
From Class Diagrams to Zope Products with the Meta-Modelling Tool AToM3

Andriy Levytskyy and Eugene J.H. Kerckhoffs
Delft University of Technology

Faculty of Information Technology and Systems, Mediamatica Department
Mekelweg 4, 2628 CD Delft, The Netherlands

a.levytskyy@cs.tudelft.nl

Keywords: Class Diagrams, Metamodel, CASE Tool,
Code Generation, Zope Product

Abstract
This paper illustrates how meta-modelling and model-
transforming can be used to create a highly specialised
CASE tool for the homemade so-called Simplified Class
Diagrams (SCD), and to provide automated code
generation of Zope Products. Products provide a way to
extend Zope with custom types of objects tailored to
specific applications needs. We informally introduce
Simplified Class Diagrams and consequently model them
in the Entity Relationship formalism with the meta-
modelling tool AToM3 (A Tool for Multi-formalism and
Meta-Modelling). Based on this metamodel, AToM3 can
generate a completely new SCD modelling tool. Finally, we
describe a transformation that generates a Zope product for
a given SCD class diagram, and provide an example of
such a model-transforming.

INTRODUCTION
The emergence of the world-wide web (WWW) and its

popularity in the simulation community gave birth to the
concept of web-based simulation [Fishwick 1996], which
now includes (among others) activities that deal with the
use of the WWW as infrastructure to support distributed
simulation execution and encompasses research in tools,
environments and frameworks that support the distributed,
collaborative design and development of simulation models
[Page 1998].

Within this domain, several years ago we started a
Collaborative Simulation project in which a generic web
environment is developed to support simulation and
modelling components in multidisciplinary collaborative
projects [Levytskyy et al., 2001]. The environment’s
functionality is similar to that of the DLR-IMF
Virtual Laboratory [Ernst et al., 2003]. The practical
application of our prototyped environment lies
in the so-called NanoComp project, which investigates
computing systems based on quantum devices; therefore
the environment is named NanoComp Simulation
Environment (NCSE).

NCSE runs under Zope (www.zope.org) and is based
on two major types of remote resources: conventional tools
and models, which are maintained by the collaborative
groups that own them [Levytskyy and Kerckhoffs 2001].
The environment provides: (i) an infrastructure that
connects remote resources to their respective web-façades
(proxy objects accessible from the web) via a distributed
object middleware; (ii) centralised control to access remote
resources; and (iii) on-line services, such as registration,
discovery and processing of resources (i.e. simulation of a
registered model with an integrated simulation tool). These
web-façades are containers for data describing properties of
the remote counterpart tools and models, thus enabling the
above-mentioned services. Since 2002, NCSE includes
meta-modelling capabilities with the assistance of AToM3

(A Tool for Multi-formalism and Meta-Modelling).
AToM3 is a visual tool for meta-modelling and model-

transforming. Meta-modelling refers to modelling
formalism concepts at a meta-level, and model-
transforming refers to automatic converting, translating or
modifying a model of a given formalism into another
model of the same or different formalism [Vangheluwe et
al., 2002]. This allows AToM3 to be used in the meta-
CASE application domain [de Lara and Vangheluwe
2002b]. A meta-CASE tool allows users to specify their
engineering method, code generation and produces a
CASE-tool supporting that method. Examples of such tools
are MetaEdit+ (http://www.metacase.com/) and KOGGE
(http://www.uni-koblenz.de/~ist/kogge.en.html).

In NCSE, AToM3 is used as meta-CASE Tool to
specify meta-models for various formalisms to be
supported by the environment. Given such a metamodel,
AToM3 is transformed into a CASE tool for the specified
formalisms. Finally, we employ the model-transforming
capabilities (a) to generate job descriptions for the NCSE
controller and (b) given a formalism’s metamodel, to
synthesize Python code for the components of the NCSE
environment.

