In CTT notation, there is no modeling construct in support of such pat-
tern. Hence, CTT lacks exception handling mechanism which is also an
essential pattern influencing the control-flow perspective of a model.
IFML, however, has ”Error events” similar to BPMN and ADs. These
events are part of IFML’s ”Action” element which determine the flow of
navigation if an exception occurs while executing operational aspects of
the action.

• Multiple Instantiation: In both BPMN and Activity diagrams, there is
no major difference in diagramming this pattern. Both notations provide
mechanisms for creating the variations (at design-time or run-time) of this
pattern. For run-time pattern, both have a ”Multiple-instance” construct,
with an input/output collection attached to it, that can dynamically de-
termine how many copies of the contents of the element will be performed
before the process continues. For example, in a process model for diagnos-
ing an engine fault, multiple instances of a ”Check-sensor” task can run
concurrently depending on the number of error messages received, deter-
mined at run-time. Only when all messages have been processed, can the
”Identify-fault” task, i.e. the next activity, be initiated. The number of
error messages received can serve as an input collection for the modeling
construct, which can then determine at run-time how many duplicates of
the task will run in parallel.
The number of elements can also be defined statically at design time which
then replicates the activity involved as many times as specified. Thus, this
kind of multi-instance activity can be replaced by n identical copies of the
activity enclosed between an AND-split and an AND-join, a ’Macro’ ex-
pansion of the modeling construct, as shown in Figure 17.
In CTT notation, there is no notion of multiple instantiation of a task.
However, tasks can have a looping structure denoting an iteration as in-
dicated in the next section.
The IFML constructs support the semantic behavior reflected by multiple
instantiation of an object determined at design-time only. For instance,
a modeler can specify multiple ”ViewComponent” elements of n, which
refer to the same domain object, and these elements can be linked with a

24



X Y

Task Tm

Tm

Tm

Tm

1

2

n

YX

Figure 17: Macro expansion for a multi-instance activity where n is known at design time

navigational flow to multiple events of n. Hence, the triggering of each at-
tached event can make visible/active its corresponding ”ViewComponent”
which instantiates the refereced domain object. Thus, multiple copies of
the same object can co-exist at a certain point in time.
However, there is no notion of dynamic instantiation of the same object
multiple times when only considering IFML constructs. Since the ”Ac-
tion” element in IFML does not enable for specifing its internal behav-
ioral aspects, it can refer to methods of the application domain objects,
described by a suitable UML class diagram for example. Thereby, the
referenced method of an object can specify such a behavior where it can
dynamically instantiate multiple objects of the same type. This happens
as a result of triggering the ”Action” element multiple times by a cor-
responding event which then invokes a method of the same object that
receives some parameter values to instantiate it.

• Iteration: Both BPMN and ADs support for the repetition constructs (it-
eration) can be seen as ”macros”, in the sense that they can be expanded
in terms of decision and merge nodes as shown in Figure 18. Note that the
value of attribute ”TestTime” determines whether the repeated activity
corresponds to a ”while” loop or a ”repeat-until” loop. In ConcurTask-

X Y

Task Tl

X Y

Tl

A- "While-do" loop

X Y

Task Tl

X Y

B- "Do-until" loop

Tl

c

c

c
c

Figure 18: Macro expansions for repeated activities

Trees notation, this pattern is only represented in an iterative way, i.e.
the task model is executed multiple times sequentially. For example, in
Figure 19 once the task ”CloseCurrentNavigation” is performed then the
task ”SelectMuseum” is enabled again because the parent task is iterative,
denoted by an asterisk following the task name. This means that it can
be performed multiple times and so its first sub-task is enabled again once

25



the last one has been completed. Morever, IFML also supports for this

Access museum info *

Select museum Show sections list Decide section
interest 

Select section
Show works list Close current 

navigation

Figure 19: Example of parent iterative task in CTT

control-flow pattern in a manner where, for example, a log-in terminal
at the user interface gives the chance of authenticating user’s credential
n number of times. Thus, a log-in event can trigger an ”Action” which
refers to some external service component that verifies user credentials and
returns succuss or failure. If the result is a failure, an error event attached
to the action element triggers to change the navigational flow to the same
”Log-in ViewComponent” activating it again. This sequence of interac-
tion loops until n number of times verified by a ”ConditionalExpression”
specificiation of the ”Log-in ViewComponent”.

