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ABSTRACT

DEVS is a well-known formalism that provides a
rigorous basis for discrete event modelling and
simulation. In this paper we present two possible DEVS
metamodels that are used to automatically generate 1) a
tool that allows the graphical definition of DEVS
models and 2) Zope products that allow storing DEVS
models in a model library under the Web Application
Server Zope. The tool is capable of generating a
representation suitable for simulation by an external
DEVS solver. The generation of executable model
representations and Zope products is realized by graph
transformation. The tool, the simulator and the model
library form a dedicated DEVS modelling and
simulation environment. The paper demonstrates how
dedicated, domain/problem-specific modelling and
simulation environments can be easily generated from
metamodels using graph transformation.

1. INTRODUCTION

The emergence of the world-wide web (WWW) and
its popularity in the simulation community gave birth to
the concept of web-based simulation (Fishwick 1996).
This now includes (among others) activities that deal
with the use of the WWW as an infrastructure to
support distributed simulation execution. It also
encompasses research into tools, environments and
frameworks that support the distributed, collaborative
design and development of simulation models (Page
1998).

Within this context we started a Collaborative
Simulation project in which a generic web environment
is developed to support simulation and modelling
components in multidisciplinary collaborative projects
(Levytskyy and Kerckhoffs 2000a). The practical
application of our prototyped environment lies in the
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NanoComp project (nanocom.et.tudelft.nl),
which investigates computing systems based on
quantum devices. Hence is the name NanoComp
Simulation Environment (NCSE). The environment’s
functionality is similar to that of the DLR-Virtual
Laboratory (Ernst et al. 2003) and provides registered
(web-)users with model registration and access to
experiments. Registered models and tools are treated as
limited Internet resources and are organized into a
central Model Library. NCSE itself runs on top of the
Web Application Server Zope (www . zope . org) and its
resources are created from Zope products.

Since 2002, all major parts of the environment are no
longer coded, but rather (meta)modelled. Code is
automatically generated by means of AToM?® (A Tool
for Multi-formalism and Meta-Modelling) (de Lara and
Vangheluwe 2002), which is also a part of the NCSE as
a generic modelling client. AToM? is a visual tool that
uses metamodelling and graph grammars to specify and
generate  domain-specific  environments.  Meta-
modelling refers to modelling formalism concepts at a
meta-level, and model transformation refers to the
automatic conversion, translation or modification of a
model of a given formalism into another model in the
same or different formalism (Vangheluwe et al. 2002).

[ 2|
‘ ER2SCD_GG ‘ ‘ SCD2ZProduct GG ‘
i J

§ ‘ DEVS_ER }__,{ DEVS_SCD } 1 = DEVSProducts

5 | a
- [ modsl_DEVS | DEVSGoniainer
£ |f—

»| model_PythonDEVS

Connectors: transfommation by means of  instantiation  communication

Figure 1: NCSE within a Metamodelling
and Graph Transformation Framework
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This paper demonstrates how meta-modelling and
graph transformation can be used to construct a
modelling and simulation environment, in this
particular case dedicated to DEVS, a well-known
formalism that provides a rigorous basis for discrete
event modelling and simulation (Zeigler et al. 2000).
Figure 1 depicts the process of constructing a DEVS
environment within the NCSE. There are three
domains: “AToM?”, “File System” and “Zope”. “Meta”
and “Model” levels span across these domains. Their
intersections create six zones. A number of models
specified in various formalisms are present in the
figure. Graph Grammar models specify
transformations. When applied to a model, they convert
it into another form and, only specific to our depiction,
may transfer it into a  different zone. We use
<model>_<formalism> syntax to name models
throughout the paper. For example, DEVS_ER denotes
a (meta)model of the DEVS formalism, described in the
Entity Relationship (ER) formalism. Similarly,
ER2SCD_GG denotes a model of the transformation
between a model in the ER formalism into its
equivalent in the Simplified Class Diagrams (SCD)
formalism, described in the Graph Grammar (GG)
formalism.