This paper illustrates how meta-modelling and model-
transforming can be used to create a highly specialised
UML-based CASE tool. In contrast to conventional CASE
tools, such as Rational Rose tools, Objecteering or
Poseidon, that only support selected and rather complex

ISBN: 1-56555-268-7 295 SCSC '03

mailto:a.levytskyy@cs.tudelft.nl
http://www.metacase.com/
http://www.uni-koblenz.de/~ist/kogge.en.html

mainstream methods such as UML, Booch, OMT and
OOSE and technologies such as Java, C++, VB, CORBA
IDL, this AToM3-generated tool is adapted to our
homemade so-called Simplified Class Diagrams (SCD) and
provides automated Python code generation for Zope
Products.

In the rest of the paper we informally introduce
Simplified Class Diagrams that are consequently meta-
modelled. Based on this metamodel, AToM3 can generate a
completely new SCD modelling tool. The next section
describes an SCD-to-ZProduct transformation that
generates Python code of a Zope product for a given SCD
model, followed by an example of model-transforming. We
conclude the paper with final remarks.

SIMPLIFIED CLASS DIAGRAMS
Our primary goal in this meta-modeling case is to be

able to explicitly design the core components used in
NCSE, at meta-level. Given our preference for the Object
Orientated Framework, we choose to base our design
method on the UML class diagrams. UML (Unified
Modeling Language) is a common language for creating
models of object-oriented systems [Rumbaugh et al., 1999].

We selected and adapted to our needs a subset of UML
specifically related to the Class Diagram notation, which
provides a static overview of a system by showing its
classes and relationships among them. The resulting set of
modified UML constructs is further on referred to as
Simplified Class Diagrams (SCD) and consists of the
elements Class, Association and Generalization. Figure 1
shows graphical presentations of the SCD constructs.

Figure 1. SCD notation

Unified Modeling Language is defined by two
metamodels that serve different purposes. The UML
metamodel is described in UML notation diagrams, OCL
constraints, and text, and is intended to convey the concepts
and semantics of UML to the human reader. The UML-
based UML metamodel is thoroughly described in the
semantics chapter of the UML specification [OMG 2001].
Alternatively, the UML metamodel is defined using the
Meta-Object Facility (MOF) specified in [OMG 2002].
MOF provides a much narrower and more stringent set of
modeling constructs than UML; these constructs serve as a
basis for generating APIs, DTDs, repositories, and other
computing activities.

We model the SCD constructs after and as close as
possible to the (original) UML-based metamodel of UML
as specified in the Foundation-Core-Backbone package of
[OMG 2001]; however, we stress that SCD is fewer in
quantity and simpler in features then UML Class Diagrams.

METAMODEL
A metamodel of a given formalism specifies the syntax

aspect of the formalism by defining the language constructs
and how they are built-up in terms of other constructs. To
construct an SCD metamodel we used Entity Relationship
(ER) diagrams extended with constraints, a default meta-
formalism of AToM3. Constraints further restrict how a
construct can be connected to another construct to be
meaningful, and thus specify static semantics of the
formalism.

Each construct is specified with a full Descriptor and
Relationships, constrained with Constraints (Well-
Formedness Rules in UML), annotated with a Comment,
and appears according to its Appearance
(PresentationElement in UML). Since ER does not feature
the inheritance mechanism inherent to object-oriented
languages, a full descriptor of a construct is obtained by
combining the (modified) segment descriptors of the
corresponding UML element and that element’s ancestors.

Figure 2. SCD metamodel

Figure 2 llustrates how the constructs SCDAssociation,
SCDClass and SCDGeneralization build up the SCD
metamodel. Please note that Constraints and Appearance
are parts of each element in the metamodel and are not
visible in the figure. The formal specification of SCD
constructs is given below (Constraints and Comments are
omitted to save space):

SCDASSOCIATION

Descriptor:
name is a unique name within the enclosing namespace:

String = ”Association”
aggregation is a specification of aggregation kind:

Enum {aggregate, composite, none}
documentation is a documentation string: String

Relationships:
whole designates the “whole” participant of the

association; Association-to-whole multiplicity (1:1)
part designates the “part” participant of the association;

Association-to-part multiplicity (1:1..*)

Appearance:
An association is a solid connector with a diamond
end pointing to the part containing the whole
(Figure 1a); its aggregation kind is denoted with a
label at the center of the arrow.