• Message exchange modals: The BPMN 2.0 Specification provides the Ser-
vice Task activity allowing users to invoke some application service in both
synchronous and asynchronous manner. The UML 2.0 AD Controlflows
or objectflows are connecting activities and actions in synchronous pro-
cesses - determining the flow through possible subsequent working steps.
By usage of signals (Send Signal Action, Receive Signal Action and Timer
Action) processes can be uncoupled, can be transformed into asynchronous
processes. The CTT notations lack the support of an asynchronous modal
of message exchange between tasks. Furthermore, the IFML also has ”Ac-
tionEvent” constructs which are attached to an Action element and are
produced by an Action to signal the termination of an operation. In other
words, the Action construct waits for a response for the actual execution
of an operation until it is able to modify the state of the UI as a result of a
normal or exceptional termination. However, in IFML, the execution of an
action produces an action completion event and the sending of an asyn-
chronous notification which is matched by a ”SystemEvent” construct.
The cause of such a system event may be left unspecified in a model,
denoting the absence of an actual message exchange. Thus, both CTT
and IFML modeling elements provide support for a synchronous message
exchange format.

• Interruptibility : BPMN and AD constructs can capture arrivals and con-
ditions that can trigger an interrupt while particular steps are occurring-
with BPMN providing a compact notation for doing this during a single
activity with boundary events and an Activity diagram offering an inter-

26



rupt region with a dashed rectangle, both illustrated in figure 20. In this
example, if an interrupt reaches due to the triggering of the Cancel But-
ton or the time defined in the timer elapses, the ”normal” sequence flow
is disabled and the process continues in any of the sequence flows caus-
ing the interrupt. In the AD, the process continues along the interrupt
flow connector (lightning symbol) to the outside also disabling all other
activities within the region. In CTT, the ”Disabling” temporal operator

Read Card Enter Pin Check pin

Display "Timeout" 
Elapsed

Confirm 
Cancel

Read Card

Enter Pin

Check pin Confirm 
Cancel

Display "Timeout" 
Elapsed

Cancel 
button

45sec

Interrupt region

Figure 20: Example of interruptibility in BPMN (left) and AD (right)

provides semantics equivalent to the BPMN model and the AD discussed
above. An example is when a user can iteratively input data in a form
until the form is sent. Thus, the first task (usually an iterative task) is
completely interrupted by the second task. The IFML also provides simi-
lar semantics with the help of system event constructs which can be timer
events (triggered after an elapsed time-frame), system alerts (such as a
database connection loss), or message receipt notifications. Nonetheless,
these system events can be of an interrupt or a non-interrupt type. The
later usually occurs during message notification system events which do
not disable the current state of the UI and simply execute in parallel.

4.3. Informational Aspect

Data is an integral part of a workflow process. Hence, this section com-
pares the four formalisms for the support of the four characteristics of data that
occur repeatedly in different workflow modeling paradigms.

• Data Visibility : In BPMN and Activity Diagrams data visibility is mainly
implemented by so called Pools/Lanes and Swimlanes respectively. These
elements provide the possibility to partition a set of activities and their
data elements from one element to the other and serve as organization
units which deal with enfolding parts of a workflow processes. Aside from
a more detailed view, BPMN and AD provide sub-processes and sub-
activities respectively. These elements hide, in the collapsed state, all
internal process definitions and processed data from other tasks.

27



In CTT notations, for each single task, it is possible to directly specify a
number of attributes and related information. These data aspects can be
classified in to three; namely General Information: where it includes the
task identifier and its’ extended name, its category and type, frequency
of use, some informal annotation that the designer may want to store, in-
dication of possible preconditions and whether it is an iterative, optional
or connection task; Objects: where for each task, it is possible to indicate
the objects (name and class) that have to be manipulated to perform it.
Objects can be either user interface or domain application objects; Time
Information: where it is also possible to indicate estimated time of perfor-
mance; i.e. including a distinction among minimal, maximal and average
time of performance [10].
IFML’s modeling element, ViewComponent, publish data content in the
interface. Hence, data visibility is mainly implemented by this construct
in IFML. In addition, the source of the published content can be repre-
sented by means of the ContentBinding specification which is refined in
two specializations, i.e. Data biding and dynamic behavior. A data bid-
ing represents the provenance of content from objects of a domain model
concept such as the UML class diagram. It is also characterized by fea-
tures that specify the type of data, the criterion for selecting instances,
and the attributes of the object relevant for publication. Moreover, a
dynamic behavior represents the data access of a ViewComponent in an
operational way, e.g. through the invocation of a service or method that
returns content.