AToM’ allows one to create a DEVS metamodel in a
formalism, such as ER (zone 1 in Figure 1). The
ER2SCD_GG transformation automatically converts
DEVS_ER into another form: DEVS_SCD, which is
the starting point for automated code generation for
Zope. SCD2ZProduct_GG produces DEVS Products
for Zope (zone 3), from which clients can create
containers for DEVS models at the lower level (zone
6). The DEVS tool itself (zone 4) is automatically
generated from metamodel DEVS_ER via
ER2MM_GG, an internal AToM? graph transformation
discussed in (de Lara and Vangheluwe 2002). This tool
provides DEVS2PythonDEVS_GG, a transformation,
which converts any valid DEVS models into a
representation (zone 5) executable by an external
solver. Communication between the DEVS tool (zone
4) and NCSE resources (zone 6) is being implemented.

The rest of the paper is organized as follows. Section
2 presents two possible DEVS metamodels. Section 3
presents the DEVS tool (generated from the first
metamodel). Section 4 discusses the code generation
schemes for an external DEVS solver and for Zope.
Section 5 concludes the paper with final remarks.

2. METAMODELLING DEVS

Metamodelling refers to the definition or description
of modelling languages or formalisms. A metamodel of
a given formalism specifies the syntax of the formalism
by defining the language constructs and how they are
built-up in terms of other constructs.

To construct a DEVS metamodel we use Entity
Relationship (ER) diagrams extended with constraints.

This is the default meta-formalism of AtoM>.
Constraints further restrict how a construct can be
connected to another construct to be meaningful.

Each DEVS modelling construct is specified with
attributes, constrained with constraints, visually
presented with its appearance and participates in
relationships according to its cardinality. We define
each construct’s attributes with a minimum collection
of features that form the basis for the DEVS semantics.

A 2 using
Hle Model Iransformation Graphics

Entity Relationship|[ Model ops | Edtentity | comnect | Delete | Insertmodel | Eepand model | Exit
= Visual ops | Smooth insertpoint | Delete point | Change connector |
Eiiy

name type-Siring inft val

B
5
§
<

N 7
[Editing Yhomemencsiandriy/Al olididevs/DENS_ER_mdl.py’ (miEditing transt, ‘Nonamed' (ot medified] in file TNonaned:

Figure 2: DEVS Metamodel in ER

The screenshot in Figure 2 illustrates how ER
constructs build up a DEVS metamodel (Posse and
Bolduc 2003). Note that constraints and appearance
are element properties, which are not visible in the used
notation. A brief formal specification of ER elements is
given below (constraints and cardinalities are omitted
to save space):

atomic_devs implements a basic DEVS model with
ports. It is a container for states and for the DEVS
functions time advance, internal transition, external
transition and output.

attributes

name is a unique identifier of a component: String

parent is a quasi-feature that returns the reference to
the parent of the atomic_devs in a hierarchical
model via the contains_model relationship:
coupled_devs

ports is a quasi-feature that returns a collection of
references to input and output ports via the
contains_port relationship: Ser {port}

states is a quasi-feature that returns a collection of
references to DEVS states via the
contains_state relationship: Set {state}
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appearance
An atomic DEVS is represented as solid rectangle
with its name above the top left corner (see Figure 3).
It may contain states connected by transitions.

state allows a modeller to add a DEVS state to an
atomic model and specify behaviour.

attributes

name is a unique identifier of a component: String

initial is a marker for the initial state: Boolean

internal_transition is a quasi-feature that specifies the
internal transition via the internal_transition
relationship: Constraint text

external_transition is a quasi-feature that specifies the
external transition via the external_transition
relationship: Constraint text

output is the output function: Constraint text

time_advance is the time advance function:
Constraint text

<hame=
Figure 4: State Appearance

appearance
A state is represented as solid gray circle with its
name in the center (see Figure 4).

coupled_devs is a model expressed in Coupled DEVS
with ports. It is a container for atomic and coupled
models. In case of Classic DEVS, the modeler has to
implement the tie-breaking function select.

attributes

name is a unique identifier of a component: String

parent is a quasi-feature that returns the parent of the
coupled_devs in a hierarchical model via the
contains_model relationship: coupled_devs

ports is a quasi-feature that returns a collection of
references to input and output ports via the
contains_port relationship: Set {port}

children is a quasi-feature that returns a collection of
references to children components via the
contains_model relationship: Set {DEVS}