ISBN: 1-56555-268-7 296 SCSC '03

GENERALIZATION

Descriptor:
discriminator designates a partition to which the

Generalization belongs: String = “”
documentation is a documentation string: String

Relationships:
parent designates a generalized version of the child class:

Generalization-to-parent multiplicity (1:1)
child designates a specialized version of the parent class;

Generalization-to-child multiplicity (1:1)

Appearance:
A generalization is a solid connector with a triangle
pointing to the parent class (see Figure 1b).

SCDCLASS

Descriptor:
name is a unique name within the enclosing namespace:

String = ”Class”
attributes is a collection of structural features owned by

the Class (to be defined at the lower meta-level):
Sequence (SCDAttributeType)

operations is a collection of behavioral features owned by
the Class (to be defined at the lower meta-level):
Sequence (SCDMethodType)

stereotype specifies an extension of the Classes:
Enum {actor, …, utility}

visibility specifies access permission for the Class:
Enum {public, protected, private}

isAbstract specifies if the Class may not have a direct
instance: Boolean

isActive specifies if the Class is active or passive:
Boolean

isLeaf specifies if the Class may not have descendants:
Boolean

isRoot specifies if the Class may not have ancestors:
Boolean

documentation is a documentation string: String

Relationships:
aggregation designates an Association connecting the

“whole” element; Class-to-aggregation multiplicity
(1:0..*)

participation designates an Association connecting the
“part” element; Class-to-participation multiplicity
(1:0..*)

generalization designates a Generalization whose parent is
the immediate ancestor of the current class;
Class-to-generalization multiplicity (1:0..*)

specialization designates a Generalization whose child is
the immediate descendant of the current class;
Class-to-specialization multiplicity (1:0..*)

Appearance:
Class is denoted with a rectangle divided into three
horizontal sections containing class’s name in bold
face, attributes and operations (see Figure 1c).

Along with the properties defined for each SCD
construct, we also extend the global properties for the

metamodel itself with regular attributes, such as title,
subject, description, author, version and generative ones:
attributes and constraints. They are used for documentation
of models specified in this SCD formalism and for
specifying global constraints. All global properties and
regular attributes are to be filled-in at the lower meta-level
by end-users of the SCD modeling tool to be generated.

Figure 3. Generated SCD modeling tool

Given our metamodel, we can now generate in AToM3

a meta-specification, which, when loaded into the meta-
level of AToM3, turns it into a new modeling environment
for the designed SCD formalism. A part of this meta-
specification is a specification of the User Interface. This
specification is a model in its own right and can be edited
in AToM3 at any time under a so-called “Buttons”
formalism. By default, this specification creates a button
for every construct of the formalism. In addition, we
created one extra button labeled “SCD-2-ZProduct”, which
on click applies the code generation transformation to the
model on the tool’s canvas. An instance of the generated
SCD modeling tool is shown in Figure 3.

CODE GENERATION TRANSFORMATION
Model transformation is related to dynamic semantics

of a formalism, which defines the meaning of well-formed
constructs. This meaning can be described in a number of
ways, e.g.: formalism transformation, model optimization,
code generation and simulator specification.

This section describes a Python code generation for
Zope products. Products provide a way to extend Zope
[Pelletier et al.] and in our case NCSE, with custom types
of objects tailored to specific applications needs. The
described automated product construction is based on the
mxm Easy product module [Max 2002].

In AToM3 model transformations are specified through
Graph Grammars, and consist of Initial Action, Final
Action and Transformation rules. Each rule consists of Left
Hand Side (LHS) and Right Hand Side (RHS) graphs, and
Condition, Action and Priority properties.