• Data Interaction and Transfer : As data interaction and data transfer are
tightly coupled, a summary of these two aspects is discussed among the
formalisms. In BPMN, the previous mentioned pools support message
flow for defining data interaction. The data transfer between defined ele-
ments within the workflow is realized well in BPMN via several types of
’data’ objects such as data objects, data inputs, data outputs and data
stores. There is also a well-defined way to manage the states of data, like
instantiation, completed, deleted, etc. Likewise, to model data interaction
in Activity Diagrams, it has a notation called action-object flow relation-
ship, and includes two types of notation symbols- object flow and object
in state. An object flow is the same thing as a transition line, shown as a
dashed line in figure 21, and the object in state is the rectangle in the same
figure. The underlined text in the rectangle is the object’s class name and
this class could possibly be found on one of the modeled system’s class
diagrams. The second part of the object in state is the text inside the
brackets, which is the object’s state name. CTT notations also support
for data interaction, for instance, during concurrent communicating tasks;
where tasks exchange information while performed concurrently. In addi-
tion, there are two general kinds of data objects in task models that actu-
ally interact: the presentation objects, those composing the user interface,
and application objects, derived from the domain analysis and responsible

28



Ship order Order
[Shipped]

Received order

Figure 21: Action-object flow relationship

for the representation of persistent information. However, unlike BPMN
and ADs, there is no clear modeling construct in CTT notations which
specify visually the above mentioned data objects and the interaction pat-
tern during the transfer of data between tasks.
IFML notation has a rich set of mechanisms to support data interac-
tion and transfer. This is expressed through an input-output dependency
between ViewComponents described by means of the ParameterBinding
construct. A ParameterBinding specifies that the value of a parameter,
typically the output of some ViewComponent, is associated with that
of another parameter, typically the input of another ViewComponent.
When the input-output dependency involves several parameters at the
same time, ParameterBinding elements are grouped into a ParameterBind-
ingGroup, as shown in figure 22.

Artists

Artists
List

Artist

<<ParameterBindingGroup>>
SelectedArtist => AnArtist

Figure 22: Example of input-output dependency in IFML

• Data Based Routing : This last data flow aspect deals with the manner
in which data elements can influence the operation of other aspects of
the workflow, particularly the control flow perspective. BPMN and AD
make use of different kinds of constructs, such as gateways/nodes, to en-
able routing in the process definition. These elements generally provide

29



OR/XOR/AND and more complex decision based functions. Important
for this aspect is the fact that these elements also accept data as a decision
basis, hence making possible data-based routing.
Temporal operators in ConcurTaskTrees, such as Enabling with informa-
tion passing, provides similar design pattern where the second task cannot
be performed until first task is performed, and that information produced
in first task is used as input for the second one.
In IFML, data based routing can be made possible with the use of Ac-
tivationExpression construct. A ViewComponent is active when the en-
closing ViewContainer is visible and the values of its input parameters
are available. Hence, ActivationExpression adds restrictions on top of the
set of visible and active ViewComponents. If they evaluate to false, an
otherwise visible/active element is treated as invisible/inactive, thus indi-
cating a change in state of the user interface. For example, in figure 23,
the toolbar with attached events for deleting, archiving, reporting, and
moving messages remains inactive until at least one message is selected
in the ”MessageList” ViewComponent, as depicted by the MessageSet-
notEmpty() ActivationExpression.

Mailbox

<<ParameterBindingGroup>>
SelectedMessagesR=>RMessageSet

<<Menu>>RMessageRToolbar

<<Parameter>>RMessageSet
Delete

Archive

Report

MoveTo Lables

<<List>>
MessageList

<<ActivationExpression>>
notRMessageSet.isEmpty()

MessageSelection

Figure 23: Example of data-based routing in IFML

4.4. Level of Abstraction

Both high and low-levels of abstraction represent a different model of
the same information and processes, but a high-level description is one that
is more abstracted, describes overall goals and systemic features, and is typi-
cally more concerned with the system as a whole, or larger components of it.
While, a low-level description is one that provides a granular representation,
rudimentary functions rather than complex overall ones, and is typically more
concerned with individual components within the system and how they operate