EIC is a quasi-feature that returns a collection of
external input couplings via the channel
relationship:
Set {((coupled_devs, inport), (DEVS, inport))}

EOC is a quasi-feature returning a collection of
external output couplings via the channel
relationship:
Set {((DEVS, outport), (coupled_devs, outport))}

IC is a quasi-feature that returns the collection of
internal couplings via the channel relationship:
Set {((DEVS, outport), (DEVS, inport))}

select is the tie-breaking function: Constraint text

appearance
A Coupled DEVS presentation is the same as that of
the Atomic DEVS, but instead of states, it may
contain instances of  atomic_devs and
coupled_devs.

port is a component's input or output interface.

attributes
name is a unique identifier of a component: String
port_type specifies if the port is for input or output:
Enum { input, output }

El
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Figure 5: Port Appearence

appearance
A port is represented as small (relative to the other
appearances) square with its name labeled next to it
(see ).

channel is responsible for specifying input/output
connections between interfaces (ports) of DEVS
components. Note on cardinality: one outport can be
connected to many inports.

appearance
A channel is represented as solid connector with an
arrow end pointing to the input interface (port) of a
component.

Along with the properties defined for each DEVS
construct, a modeller can add global properties for the
metamodel itself to, for example, document models
belonging to this family of the DEVS formalism. All
global properties and regular attributes are to be filled-
in at the lower meta-level.
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Figure 6: DEVS Metamodel in SCD

Figure 6 shows another DEVS metamodel
(DEVS_SCD) expressed in the Simplified Class
Diagrams (SCD) formalism (Levytskyy and Kerckhoffs
2003), a custom UML Class Diagrams-like formalism
designed with AToM? for the NanoComp project. This
metamodel is equivalent to the previously described
DEVS_ER, but is less detailed: it is stripped of any
syntax related to graphical nature, and any constraints
related to well-formedness rules that are required for



modelling tools. The model shown is the result of
automated transformation from the DEVS metamodel
in ER into the SCD formalism by means of graph
rewriting.  This  rather  straightforward  graph
transformation is beyond the scope of this paper.
DEVS_SCD model is created solely for the purpose of
code generation for Zope. We will return to it in
subsection 4.2.

3. THE TOOL

Given the DEVS_ER metamodel, AToM® can
generate (by means of ER2ZMM_GG as illustrated in
Figure 1) a meta-specification, which, when loaded into
the meta-level of AToM?, turns it into the modelled
DEVS tool. A part of this meta-specification is a
specification of the User Interface. This specification is
a model in its own right and can be edited in AToM? at
any time in the “Buttons” formalism. By default, this
specification creates a button for every construct of the
formalism. An instance of the generated DEVS
modelling tool with a simple DEVS model on its
canvas is shown in Figure 6. For a complete description
of this tool, we refer to (Posse and Bolduc 2003).
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Figure 7: Generated DEVS Modeling Tool

In this tool, the user can create coupled or atomic
DEVS models by clicking the corresponding button on
the left and then clicking in the canvas. The same
applies for each element that forms a DEVS model
(states, ports, channels, and transitions.) To create a
channel between ports, or a state transition, the user
clicks on the Connect button, then clicks on the source
and finally on the target. If the link is a state transition,
the user is asked to select whether it is an internal or an
external transition. To specify that a component is part
of another (e.g. a submodel, or a port,) the user clicks
on the Connect button, then clicks on the “parent”, and
finally on the “child”. Each graphical element, which is
not a link, has a label with its name. This can be edited
using the Edit button.

Ports are labelled as either input or output ports. Each
state has two attributes apart from its name. These are
two fields which may contain an arbitrary Python script
to specify the time-advance and output for the state.

External transitions between states also have an
additional attribute which may contain some Python
script to specify whether the transition is enabled or
not. This script has as parameters the source state, the
elapsed time, and the values at the input ports. It should
return true or false. For example, if there is an external
transition link between two states s, and s;, labelled
with a condition such as e < 1.0 and x; = 3, where e is
a variable representing the elapsed-time since the last
transition, and x; is the name of some input port, then
the external transition will take place if the condition
becomes true. All these attributes for ports, states and
external transitions can be specified by using the Edit
button.