The Initial Action of the transformation creates a
temporary global attribute body to store sequence of
signatures of the classes to be generated in the product and
iterates through all the elements of the current model
(objects on the tool’s canvas) to augment them with
temporary attributes: isVisited and isAssociated help to tell
the elements that have been already processed from those

ISBN: 1-56555-268-7 297 SCSC '03

andriy
In fact, it makes out model a meta-meta-model.

that have not yet. Attribute isSelected marks Classes that
can be processed next. Attribute isCurrent marks a class
among the selected ones to process next.

Figure 4. Subgraph match pattern

We designed the rules to match the pattern shown in
Figure 4, where the entity element is an SCDClass, and the
relationship element can be an instance of the other SCD
constructs. The rightmost entity can be missing. Present
elements are labeled with consequent numbers. In the
following we briefly describe each rule:

RULEALLOWEDMETATYPES (priority 1) locates a pair of
associated classes as shown in Figure 5 and copies the
LHS to the RHS. Its action stores a reference to the
participant of the association relationship or, if the
participant is abstract, references to participant’s non-
abstract children in attribute parts of the current class;
finally, it marks the participant as associated. An
association can have multiple participants; therefore the
rule may be applied more then once.

Figure 5. LHS graph for rule 1

Action
pre: LHS.element0.isCurrent = 1

 and LHS.element1.aggregation = #none
 and LHS.element2.isAssociated = 0

post: RHS.element2.isAssociated = 1

RULELOCATEIMMIDIATEPARENT (priority 2) locates an
immediate parent of the current class as shown in
Figure 6 and copies the LHS to the RHS. Its action marks
the parent as selected, stores its name in attribute parents
of element 0 and elements 0 and 1 as visited. A child can
have multiple parents, therefore the rule may be applied
more then once to the same child and a new parent.

Figure 6. LHS graph for rule 2

Action
pre: LHS.element0.isCurrent = 1

 and LHS.element1.isVisited = 0
post: RHS.element0.isVisited = 1

 and RHS.element1.isVisited = 1
and RHS.element2.isSelected = 1

RULEMAKECLASSSIGNATURE (priority 3) locates the
current class (see Figure 7) and copies the LHS to the
RHS. Its action makes a signature for the class, adds the

signature to the global attribute body and marks the class
as not current.

Figure 7. LHS graph for rule 3 and 4

Action
pre: LHS.element0.isCurrent = 1
post: RHS.element0.isCurrent = 0

RULECHOOSENEWCURRENT (priority 4) picks up a class
among the selected classes and copies the LHS (see
Figure 7) to the RHS. Its action marks the class as
current, unselects it and adds temporary attributes
parents and parts to it. This rule may return multiple
matches and therefore requires parallel execution of the
transformation.
Action
pre: LHS.element0.isSelected = 1

 and LHS.element0.isVisited = 0
post: RHS.element0.isCurrent = 1

 and RHS.element0.isSelected = 0

The Final Action creates a blank product structure in the
file system, generates proper Python code based on the
sequence of signatures in attribute body, and saves the code
into the created product files. As the last step, it iterates
through all the elements on the tool’s canvas and removes
the temporary attributes.

MODEL-TRANSFORMING
During execution of a model transformation, AToM3’s

Graph Rewriting Processor (GRP) iterates through the list
of rules sorted by their priority in an ascending order and
tries to apply the current rule to the model. If the rule
makes a match, i.e. LHS graph is found and conditions are
met, it is executed and the GRP repeats trying each rule
again from the beginning of the list. This continues until
there are no more rules that can be applied, and then GRP
completes the model transformation [de Lara and
Vangheluwe 2002a].

