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Abstract
This paper illustrates how meta-modelling and model-
transforming can be used to create a highly specialised 
CASE tool for the homemade so-called Simplified Class 
Diagrams (SCD), and to provide automated code 
generation of Zope Products. Products provide a way to 
extend Zope with custom types of objects tailored to 
specific applications needs. We informally introduce 
Simplified Class Diagrams and consequently model them 
in the Entity Relationship formalism with the meta-
modelling tool AToM3 (A Tool for Multi-formalism and 
Meta-Modelling). Based on this metamodel, AToM3 can 
generate a completely new SCD modelling tool. Finally, we 
describe a transformation that generates a Zope product for 
a given SCD class diagram, and provide an example of 
such a model-transforming.

INTRODUCTION
The emergence of the world-wide web (WWW) and its 

popularity in the simulation community gave birth to the 
concept of web-based simulation [Fishwick 1996], which 
now includes (among others) activities that deal with the 
use of the WWW as infrastructure to support distributed 
simulation execution and encompasses research in tools, 
environments and frameworks that support the distributed, 
collaborative design and development of simulation models 
[Page 1998].

Within this domain, several years ago we started a 
Collaborative Simulation project in which a generic web 
environment is developed to support simulation and 
modelling components in multidisciplinary collaborative 
projects [Levytskyy et al., 2001]. The environment’s 
functionality is similar to that of the DLR-IMF 
Virtual Laboratory [Ernst et al., 2003]. The practical 
application of our prototyped environment lies 
in the so-called NanoComp project, which investigates 
computing systems based on quantum devices; therefore 
the environment is named NanoComp Simulation 
Environment (NCSE).

NCSE runs under Zope (www.zope.org) and is based
on two major types of remote resources: conventional tools 
and models, which are maintained by the collaborative 
groups that own them [Levytskyy and Kerckhoffs 2001]. 
The environment provides: (i) an infrastructure that 
connects remote resources to their respective web-façades 
(proxy objects accessible from the web) via a distributed 
object middleware; (ii) centralised control to access remote 
resources; and (iii) on-line services, such as registration, 
discovery and processing of resources (i.e. simulation of a 
registered model with an integrated simulation tool). These 
web-façades are containers for data describing properties of 
the remote counterpart tools and models, thus enabling the 
above-mentioned services. Since 2002, NCSE includes 
meta-modelling capabilities with the assistance of AToM3

(A Tool for Multi-formalism and Meta-Modelling).
AToM3 is a visual tool for meta-modelling and model-

transforming. Meta-modelling refers to modelling 
formalism concepts at a meta-level, and model-
transforming refers to automatic converting, translating or 
modifying a model of a given formalism into another 
model of the same or different formalism [Vangheluwe et 
al., 2002]. This allows AToM3 to be used in the meta-
CASE application domain [de Lara and Vangheluwe 
2002b]. A meta-CASE tool allows users to specify their 
engineering method, code generation and produces a 
CASE-tool supporting that method. Examples of such tools 
are MetaEdit+ (http://www.metacase.com/) and KOGGE 
(http://www.uni-koblenz.de/~ist/kogge.en.html).

In NCSE, AToM3 is used as meta-CASE Tool to 
specify meta-models for various formalisms to be 
supported by the environment. Given such a metamodel, 
AToM3 is transformed into a CASE tool for the specified 
formalisms. Finally, we employ the model-transforming 
capabilities (a) to generate job descriptions for the NCSE 
controller and (b) given a formalism’s metamodel, to 
synthesize Python code for the components of the NCSE 
environment. 

This paper illustrates how meta-modelling and model-
transforming can be used to create a highly specialised 
UML-based CASE tool. In contrast to conventional CASE 
tools, such as Rational Rose tools, Objecteering or 
Poseidon, that only support selected and rather complex 
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mainstream methods such as UML, Booch, OMT and 
OOSE and technologies such as Java, C++, VB, CORBA 
IDL, this AToM3-generated tool is adapted to our 
homemade so-called Simplified Class Diagrams (SCD) and 
provides automated Python code generation for Zope 
Products. 

In the rest of the paper we informally introduce 
Simplified Class Diagrams that are consequently meta-
modelled. Based on this metamodel, AToM3 can generate a 
completely new SCD modelling tool. The next section 
describes an SCD-to-ZProduct transformation that 
generates Python code of a Zope product for a given SCD 
model, followed by an example of model-transforming. We 
conclude the paper with final remarks.

SIMPLIFIED CLASS DIAGRAMS
Our primary goal in this meta-modeling case is to be 

able to explicitly design the core components used in 
NCSE, at meta-level. Given our preference for the Object 
Orientated Framework, we choose to base our design 
method on the UML class diagrams. UML (Unified 
Modeling Language) is a common language for creating 
models of object-oriented systems [Rumbaugh et al., 1999].