30



at the implementation level.
In models with both, workflow and interaction flow patterns, it is desirable to
create models with high level of abstraction in support of model analysis for
dealing with system complexity. Thus, BPMN is suitable to use at a higher
level of systems design to describe workflows at the level of business informa-
tion but in the interest of describing BPMN models with high-level specification
such as the inclusion of ”Sub-process” constructs, a separate BPMN model can
capture the details of a given sub-process and provide a higher-level of precision.
BPMN also covers such a wide range of usage that it will map to more than one
lower-level executable modeling language. As said above, BPEL is the primary
language that BPMN will map to.
On the other hand, Activity Diagrams are commonly applicable to model busi-
ness process or flow of work between users and systems at a higher-level of ab-
straction; for modeling steps performed in a use case; and for providing a model
description of low-level methods/functions or operations in software systems.
Similar to BPMN, ADs also describe the detailed behavior of sub-activities
with ”Call Behavior Actions” in support of modeling at a lower-level of ab-
straction. A called behavior is an activity diagram that is represented on the
main activity diagram by a Call Behavior Action as illustrated in the figure 6.
In addition, Activity diagrams also support for executability by mapping on to
class diagrams as discussed in [13]. In the paper, Activity Diagrams are used
in the modeling and implementation of graphical user interfaces, more precisely
in the controller part of the Model-View-Controller pattern and provide a way
to translate activity diagrams to class diagrams, which is an easily executable
modeling language.
Task models can also be represented at various abstraction levels. When de-
signers want to specify only requirements regarding how activities should be
performed, they consider only the main high-level tasks. On the other hand,
when designers aim to provide precise design indications then the activities are
represented at a small granularity, thus including aspects related to the dialogue
model of a user interface (which defines how system and user actions can be se-
quenced) [10]. Furthermore, CTT tasks have attributes such as the Platform
Attribute, which allows designers to specify for what type of platform the task
is suitable. It is also possible to specify for each object manipulated by the
task in which platform it is suitable to support them. This type of information
allows designers to better address the design of nomadic applications that can
be accessed through a wide variety of platforms. In addition, once the task
model has been developed, TERESA [14] is used for the user interface code
generation. TERESA is a transformation-based tool that semi-automatically
generates multi-device interfaces.
The IFML uses its core constructs to represent front end modeling at a higher
level of abstraction encapsulating technological aspects such as executability
on multiple platforms. However, despite IFML being a platform independent
language, it has been designed in a way it can be executable. This is ob-
tained through model transformations and code generation of IFML models
constructed with its extension elements which add more expressive power to

31



technology specifications such as web, mobile and desktop platforms. Moreover,
much like the previously discussed formalisms, IFML enables for specifying its
modeling elements at different levels of precision. For example, at the most ab-
stract level, a ViewComponent can be just a ”box with a name” without further
details which keeps the specification very general and easy to produce but may
overlook important information needed for model checking and code generation.
Thereby, at an intermediate level of abstraction, IFML allows a standard way
of binding ViewComponent to elements of the domain model. This is impor-
tant because, for example, a ViewComponent ”Index of Products” can actually
derive its content from the instance of a ”Product” entity of the domain model.
Furthermore, at the most refined level, the ViewComponent construct can be
extended with specialized subclass to express specific ways in which content is
presented. For example, a List ViewComponent can be defined in a way that
aims at publishing an ordered set of objects from which the user can select one
item.

4.5. Tools Support

BPMN has been around for quite long since its development and com-
mercial usage. Hence, there are various open source and commerical tools in
support of many features as shown in figure 24. We can also easly conclude that
BPMN has rich documentation and community support mainly due to its stan-
dardization by the OMG and the many tools in support of BPMN integration
for enterprise system modeling. Being part of the Unified Modeling Language

Figure 24: BPMN modeling tools and features. Image adopted from Wikipedia.

and a standard of OMG, Activity diagrams also have a rich set of tools and ac-
tive community involvment. One particular tool in support of UML ADs is the
Enterprise Architect, which enables for code generation from Activity diagrams
in a Class that require a validation phase, during which Enterprise Architect