The Generate simulator button is used to produce
the Python code for the DEVS model on the canvas.
The generated code is a textual representation of DEVS
models that can be used by the PythonDEVS simulator
(Bolduc and Vangheluwe 2002), an implementation of
the standard classic DEVS simulation algorithm. The
underlying graph transformation (Posse and Bolduc
2003) is briefly described in subsection 4.1.

4. GRAPH TRANSFORMATION

One approach to manipulate graphical structures,
such as our representation of DEVS models, is graph
transformation. Graph transformation extends the idea
of term rewriting to arbitrary graphs. The theory behind
graph transformation has been thoroughly studied (see
for example (Rozenberg 1999)), but there are still few
software tools that support it. AToM? is one such tool.

The central notion in graph transformation is that of a
graph grammar. A graph grammar is a collection of
productions or rules specifying how a (sub)graph of a
so-called host graph can be replaced by another
(sub)graph.

Some graph grammars are enriched by associating
with each rule, some additional conditions and actions.
These can be used to model side-effects.

Informally, the operational semantics of graph
grammars is as follows. We start from a host graph and
a graph grammar. A direct derivation is the result of
matching some subgraph of the host graph to the left-
hand side of some rule in the grammar, checking if the
additional condition is true, and if so, replacing that
subgraph by the corresponding right-hand side of the
rule, subsequently performing any additional actions
associated with the rule. Some graph rewriting systems
associate priorities to the rules, so that if more than one
rule matches the host graph, the priorities act as tie-
breakers. An execution or trace is a sequence of direct
derivations'.

"This informal definition, as implemented in AToM3, is
most closely related to the so-called SPO approach to
graph transformation (Rozenberg 1999; Ehrig 1979).



Graph transformation has been used in a plethora of
applications, such as specifying the operational
semantics of graphical languages, and specifying
formalism translations. This paper demonstrate two
graph transformations that generate Python code (see
below).

Code generation can be understood in terms of
formalism  transformation = where the original
representation is the source formalism and the language
of the generated code is the target formalism. While it
is theoretically possible to provide a purely graphical
translation from a formalism such as DEVS into a real
programming language such as Python, it is not a very
practical approach, since it would require defining a
meta-model for the target language. Real programming
languages have too many constructs and special cases
to make this approach feasible in practice. However, we
can still have a graph transformation approach since
rules in a graph grammar can have associated actions
encoding side-effects. In our approach we use the
graphical nature of the source formalism to traverse and
annotate the model which is being translated, while the
rule's actions generate the associated code.

4.1 PythonDEVS Code Generation

In order to generate simulators from DEVS models
represented graphically we use graph transformation.
This, however, requires us to introduce some extensions
to the meta-model. In particular we need some
“pointers” or “markers” to traverse the DEVS model
and mark which submodels have been already
processed. There are two equivalent approaches to this:
1) use a graphical pointer, or 2) use an attribute in the
nodes to represent the fact that a node has already been
visited. Our graph grammar uses the second approach.

Another issue in the code generation scheme is that
for a given model node we might require access to
several of its neighbour nodes to generate its code. For
instance, when generating code for any model we need
to know which are the node's ports, or when generating
code for a coupled model we need to know which are
its submodels. None of these situations can be handled
by a single rewriting rule, since the left-hand side of a
rule always has a fixed number of nodes, but we need
to apply the rule of interest for an arbitrary number of
neighbours. One possible solution is to create a special
“collecting” node, and have a rule that adds the
neighbours to a list in this collecting node. This rule,
when applied, marks each neighbour as visited so that it
is not added twice. The rule also should have a priority
higher than that of the actual code generation of the
model of interest, since code generation should happen
only after all the relevant neighbour's information has
been collected.

The code generation rules themselves do not perform
any important rewriting aside from getting rid of
annotations such as the collecting nodes mentioned

above. The code generation is performed by the actions,
which can access the annotations.