Figure 8. A model in SCD formalism

ISBN: 1-56555-268-7 298 SCSC '03

Figure 8 shows a model of the Coupled DEVS
component created with the generated SCD modeling tool.
The core of this diagram is a concrete class CoupledModel
and abstract class Component. The concrete class
AtomicModel is needed for its participation in the
association between CoupledModel and Component. Since
Component is an abstract class and may not have direct
instances, that relationship implies an instance of a child of
class Component, i.e. an instance of either AtomicModel or
CoupledModel. Root classes MRD (Metadata for Resource
Discovery) and ARV (Abstract Resource View) provide
features that enable registration, discovery and processing
of CoupledModel instances under NCSE [Levytskyy
and Kerckhoffs 2001].

A model-transforming process in AToM3 can be
launched in a variety of ways, e.g. by clicking the “SCD-2-
ZProduct” button of the graphical user interface. The
transformation begins with class CoupledModel, which was
selected (graphical attribute) by a modeler on the canvas.
In case of this model, the sequence of executed rules is 4, 1,
2, 3, 4, 2, 2, 3, 4, 3, 4 and 3. The result of the model
transformation is a valid Python package implementing a
Zope product. Figure 9 illustrates core class CoupledModel
of the synthesized product.

class CoupledModel(mxmObjectManager, MRD, ARV):
 """Coupled DEVS component."""

 meta_type = 'CoupledModel'

 _allowed_meta_types =('AtomicModel','CoupledModel')

 _properties = (
 {'type': 'string', 'id': 'name'},
 {'type': 'string', 'id': 'processor'},
 {'type': 'tokens', 'id': 'ports'},
 {'type': 'tokens', 'id': 'children'},
 {'type': 'tokens', 'id': 'EIC'},
 {'type': 'tokens', 'id': 'EOC'},
 {'type': 'tokens', 'id': 'IC'}
 {'type': 'selection', 'id': 'revision', \
 'select_variable': 'revision_values',},
) + MRD._properties + ARV._properties

 index_html = HTMLFile('www/index_html', globals())

 def revision_values (self):
 """Return list of DEVS revions."""
 return ['Classic', 'Parallel']

 def select (self):
 """Select an imminent component."""
 pass

Figure 9. Generated code

At this point a Zope developer can finalize the
synthesized product by e.g. specifying an external
implementation of the public interface index_html or
implement internal methods (e.g. revision_values) and
install it in the product directory of Zope installation. After
Zope has been rebooted, a new type of objects, namely
Coupled DEVS components, is added to NCSE, which just
like the other NCSE components is easily documented,
searchable and executable on-line in a standardized way.
Client AToM3-generated tools can store abstract

specifications of DEVS components in the NCSE Model
Base, retrieve components for further reuse, and generate
code for execution on one of the tools integrated in NCSE.
More details about the environment’s registration,
discovery and processing services can be found in
[Levytskyy et al., 2001].

FINAL REMARKS
In this paper we have demonstrated how the concepts of

meta-modelling and model-transforming are used to create
a highly specialised CASE tool for the so-called Simplified
Class Diagrams (SCD) and provide automated Python code
generation for Zope products. Herein, the meta-modelling
tool AToM3 is used as (meta-) CASE tool and a code
generator.

The current product construction is based on a
minimum product framework and we plan to generalise it
further in order to include such aspects as security,
management interfaces, product packaging and
documentation.

ACKNOWLEDGEMENT
The research reported in this paper is done in the

framework of the NanoComp project, sponsored by
TU-Delft.

We would like to thank the Modelling, Simulation and
Design Lab (MSDL) of the School of Computer Science of
McGill University (Montreal, Canada), and especially Hans
Vangheluwe and Juan de Lara, for providing and helping us
with AToM3.

REFERENCES
de Lara, J. and Vangheluwe, H. (2002) AToM3: A Tool for

Multi-Formalism Modelling and Meta-Modelling. In
European Conferences on Theory And Practice of
Software Engineering ETAPS02, Fundamental
Approaches to Software Engineering (FASE). Lecture
Notes in Computer Science 2306, pp.: 174 - 188.
Springer-Verlag.

de Lara, J., and Vangheluwe, H. 2002. “Using AToM3 as a
Meta-CASE tool.” In Proceedings of 4th International
Conference on Enterprise Information Systems,
ICEIS’02, (Ciudad Real, Spain, April 2002). 642-649.