32



uses the system engineering graph optimizer to analyze the diagram and render
it into various constructs from which code can be generated.
While task modeling and task-based design are entering into current practice in
the design of interactive software applications, there is still a lack of tools and
community involvment supporting the development and analysis of task models.
However, the ConcurTaskTrees Environment (CTTE) [15] is an environment for
editing and analysing of task models useful to support design of interactive ap-
plications starting with the human activities to support. Once the task model
has been developed, TERESA [14] is used for the user interface code genera-
tion. TERESA is a transformation-based tool that semi-automatically generates
multi-device interfaces. This tool uses the XML file, generated from the task
model specified by ConcurTaskTree language. This XML specification is auto-
matically generated by CTTE.
Moreover,IFML model analysis and code generation process is facilitated with
the help of a commerical tool such as WebRatio and an open source Eclipse
plug-in. However, these tools lack some essential features such as integrating
IFML models to a certain behavioral modeling languages, e.g. UML class di-
agram, for specifying behavioral/operational aspects of a user interface. Both
tools incoorporate Entity Relationship (ER) diagrams as a domain model from
which IFML elements can refer to as a source of informational content display.
WebRatio, on one hand provides external service components for invoking back-
end operational aspects related to the application business logic. In addition,
similar to CTT, IFML also has less community support mainly due to its recent
development/launch and its late standardization by the OMG.

4.6. Integration with other formalisms

As previously discussed, many modeling formalisms are specialized to
represent certain domains and hence do not allow for a comprehensive sys-
tem design. In addition, they also enable to express models with high-level of
abstraction which prohibit simple code generation mechanism. The focus of
this section is to assess the possibility of integrating the previously discussed
formalisms, with great emphasis to IFML, among one another and with a stan-
dard software engineering modeling paradigm, such as the UML, to support
for an end to end system design and integration with executable languages for
code generation. In light of this, IFML, BPMN, and AD are well adopted
by OMG’s Model-driven architecture (MDA) framework, which is a software
design approach for the development of software systems, and supports model-
driven engineering (MDE) of software systems. Thus, being part of the MDA
framework enables for a tight integration of each formalism with other system
modeling perspectives. Hence, we will first look at how IFML, BPMN, and AD
integrate with each other and with other UML modeling languages to achieve
the aforementioned system design goals.
In many cases, system development starts from a requirements model, such as
UML use case diagrams, or from a procedural view of the enterprise operations,
such as business process models specified in OMG’s BPMN [1]. IFML enables
the traceability of user interaction models to the requirement specifications that

33



generated them; made possible by establishing a reference between the require-
ments model of interest, such as BPMN, and the IFML model derived from
it, supported by the tool WebRatio. Moreover, the internal functioning of an
IFML Action construct, which is considered as a ”black box” for being unaware
of internal state changes of a system, can be specified by referencing a method in
a UML class diagram. If the action is described by a complex behavior, this can
be obtained by referencing a UML dynamic diagram such as sequence diagram
or activity diagram. However, there is a lack of tool incoorporating this. In
addition,in WebRatio, the IFML ViewComponent construct specifies the pub-
lication of it’s content through ContentBinding, which establishes a reference
between the IFML diagram and a domain model ER diagram, where the object
of interest attributes are defined.
Furthermore, aiming at integrating task models represented in ConcurTask-
Trees and the UML is of great interest mainly because not all UML notations
are equally relevant to the design of interactive systems. Task modelling phase
of interactive system development allows designers to obtain an integrated view
of functional and interactional aspects. Interactional aspects, related to the
ways to access system functionality, in particular cannot be captured well in use
cases; which, however, are commonly used during the requirement elicitation
phase. Moreover, in system’s design, there is a desire to achieve a complete
identification of the objects belonging to the domain considered and the rela-
tionships among them. Designers need to associate tasks with objects in order
to indicate what objects should be manipulated to perform each task. This
information can be directly introduced in the task model. In CTT it is possible
to specify the references between tasks and objects. However, in the domain
model, more elaborate relationships among the objects are identified, such as
association, dependency, flow, generalisation, etc., and they can be easily sup-
ported by UML class diagrams.
Another aspect of integrating formalisms is to facilitate an easy mechanism for
code generation. As discussed in previous sections, BPMN can be mapped onto
BPEL, a low-level executable language. In addition, Activity diagrams can be
translated to class diagrams for executable code. Using model transformation
techniques, CTT task models can also be mapped to TERESA for user interface
generation, as discussed in tools support section. IFML is also designed in a
way it can be executable through model transformations and code generation of
its models constructed with its extension elements which add more expressive
power to technology specifications such as web, mobile and desktop platforms.

5. Experimental Analysis

The comparative analysis can be well supported with an experimental
demonstration as discussed in this section. This experiment part consists of
three tasks.