An example of the code generation rule of a coupled
model, showing the collecting nodes is depicted in
Figure 8. The collecting nodes (S and P) each contain a
list of the names of the submodel nodes and port nodes
respectively. The rule simply deletes the annotations
(the collecting nodes,) and its action is to call an
external function passing it the model and the relevant
annotations. The action is executed before the graph
rewriting takes place. The rule also marks the model's
node as visited so that it will not be applied again to

that node.
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Figure 8: A Typical Code Generation Rule

As an example, consider the model in Figure 7. In the
atomic model A, there is an external transition labelled
evt from state sO to state s1. This transition has as
condition the following script:

if e < 1.0:
if i1 == 'a' and i2 == 0 or il == 'b'
or i2 > 0: return 1
else: return 0O
elif e < 2.0: return i2 >=1
else: return 0

where 0 stands for false and 1 for true, following
Python's convention. Then the PythonDEVS code

generated for A, is as follows:

class A (AtomicDEVS) :
def _ _init__ (self):
AtomicDEVS._ _init__ (self)
self.state = 's0'
self.elapsed = 0.0
self.il self.addInPort ()
self.i2 self.addInPort ()
self.ol self.addOutPort ()
self.o2 self.addOutPort ()
def extTransition(self):
s = self.state
e = self.elapsed
il = self.peek(self.il)
i2 = self.peek(self.i2)
if s == 's0':
def guardl_condition(e, i1, i2):
if e < 1.0:
if i1 == 'a' and i2 ==
or il == 'b'
or i2 > 0: return 1
else: return O
elif e < 2.0: return i2 >= 1
else: return 0
if guardl_condition(e, 11, 1i2):
return 'sl'

4.2 Zope Product Generation

The  sequel  describes the  transformation
SCD2ZProduct _GG, which, given an SCD model (in
this case, DEVS_SCD), can generate Python code for a
corresponding Zope product. This transformation also
extends the source model with “markers” in a way



similar to that described above. A detailed description
of this transformation can be found in (Levytskyy and
Kerckhoffs 2003).

Figure 9 shows a somewhat modified part of the
metamodel related to the “Atomic DEVS” component.
The core of this diagram is concrete class
atomic_devs. In addition, we created two “dummy”
classes MRD (Metadata for Resource Discovery) and
ARV (Abstract Resource View) that are defined outside
the namespace of this model. These “imported” classes
provide features that enable on-line registration,
discovery and processing of NCSE resources
(Levytskyy and Kerckhoffs 2001).
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Figure 9: Atomic DEVS Component

The result of the SCD2ZProduct_GG transformation
applied to the diagram in Figure 9, is a valid Python
package implementing a Zope product. An excerpt of
the code generated for Atomic DEVS product is

class atomic_devs (mxmSimpleItem, MRD, ARV):

meta_type = 'atomic_devs'
_allowed_meta_types = ('state', 'port')
_properties = (

{'type': 'string', 'id': 'name'},

) + MRD._properties + ARV._properties

def parent (self):
'''Return the parent coupled_devs.'''
return self.getParentNode ()

def states (self):
''"'Return states of this atomic_devs.'''
return self.objectValues ('state')

def ports (self):
''"'Return ports of this atomic_devs.'''
return self.objectValues ('port')

index_html = HTMLFile ('www/index_html',
globals())

At this point, a Zope developer can finalize the
synthesized product by for example specifying an
implementation of the public interface index_html in
the external HTML file www/index_html, and install
the package in the Products directory of the Zope
installation. After Zope has been restarted, a new type
of objects, namely atomic_devs, can be created under
Zope in the NCSE Model Library. These new objects,
just like any other NCSE resources, are easily
documented, searchable and executable on-line in a
standard manner (Levytskyy and Kerckhoffs 2001).

5. CONCLUSIONS

In this paper we have introduced a DEVS modelling
environment, which allows the graphical definition of
DEVS models, generates well-structured dedicated
simulators for the models and allows storing the models
in a central repository in a consistent manner. We also
emphasize metamodelling and graph transformation as
suitable frameworks for the construction of such
dedicated modelling and simulation environments.

Future work will be done to implement the
communication between the DEVS tool (zone 4) and
the NCSE Model Library (zone 6) as shown in Figure
1. This connectivity will enable us to store semantic
information of DEVS models (both atomic and
coupled) in the Model Library under Zope and later,
retrieve this information into the DEVS tool to reuse it
in modelling components. This implements the context-
out and context-in ideas introduced by (Bernardi and
Santucci 2003)
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