We selected and adapted to our needs a subset of UML 
specifically related to the Class Diagram notation, which 
provides a static overview of a system by showing its 
classes and relationships among them. The resulting set of 
modified UML constructs is further on referred to as 
Simplified Class Diagrams (SCD) and consists of the 
elements Class, Association and Generalization. Figure 1
shows graphical presentations of the SCD constructs.

Figure 1. SCD notation

Unified Modeling Language is defined by two 
metamodels that serve different purposes. The UML 
metamodel is described in UML notation diagrams, OCL 
constraints, and text, and is intended to convey the concepts 
and semantics of UML to the human reader. The UML-
based UML metamodel is thoroughly described in the 
semantics chapter of the UML specification [OMG 2001]. 
Alternatively, the UML metamodel is defined using the 
Meta-Object Facility (MOF) specified in [OMG 2002]. 
MOF provides a much narrower and more stringent set of 
modeling constructs than UML; these constructs serve as a 
basis for generating APIs, DTDs, repositories, and other 
computing activities. 

We model the SCD constructs after and as close as 
possible to the (original) UML-based metamodel of UML 
as specified in the Foundation-Core-Backbone package of 
[OMG 2001]; however, we stress that SCD is fewer in 
quantity and simpler in features then UML Class Diagrams.

METAMODEL
A metamodel of a given formalism specifies the syntax 

aspect of the formalism by defining the language constructs 
and how they are built-up in terms of other constructs. To 
construct an SCD metamodel we used Entity Relationship 
(ER) diagrams extended with constraints, a default meta-
formalism of AToM3. Constraints further restrict how a 
construct can be connected to another construct to be 
meaningful, and thus specify static semantics of the 
formalism.

Each construct is specified with a full Descriptor and 
Relationships, constrained with Constraints (Well-
Formedness Rules in UML), annotated with a Comment, 
and appears according to its Appearance
(PresentationElement in UML). Since ER does not feature 
the inheritance mechanism inherent to object-oriented 
languages, a full descriptor of a construct is obtained by 
combining the (modified) segment descriptors of the 
corresponding UML element and that element’s ancestors.

Figure 2. SCD metamodel

Figure 2 llustrates how the constructs SCDAssociation, 
SCDClass and SCDGeneralization build up the SCD 
metamodel. Please note that Constraints and Appearance 
are parts of each element in the metamodel and are not 
visible in the figure. The formal specification of SCD 
constructs is given below (Constraints and Comments are 
omitted to save space):

SCDASSOCIATION

Descriptor:
name is a unique name within the enclosing namespace: 

String = ”Association”
aggregation is a specification of aggregation kind: 

Enum {aggregate, composite, none}
documentation is a documentation string: String

Relationships:
whole designates the “whole” participant of the 

association; Association-to-whole multiplicity (1:1)
part designates the “part” participant of the association; 

Association-to-part multiplicity (1:1..*)

Appearance:
An association is a solid connector with a diamond 
end pointing to the part containing the whole 
(Figure 1a); its aggregation kind is denoted with a 
label at the center of the arrow.
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GENERALIZATION

Descriptor:
discriminator designates a partition to which the 

Generalization belongs: String = “”
documentation is a documentation string: String

Relationships:
parent designates a generalized version of the child class:

Generalization-to-parent multiplicity (1:1)
child designates a specialized version of the parent class;

Generalization-to-child multiplicity (1:1)

Appearance:
A generalization is a solid connector with a triangle 
pointing to the parent class (see Figure 1b).

SCDCLASS

Descriptor:
name is a unique name within the enclosing namespace: 

String = ”Class”
attributes is a collection of structural features owned by 

the Class (to be defined at the lower meta-level): 
Sequence (SCDAttributeType)

operations is a collection of behavioral features owned by 
the Class (to be defined at the lower meta-level): 
Sequence (SCDMethodType)

stereotype specifies an extension of the Classes: 
Enum {actor, …, utility}

visibility specifies access permission for the Class: 
Enum {public, protected, private}

isAbstract specifies if the Class may not have a direct 
instance: Boolean

isActive specifies if the Class is active or passive: 
Boolean

isLeaf specifies if the Class may not have descendants: 
Boolean

isRoot specifies if the Class may not have ancestors: 
Boolean

documentation is a documentation string: String

Relationships:
aggregation designates an Association connecting the 

“whole” element; Class-to-aggregation multiplicity 
(1:0..*)

participation designates an Association connecting the 
“part” element; Class-to-participation multiplicity 
(1:0..*)

generalization designates a Generalization whose parent is 
the immediate ancestor of the current class; 
Class-to-generalization multiplicity (1:0..*)

specialization designates a Generalization whose child is 
the immediate descendant of the current class; 
Class-to-specialization multiplicity (1:0..*)

Appearance:
Class is denoted with a rectangle divided into three 
horizontal sections containing class’s name in bold 
face, attributes and operations (see Figure 1c).