• IFML model representation for a BPMN model and an Activity Diagram:
This experiment deals with constructing an ”Online Shopping Applica-

34



tion” which allows the three formalisms to model the application in dif-
ferent perspectives as follows:
A BPMN Model is used as a process model to describe the work flow
of the application at the level of business information. Hence, When the
user enters into the website, starts exploring the products available. Once
he finds a product of interest, selects it, and the item goes to the shopping
cart. The user can either keep exploring products in order to add more
items to his order, or continue to manage the shopping cart by deleting all
the products, or updating quantities of the selected ones. Once the user
is ready to proceed with the payment, performs the checkout. In order
to authorize the payment, it’s necessary to send the customer informa-
tion to the bank entity, and wait for the confirmation. This procedure is
illustrated in figure 25. At a more refined level, the Activity diagram

Explore 
Products

Select
Product

Manage Cart Checkout Confirm

Bank

C
us

to
m

er

Figure 25: BPMN model for Online Shopping Application

with data flow illustrated in figure 26, is used to model the application
describing the steps undertaken in a corresponding use-case and denotes
the procedural flow of actions, including data flow, assumed to be fulfilled
by the online customer.

35



Figure 26: Activity diagram for Online Shopping Application

36



The IFML model typically illustrates the front-end modeling of the ap-
plication corresponding to the two models described above. Figure 27
shows that the user’s interaction flow at the application level actually com-
ply with the activity diagram denoting the procedural flow of activities
undertaken. This can be further illustrated in the results and discussion
section. Thus, the purpose of this experiment is to deduce if the Activity

Figure 27: IFML model for Online Shopping Application

diagram constructs, from the control-flow and data-flow perspective, can
be emulated in IFML with exactly the same semantics.

• ”Crazy Rectangles” demo in IFML: The focus of this experiment is on
UI modeling utilizing the IFML formalism. The model incorporates spe-
cial features such as the support for timed events, triggering and handling
events autonomously, reactive to events from outside, e.g. user, and pos-
sible to instantiate multiple objects dynamically.
Hence, the goal of this experiment is to model an application that when
started, spawns a window. If a button is clicked in the window, a rectangle
object which can contain text labels, is created at that location, and it
moves around in the window canvas but bounces back from the sides of
the canvas. It is also possible to create multiple rectangles in the window
denoting multiple instantiation and dynamic structure of the application.

37



Additionally, there is a button to create new windows, exactly like the
first one, where it is also possible to create new rectangles. Key presses
also trigger event handlers to, for example, edit a text label, rotate, scale,
move objects, create new objects, etc.

• Code Generation: As the focus of this paper is on executable models
following the MDE paradigm, it is imperative to assess how code can be
generated for the above discussed two modeling tasks.

5.1. Results and Discussion

This section provides an elaboration to the results obtained while con-
ducting the above mentioned experimental tasks.

5.1.1. IFML model representation for a BPMN model and an Activity Diagram

As mentioned previously, the purpose of this experiment is to deduce if
the Activity diagram constructs, from a control-flow and data-flow perspective,
can be emulated in IFML with exactly the same semantics. Hence, a subset
of both formalisms is selected to illustrate model transformation is possible, as
follows:

• Merge Node and Exclusive Join in IFML: In the IFML model, the user can
choose to view a particular item detail by triggering either one of the events
attached to the ”Search result” or ”Product List” ViewComponent, which
pass the selected item object to the ”Product detail” ViewComponent
to make it visible the its parent ”Add to cart” ViewContainer active.
Similarly, this pattern is observed in the AD by the ”Merge” node preceded
by two ”Select an Item” action constructs where the execution of either
one of them will change its procedural flow to yield a ”Selected Item” data
object as an input to ”View Item” action.

• Parameter Binding and Object Nodes: A ”ParameterBinding” construct
is in place for input-output data dependency between any IFML elements
that capture data-flow in the IFML model. It is denoted by the small
rectangular shapes associated to a navigational flow indicating the data
dependency among the source and the target element. Also to note is
that the IFML ”ViewComponent” constructs publish their data content
from a referenced domain model source, i.e. ER diagram as in Figure 28.
Likewise, the AD makes use of ”Object Nodes” as the simplest method of
describing the information flowing between activities. However, another
way of capturing data flow in AD, which uses an ”Output Pin” and an
”Input Pin” constructs, provides a more precise semantics equivalent to
the IFML ”ParameterBinding” constructs since it enables to separately
describe the outputs from one action and the inputs to another.