Ernst, T., Rother, T., Schreier, F., Wauer, J., and Balzer,
W., 2003, “DLR’s VirtualLab: Scientific Software Just
a Mouse Click Away”, Computing in Science &
Engineering magazine, vol. 5, no. 1, Jan./Feb.: 70-79

Fishwick, P.A. 1996. “Web-Based Simulation.” In
Proceedings of the 1996 Winter Simulation Conference.
772 – 779.

Levytskyy, A., and Kerckhoffs, E.J.H. 2001. “Integration
of Simulation Tools and Models in a Collaborative
Environment”. In Proceedings of 2001 European
Simulation Interoperability Workshop, EuroSIW01
(London, United Kingdom, June 25-27), Simulation
Interoperability Standards Organisation, 407-415.

Levytskyy, A., Kerckhoffs E.J.H., and Vangheluwe, H.
2001. “Sharing Simulation Models and Tools within a

ISBN: 1-56555-268-7 299 SCSC '03

Collaborative Research Project.” In Proceedings of 15th
European Simulation Multiconference (Prague, Czech
Republic, June 6-9). SCS, 578-584.

Max, M. 2002. An easier way to write products:
www.zope.org/Members/maxm/HowTo/easyProduct

OMG. 2001. “Unified Modeling Language Specification,
version 1.4.” Object Modeling Group. September 2001.

OMG. 2002. “MetaObject Facility (MOF) Specification,
version 1.4.” Object Modeling Group. April 2002.

Page, E.H. 1998. “The rise of Web-based simulation:
implications for the high level architecture.” In
Proceedings of 1998 conference on Winter simulation
(Washington, D.C., United States). 1663 – 1668.

Pelletier, M., Latteier, A., and McDonough, C. “The Zope
Developer's Guide. Zope 2.4 edition”:
www.zope.org/Documentation/Books/ZDG/current/

Rumbaugh, J., Jacobson, I., and Booch, G. 1999. The
Unified Modeling Language Reference Manual.
Addison-Wesley.

Vangheluwe, H., de Lara, J., and Mosterman, P.J. 2002.
“An introduction to multi-paradigm modelling and
simulation.” In Proceedings of the 2002 AI, Simulation

and Planning in High Autonomy Systems Conference,
AIS'2002, (Lisboa, Portugal, April 2002). 9-20.

AUTHOR BIOGRAPHIES
Andriy Levytskyy graduated from Chernivtsi State

University, Ukraine and holds an MSc-degree in Computer
Science. Currently, he is a PhD student at Delft University
of Technology, Faculty “Information Technology and
Systems”, Department “Mediamatica”, Group
“Knowledge-based Systems”.

Eugene J.H. Kerckhoffs holds an MSc-degree from
Delft University of Technology (1970, Physical
Engineering, thesis on analogue and hybrid computer
simulation) and a PhD-degree from the University of Ghent
(1986, Computer Science, thesis on parallel continuous
simulation). Currently, he is an associate professor at Delft
University of Technology (Faculty “Information
Technology and Systems”, Department “Mediamatica”,
Group “Knowledge-based Systems”). He was also
chairholder of the SCS Chair in Simulation Sciences at the
University of Ghent, Belgium.

ISBN: 1-56555-268-7 300 SCSC '03

	TITLE PAGE
	SCSC Table of Contents
	ACROBAT HELP
	From Class Diagrams to Zope Products with the Meta-Modelling Tool AToM
	Keywords:
	Abstract
	INTRODUCTION
	SIMPLIFIED CLASS DIAGRAMS
	METAMODEL
	CODE GENERATION TRANSFORMATION
	MODEL-TRANSFORMING
	FINAL REMARKS
	ACKNOWLEDGEMENT
	REFERENCES
	AUTHOR BIOGRAPHIES