Along with the properties defined for each SCD 
construct, we also extend the global properties for the 

metamodel itself with regular attributes, such as title, 
subject, description, author, version and generative ones: 
attributes and constraints. They are used for documentation 
of models specified in this SCD formalism and for 
specifying global constraints. All global properties and 
regular attributes are to be filled-in at the lower meta-level 
by end-users of the SCD modeling tool to be generated.

Figure 3. Generated SCD modeling tool

Given our metamodel, we can now generate in AToM3

a meta-specification, which, when loaded into the meta-
level of AToM3, turns it into a new modeling environment 
for the designed SCD formalism. A part of this meta-
specification is a specification of the User Interface. This 
specification is a model in its own right and can be edited 
in AToM3 at any time under a so-called “Buttons” 
formalism. By default, this specification creates a button 
for every construct of the formalism. In addition, we 
created one extra button labeled “SCD-2-ZProduct”, which 
on click applies the code generation transformation to the 
model on the tool’s canvas. An instance of the generated 
SCD modeling tool is shown in Figure 3.

CODE GENERATION TRANSFORMATION
Model transformation is related to dynamic semantics 

of a formalism, which defines the meaning of well-formed 
constructs. This meaning can be described in a number of 
ways, e.g.: formalism transformation, model optimization, 
code generation and simulator specification.

This section describes a Python code generation for 
Zope products. Products provide a way to extend Zope 
[Pelletier et al.] and in our case NCSE, with custom types 
of objects tailored to specific applications needs. The 
described automated product construction is based on the 
mxm Easy product module [Max 2002].

In AToM3 model transformations are specified through 
Graph Grammars, and consist of Initial Action, Final 
Action and Transformation rules. Each rule consists of Left 
Hand Side (LHS) and Right Hand Side (RHS) graphs, and 
Condition, Action and Priority properties.

The Initial Action of the transformation creates a 
temporary global attribute body to store sequence of 
signatures of the classes to be generated in the product and 
iterates through all the elements of the current model 
(objects on the tool’s canvas) to augment them with 
temporary attributes: isVisited and isAssociated help to tell 
the elements that have been already processed from those 
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that have not yet. Attribute isSelected marks Classes that 
can be processed next. Attribute isCurrent marks a class 
among the selected ones to process next.

Figure 4. Subgraph match pattern

We designed the rules to match the pattern shown in 
Figure 4, where the entity element is an SCDClass, and the 
relationship element can be an instance of the other SCD 
constructs. The rightmost entity can be missing. Present 
elements are labeled with consequent numbers. In the 
following we briefly describe each rule:

RULEALLOWEDMETATYPES (priority 1) locates a pair of 
associated classes as shown in Figure 5 and copies the 
LHS to the RHS. Its action stores a reference to the 
participant of the association relationship or, if the 
participant is abstract, references to participant’s non-
abstract children in attribute parts of the current class; 
finally, it marks the participant as associated. An 
association can have multiple participants; therefore the 
rule may be applied more then once.

Figure 5. LHS graph for rule 1

Action
pre:  LHS.element0.isCurrent = 1 

 and LHS.element1.aggregation = #none
 and LHS.element2.isAssociated = 0

post: RHS.element2.isAssociated = 1

RULELOCATEIMMIDIATEPARENT (priority 2) locates an 
immediate parent of the current class as shown in 
Figure 6 and copies the LHS to the RHS. Its action marks 
the parent as selected, stores its name in attribute parents
of element 0 and elements 0 and 1 as visited. A child can 
have multiple parents, therefore the rule may be applied 
more then once to the same child and a new parent.

Figure 6. LHS graph for rule 2

Action
pre:  LHS.element0.isCurrent = 1 

 and LHS.element1.isVisited = 0
post: RHS.element0.isVisited = 1 

 and RHS.element1.isVisited = 1 
and RHS.element2.isSelected = 1

RULEMAKECLASSSIGNATURE (priority 3) locates the
current class (see Figure 7) and copies the LHS to the 
RHS. Its action makes a signature for the class, adds the 

signature to the global attribute body and marks the class 
as not current.