• Join Node and Synchronization in IFML: The ”Add to cart” Action con-
struct in the IFML model is triggered as a result of the synchornization
of both input flows directed to it. The data flow denoted by a dashed line

38



Figure 28: ER diagram as a domain modeling concept for the Online Shopping Application

is enabled when the attached ”Product detail” ViewComponent is active
and passes the product object to the action. However, the action con-
struct is triggered when the other input navigational flow is enabled as a
result of providing quantity by the user and the quantity data is binded
with the action. In a similar manner, the AD has a ”Join” node which
takes two input and produces an output action ”Add to shopping cart”.
This action is triggered as a result of enabling both input Object Nodes,
i.e. ”Selected Item” and ”Quantity”, thus representing synchonization
control-flow pattern. It is worth to note that synchonization in AD has
a slightly different semantic than IFML because it implies that the input
branches for the ”Join” node actually perform in parallel while in IFML
it can be in any order.

• Iteration: When the state of the interface changes to ”Manage shopping
cart” ViewContainer in the IFML model, it is possible to repetedly provide
update to the quantity of an item. This is because everytime when the
”UpdateQty” action is triggered and it successfully executes, it preserves
the state of the interface which remains unchanged but the sequence of
interaction flow carried out to perform an update can repeat until the user
wishes not to. This control flow pattern is also easily recognized in the
AD denoted by the ”Update Quantity Iteration” node.

• Decision Node and Conditional branching in IFMl : In the IFML model,
when the state of the interface is in ”Manage shopping cart” ViewCon-
tainer, the user can choose to do more shopping by accessing the home
page or proceed to checkout by triggering the corresponding attached
event. The ”Home” ViewContainer is accessable because it has a sterio-
type [L] denoting the page is accessible by its siblings and their children.
Similarly, the AD makes use of ”Decision” nodes to provide for the same
control-flow pattern where it has an input branch from ”View shopping

39



cart list” and three possible conditional branchings as an output.

5.1.2. ”Crazy Rectangles” demo in IFML

For modeling the desired behavior of this demo application, IFML sup-
ports for ”Event” constructs that can be produced by a user’s interaction, by
the application itself, or by an external system. Moreover, these modeling ele-
ments also yield event transitions that specify the consequence of an event on
the UI. These transition can be:

• A change of the ViewContainer (e.g a web page),

• An update on the content on display (e.g. data published on ViewCom-
ponents placed on a ViewContainer),

• The triggering of an ”Action” construct, or

• A mixture of these effects.

Hence, the IFML ”Action” construct has such a semantics denoting the exe-
cution of these types of operations (e.g. services performed by the application
business logic). However, the ”Action” construct in IFML is considered as a
”black box” for not describing the internal functioning of an operation. The
goal of IFML’s action construct is rather to express the interplay (i.e. the mini-
mal amount of information needed) between the interface and the business logic.
This is done by:

• Showing that an event triggers an operation (business action), which may
imply also the specification of some input-output dependency between the
information carried by the interface and the business logic, and/or

• Describing the input-output dependency between the information carried
by a system event and the affected elements of the interface, in the case
when the interface receives and responds to events generated by ”the sys-
tem”.

Thus, IFML does not replace the behavioral specifications that are normally
employed to describe the algorithmic aspects of an operation. In support of
such refinement, an Action construct in IFML can reference a behavioral mod-
eling language such as the UML class diagram, which are not only containers
of information but also allow the specification of behavior. IFML refers to class
objects that provide data content to be published in the application front-end;
and events triggered within the interface may cause the execution of class meth-
ods, which may update objects and change the status of the interface.
However, the two tools available in support of IFML, at the time of publication,
(i.e. WebRatio and IFML plug-in on Eclipse environment) allow for referencing
a domain modeling concept- i.e. the Entity-Relationship model, only to describe
what pieces of data are published in the interface. Hence, the fact that IFML,
on its own, has a limitation for not describing the internal behavioral specifica-
tions of an object, and the lack of tools support for referencing an IFML model

40



to a behavioral modeling language has been a major obstacle to further pursue
the task illustrated in the ”Crazy Rectangles” experiment.

5.1.3. Code Generation

This section provides the results obtained while executing the IFML
model capturing the UI components and their interaction flow represented in
an ”Online Shopping Application”. Thus, the WebRatio community platform,
being the prefered tool for this task, has the option of generating and deploying
IFML models on cloud. However, the ”Action” constructs generated an error
mainly due to lacking an external service call to execute the specified operations.
This is because the IFML model representing the front-end of the application
has to create and connect with a certain database system utilizing the avail-
able entities in the corresponding ER diagram and specify the operations as
an external service, such as ”Add to Cart”, to actually create objects in the
connected DBMS. Thus, generating a fully fledged web application will be out
of the scope of this paper’s work and requires a learning curve that deal with
other technologies integrated with the IFML model in the working platform.