Figure 7. LHS graph for rule 3 and 4

Action
pre:  LHS.element0.isCurrent = 1 
post: RHS.element0.isCurrent = 0

RULECHOOSENEWCURRENT (priority 4) picks up a class 
among the selected classes and copies the LHS (see 
Figure 7) to the RHS. Its action marks the class as 
current, unselects it and adds temporary attributes 
parents and parts to it. This rule may return multiple 
matches and therefore requires parallel execution of the 
transformation.
Action
pre:  LHS.element0.isSelected = 1 

 and LHS.element0.isVisited = 0
post: RHS.element0.isCurrent = 1 

 and RHS.element0.isSelected = 0

The Final Action creates a blank product structure in the 
file system, generates proper Python code based on the 
sequence of signatures in attribute body, and saves the code 
into the created product files. As the last step, it iterates 
through all the elements on the tool’s canvas and removes 
the temporary attributes.

MODEL-TRANSFORMING
During execution of a model transformation, AToM3’s 

Graph Rewriting Processor (GRP) iterates through the list 
of rules sorted by their priority in an ascending order and 
tries to apply the current rule to the model. If the rule 
makes a match, i.e. LHS graph is found and conditions are 
met, it is executed and the GRP repeats trying each rule 
again from the beginning of the list. This continues until 
there are no more rules that can be applied, and then GRP 
completes the model transformation [de Lara and 
Vangheluwe 2002a].

Figure 8. A model in SCD formalism
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Figure 8 shows a model of the Coupled DEVS 
component created with the generated SCD modeling tool. 
The core of this diagram is a concrete class CoupledModel
and abstract class Component. The concrete class
AtomicModel is needed for its participation in the
association between CoupledModel and Component. Since 
Component is an abstract class and may not have direct 
instances, that relationship implies an instance of a child of 
class Component, i.e. an instance of either AtomicModel or 
CoupledModel. Root classes MRD (Metadata for Resource 
Discovery) and ARV (Abstract Resource View) provide 
features that enable registration, discovery and processing 
of CoupledModel instances under NCSE [Levytskyy 
and Kerckhoffs 2001].

A model-transforming process in AToM3 can be
launched in a variety of ways, e.g. by clicking the “SCD-2-
ZProduct” button of the graphical user interface. The 
transformation begins with class CoupledModel, which was 
selected (graphical attribute) by a modeler on the canvas.  
In case of this model, the sequence of executed rules is 4, 1, 
2, 3, 4, 2, 2, 3, 4, 3, 4 and 3. The result of the model 
transformation is a valid Python package implementing a 
Zope product. Figure 9 illustrates core class CoupledModel
of the synthesized product.

class CoupledModel(mxmObjectManager, MRD, ARV):
    """Coupled DEVS component."""

    meta_type = 'CoupledModel'

    _allowed_meta_types =('AtomicModel','CoupledModel')

    _properties = (
        {'type': 'string',    'id': 'name'},
        {'type': 'string',    'id': 'processor'},
        {'type': 'tokens',    'id': 'ports'},
        {'type': 'tokens',    'id': 'children'},
        {'type': 'tokens',    'id': 'EIC'},
        {'type': 'tokens',    'id': 'EOC'},
        {'type': 'tokens',    'id': 'IC'}
        {'type': 'selection', 'id': 'revision', \
         'select_variable': 'revision_values',},
        ) + MRD._properties + ARV._properties

    index_html = HTMLFile('www/index_html', globals())

    def revision_values (self):
        """Return list of DEVS revions."""
        return ['Classic', 'Parallel']

    def select (self):
        """Select an imminent component."""
        pass

Figure 9. Generated code

At this point a Zope developer can finalize the 
synthesized product by e.g. specifying an external 
implementation of the public interface index_html or 
implement internal methods (e.g. revision_values) and 
install it in the product directory of Zope installation. After 
Zope has been rebooted, a new type of objects, namely 
Coupled DEVS components, is added to NCSE, which just 
like the other NCSE components is easily documented, 
searchable and executable on-line in a standardized way. 
Client AToM3-generated tools can store abstract 

specifications of DEVS components in the NCSE Model 
Base, retrieve components for further reuse, and generate 
code for execution on one of the tools integrated in NCSE. 
More details about the environment’s registration, 
discovery and processing services can be found in 
[Levytskyy et al., 2001].

FINAL REMARKS
In this paper we have demonstrated how the concepts of 

meta-modelling and model-transforming are used to create 
a highly specialised CASE tool for the so-called Simplified 
Class Diagrams (SCD) and provide automated Python code 
generation for Zope products. Herein, the meta-modelling 
tool AToM3 is used as (meta-) CASE tool and a code 
generator. 

The current product construction is based on a 
minimum product framework and we plan to generalise it 
further in order to include such aspects as security, 
management interfaces, product packaging and 
documentation.
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