6. Conclusion

In this paper, a literature review has been conducted for the task of
UI modeling in the context of a model-driven engineering paradigm. The IFML
formalism, an OMG standard for front-end design, has been extensively explored
for its appropriateness by assessing its support for essential features indicated
in workflow design patterns. In particular, a set of evaluation criteria has been
drawn for comparing the IFML with similar formalisms, such as BPMN, AD,
and CTT, in addition to conducting relevant experimental tasks for further
assessment. The subsequent findings are also presented.
Thus, after analyzing the results of this comparative study, we can conclude
that the following areas stand to be uncommon in the literature review and the
experimental tasks, hence relevant for future reserach in UI modeling:

• In IFML, complex user interaction pattern, such as multiple instantiation
of an object at run-time, is not discussed in the literature reviewed and
thus indicates its lack of support.

• The IFML notations support for Asynchronous message exchange (service
invocation) modality is not explored in the literature reviewed.

• The IFML’s ”Action” construct lacks the appropriate semantics which
supposedly denotes the purpose of expressing and executing behavioral
aspects of a user interface. Instead, it simply serves as an interplay for
binding information between the front-end and the business logic of an
application.

• In support of further refinement to the IFML’s ”Action” construct, it
is indicated in the literature reviewed that it can reference behavioral

41



modeling languages, such as the UML Activity diagram, for specifying its
internal operational aspects which dynamically influence the state of UI
components. However, the limited number of tools supporting the IFML
formalism do not implement this essential feature.

The IFML, however, addresses many of the design patterns incoorporated in
workflow modeling languages, particularly of an interest are the control-flow and
data-flow perspectives of an interactive systems modeling. Nonetheless, in light
of addressing the aforementioned issues to identify an appropriate formalism
for a model-driven UI engineering task, a more pragmatic approach with the
appropriate tools support for multi-formalisms, such as a subset of the IFML
with other behavioral modeling languages, is proposed.

42



References

[1] M. Brambilla, P. Fraternali, Interaction Flow Modeling Language: Model-
Driven UI Engineering of Web and Mobile Apps with IFML, Morgan Kauf-
mann, December 3, 2014.

[2] S. A. White, Process modeling notations and workflow patterns.

[3] Object Management Group, http://www.omg.org/spec/BPMN, Business
Process Model and Notation (BPMN), bPMNv2.0.2 Specification Docu-
ment (12 2013).

[4] R. M. Dijkman, M. Dumas, C. Ouyang, Semantics and analysis of business
process models in BPMN, Information and Software Technology 50 (12)
(2008) 1281–1294. doi:http://eprints.qut.edu.au/7115/.

[5] W. P. van der Aalst, Business process management: A com-
prehensive survey, ISRN Software Engineering 2013 (2012) 37.
doi:w.m.p.v.d.aalst@tue.nl.

[6] S. A. White, Introduction to BPMN, Tech. rep., IBM Corporation.

[7] P. Wohed, M. Dumas, A. T. Hofstede, N. Russell, Pattern-based analysis of
uml activity diagrams, in: Eindhoven University of Technology, Springer,
2004, p. 242.

[8] H. Strrle, Semantics and verification of data flow in uml 2.0 activities, in:
In Electronic Notes in Theoretical Computer Science. Elsevier Science Inc,
Elsevier, 2004, pp. 35–52.

[9] D. Bell, Uml basics- the activity diagram, Tech. rep. (2004).

[10] F. Patern, Concurtasktrees: An engineered approach to model-based design
of interactive systems (2000).

[11] M. Vasko, S. Dustdar, A view based analysis of workflow modeling lan-
guages.

[12] N. Russell, A. T. Hofstede, D. Edmond, Workflow data patterns, Tech. rep.
(2004).

[13] J.-P. Barros, L. Gomes, From activity diagrams to class diagrams.

[14] S. Berti, F. Correani, G. Mori, F. Patern, C. Santoro, Teresa: A
transformation-based environment for designing and developing multi-
device interfaces.

[15] G. Mori, F. Paterno, C. Santoro, CTTE: Support for developing and an-
alyzing task models for interactive system design, IEEE Transactions on
Software Engineering 28 (8).

43


